Electromagnetic Signatures of Neutron Star Mergers

Brian Metzger Columbia University

In Collaboration with

Rodrigo Fernandez, Dan Kasen, Eliot Quataert (UC Berkeley), Tony Piro (Carnegie) Ben Margalit, Andrei Beloborodov (Columbia), Edo Berger (Harvard) Almudena Arcones, Gabriel Martinez-Pinedo (GSI/TU Darmstadt), Dan Perley (Caltech) Geoff Bower (Hilo), Andreas Bauswein (U Thessaloