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Neutron Star Structure

Tolman-Oppenheimer-Volkov equations
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Neutron Star Structure

Newtonian Gravity:
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= 4πρr 2; ρc2 = ε

Newtonian Polytrope:
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The Radius – Pressure Correlation

Lattimer & Prakash (2001) Lattimer & Lim (2013)
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Nuclear Symmetry Energy and Pressure

Defined as the difference between energies of pure neutron matter
(x = 0) and symmetric (x = 1/2) nuclear matter.

S(ρ) = E (ρ, x = 0)− E (ρ, x = 1/2)

Expanding around the saturation density
(ρs) and symmetric matter (x = 1/2)

E (ρ, x) = E (ρ, 1/2)+(1−2x)2S2(ρ)+. . .

S2(ρ) = Sv +
L

3

ρ− ρs
ρs

+ . . .

Sv ' 31 MeV, L ' 50 MeV

C. Fuchs, H.H. Wolter, EPJA 30(2006) 5

6

?

symmetry energy

Connections to pure neutron matter:

E (ρs , 0) ≈ Sv + E (ρs , 1/2) ≡ Sv − B, p(ρs , 0) = Lρs/3

Neutron star matter (in beta equilibrium):

∂(E + Ee)

∂x
= 0, p(ρs , xβ) ' Lρs
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Experimental and Neutron Matter Constraints

H&S: Chiral Lagrangian

GC&R: Quantum Monte Carlo

Sv − L constraints from
Hebeler et al. (2012)
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Extremes of Compaction of Neutron Stars

I The most compact and massive configurations occur when the
low-density equation of state is ”soft” and the high-density equation
of state is ”stiff” (Koranda, Stergioulas & Friedman 1997).
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The TOV
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Extremal Properties of Neutron Stars

The maximum mass configuration is achieved when
xR = 0.2404, wc = 3.034, yc = 2.034, zR = 0.08513.

A useful reference density is the nuclear saturation density
(interior density of normal nuclei):
ρs = 2.7× 1014 g cm−3, ns = 0.16 baryons fm−3, εs = 150 MeV fm−3

I Mmax = 4.1 (εs/ε0)1/2M� (Rhoades & Ruffini 1974)

I MB,max = 5.41 (mBc
2/µo)(εs/ε0)1/2M�

I Rmin = 2.82 GM/c2 = 4.3 (M/M�) km

I µb,max = 2.09 GeV

I εc,max = 3.034 ε0 ' 51 (M�/Mlargest)2 εs
I pc,max = 2.034 ε0 ' 34 (M�/Mlargest)2 εs
I nB,max ' 38 (M�/Mlargest)2 ns
I BEmax = 0.34 M

I Pmin = 0.74 (M�/Msph)1/2(Rsph/10 km)3/2 ms =
0.20 (Msph,max/M�) ms
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Maximum Energy Density in Neutron Stars

p = s(ε− ε0)
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Although simple
average mass of
w.d. companions
is 0.23 M� larger,
weighted average is
0.04 M� smaller

Champion et al. 2008

Demorest et al. 2010

Antoniadis et al. 2013

Romani et al. 2012

vanKerkwijk 2010
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What is the Maximum Mass?

I PSR J1614+2230 (Demorest et al. 2010)
M = 1.97± 0.04 M�; a nearly edge-on system with
well-measured Shapiro time delay.

I PSRJ0548+0432 (Antoniadis et al. 2013)
M = 2.01± 0.04 M�; measured using optical data and
theoretical properties of companion white dwarf.

I B1957+20 (van Kerkwijk 2010) M = 2.4± 0.3 M�; black
widow pulsar (BWP).

I PSR J1311-3430 (Romani et al. 2012)
M = 2.55± 0.50 M�; BWP.

I PSR J1544+4937 (Tang et al. 2014)
M = 2.06± 0.56M�; BWP.

I PSR 2FGL J1653.6-0159 (Romani et al. 2014)
M > f (M2)/ sin3 i >∼ 1.96M�; largest f (M2).

I PSR J1227-4859 (de Martino et al. 2014)
M = 2.2± 0.8M�; redback pulsar.
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Black Widow Pulsar PSR B1957+20

1.6ms pulsar in circular 9.17h orbit with ∼ 0.03 M� companion.
Pulsar is eclipsed for 50-60 minutes each orbit; eclipsing object has a
volume much larger than the companion or its Roche lobe.
It is believed the pulsar is ablating the companion leading to mass loss
and an eclipsing plasma cloud. Companion nearly fills its Roche lobe.
Ablation by pulsar leads to eventual disappearance of companion.
The optical light curve does not represent the center of mass of the
companion, but the motion of its irradiated hot spot.

pulsar radial velocity

NASA/CXC/M.Weiss

eclipse
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Black Widow Pulsar PSR B1957+20

Ki = 2π ai sin i
P
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Causality + GR Limits and the Maximum Mass

A lower limit to the
maximum mass sets a
lower limit to the
radius for a given mass.

Similarly, a precise
(M ,R) measurement
sets an upper limit to
the maximum mass.

1.4M� stars must have
R > 8.15M�.

1.4M� strange quark
matter stars (and likely
hybrid quark/hadron
stars) must have
R > 11 km.

∂p
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Maximum Mass and Neutron Star Radii
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What About Realistic EOSs?

It has been proposed that the effective sound speed limit is
c/
√

3 (Bedaque & Steiner 2015), in which case 1.4M� stars
must have R1.4 > 11 km.

Hybrid quark/hadron stars are realistically at least 1-2 km
larger (Alford et al. 2015).

What additional constraints are imposed by our knowledge of
the low-density equation of state?
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Chiral Lagrangian Neutron Matter Calculations

The study of Hebeler & Schwenk (2010) suggested moderate
values 40 MeV < L < 60 MeV, consistent with but at the
lower boundary of the range favored by nuclear experiments.

These results were in substantial agreement with the quantum
Monte Carlo neutron matter calculations of Gandolfi, Carlson
& Reddy (2012).

The chiral Lagrangian calculations have been refined and
extended to matter with proton fractions up to and including
symmetric matter (Drischler & Schwenk 2014).

The symmetry energy coefficients are found to be correlated
with the saturation properties for a given parameter set.

There is a small quartic contribution to the symmetry energy.
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Neutron Matter Comparisons
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Extrapolation of Neutron Matter EOS to Higher Densities

Gandolfi, Carlson & Reddy fit their QMC neutron matter
equations of state to the 4-parameter fit:

En(u) = auα + buβ

with u = n/ns and ns = 0.16 fm−3.

This can also be done with the chiral Lagrangian neutron
matter equations of state computed by Drischler, Hebeler &
Schwenk.
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Neutron Matter Extrapolations and M − R
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Neutron Matter Extrapolations and Mmax − R1.4
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First Order Phase Transition in Neutron Stars

I Generic first order phase
transiton with 3 parameters: ∆ε,
εt and Pt .

I Make 2 dimensionless parameter
combinations: ∆ε/εt and Pt/εt .

I Critical condition for existence of
stable hybrid core connected to
normal branch (A, D):

∆ε

εt
≤ 1

2
+

3

2

Pt

εt
.

I It is also possible to have a
stable hybrid core disconnected
from normal barnch (B, D).

I Parametrize high-density phase
with a constant sound speed
c2
QM = dp/dε ∼ 1/3.

Alford, Han & Prakash (2013)
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Possible Hybrid Configurations

A B C D

Alford, Han & Prakash (2013)
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Sound Speed in Quark Matter

Alford, Burgio, Han, Taranto & Zappalá (2015)

FCM model
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Mass Constraint

Alford, Burgio, Han, Taranto & Zappalá (2015)
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Mass Constraint

Alford, Burgio, Han, Taranto & Zappalá (2015)
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Radius Constraint

Alford, Burgio, Han, Taranto & Zappalá (2015)
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Mmax − R1.4
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Mass-Radius Diagram and Theoretical Constraints

GR:
R > 2GM/c2

P <∞ :
R > (9/4)GM/c2

causality:
R >∼ 2.9GM/c2

— normal NS
— SQS

— R∞ =
R√

1−2GM/Rc2
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Simultaneous Mass/Radius Measurements

I Measurements of flux F∞ = (R∞/D)2
σT 4

eff

and color temperature Tc ∝ λ−1
max yield an

apparent angular size (pseudo-BB):

R∞
D

=
R

D

1√
1− 2GM/Rc2

I Observational uncertainties include
distance D, interstellar absorption
NH , atmospheric composition

Best chances for accurate radius measurement:

I Nearby isolated neutron stars with parallax (uncertain atmosphere)
I Quiescent low-mass X-ray binaries (QLMXBs) in globular clusters

(reliable distances, low B H-atmosperes)
I Bursting sources (XRBs) with peak fluxes close to Eddington limit

(where gravity balances radiation pressure)

FEdd =
cGM

κD2

√
1− 2GM/Rc2
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M − R PRE Burst Estimates

FEdd,∞, (R∞/D)2f −4
c ,D,

fc from Ozel et al.

zph = z

Lattimer & Steiner (2013)
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M − R PRE Burst Estimates

FEdd,∞, (R∞/D)2f −4
c ,D

from Ozel et al.

zph = 0

Altered uncertainties

for fc ,D

Lattimer & Steiner (2013)
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M − R QLMXB Estimates
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Absorption (NH)
determined
self-consistently
from spectra
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M − R QLMXB Estimates
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Lattimer & Steiner (2013)

P(M,R) from H atmosphere
models of Guillot et al. (2013),
adjusted for alternate NH values
of Dickey & Lockman (1990).

Heinke et al. (2014) found
NGC 6397 probably has He
atmosphere (larger R);
ω Cen has smaller NH (and R)
than Guillot et al. (2013) found.
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Özel et al. (2015)
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Özel et al. (2015) adopts Bayesian approach following Steiner et al. (2010).
Mean XRB radius changes from 9.74± 0.5 km to 10.6± 0.8 km.
Neglect of causality and TOV constraints underestimate radius.
Steiner et al. analysis is vindicated.
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Bayesian TOV Inversion

I ε < 0.5ε0: Known crustal EOS

I 0.5ε0 < ε < ε1: EOS
parametrized by K ,K ′,Sv , γ

I Polytropic EOS: ε1 < ε < ε2: n1;
ε > ε2: n2

I EOS parameters K ,K ′,Sv , γ, ε1,
n1, ε2, n2 uniformly distributed

I Mmax ≥ 1.97 M�, causality
enforced

I All 10 stars equally weighted
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Astronomy vs. Astronomy vs. Physics
Ozel et al., XRB+QLMXB,

Mmax > 2M�, crust, zph = z :
R = 10.6± 0.6 km.

Suleimanov et al., long
XRB:R1.4

>∼13.9 km

Guillot et al. (2013),
QLMXB, equal radii stars,
self NH : R = 9.1+1.3

−1.5 km.

Lattimer & Steiner (2013),
XRB+QLMXB, TOV, crust,

causality, Mmax > 2M�,
zph 6= z , alt NH .

Lattimer & Lim (2013),
nuclear experiments:
29 MeV < Sv < 33 MeV,
40 MeV < L < 65 MeV:
R1.4 = 12.0± 1.4 km. 6 8 10 12 14 16 18
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Additional Proposed Radius and Mass Constraints
I Pulse profiles

Hot or cold regions on rotating
neutron stars alter pulse shapes:
NICER and LOFT will enable
timing and spectroscopy of
thermal and non-thermal emissions.
Light curve modeling → M/R;
phase-resolved spectroscopy → R.

I Moment of inertia
Spin-orbit coupling of ultra-
relativistic binary pulsars
(e.g., PSR 0737+3039) vary i and
contribute to ω̇: I ∝ MR2.

I Supernova neutrinos
Millions of neutrinos detected from
a Galactic supernova will measure
BE= mBN −M, < Eν >, τν .

I QPOs from accreting sources
ISCO and crustal oscillations

NASA

Neutron star Interior Composition ExploreR

Large Observatory For x-ray Timing

ESA/NASA
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Constraints from Observations of Gravitational Radiation
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I Chirp mass and tidal deformability measurable during inspiral.
I Frequency peaks are tightly correlated with compactness.
I Mass determinations from prompt and delayed black hole formation.
I In neutron star-black hole mergers, disc mass depends on a/MBH

and on MNSMBH/R
2.

I R-mode instabilities in rotating neutron stars.
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Conclusions

I Measured neutron star masses imply lower limits to radii of typical
neutron stars.

I Symmetry energy determines typical neutron star radii.

I Nuclear experiments set reasonably tight constraints on symmetry
energy parameters.

I Theoretical calculations of pure neutron matter predict very similar
symmetry constraints.

I These constraints predict neutron star radii R1.4 = 12.0± 1.4 km.

I Combined astronomical observations of photospheric radius
expansion X-ray bursts and quiescent sources in globular clusters
suggest R1.4 ∼ 12.1± 0.6 km.

I The properties of a high-density phase, such as quark matter, are
tightly constrained by current mass measurements.

I A mass measurement above 2.4M� may be incompatible with other
constraints, assuming GR is correct.
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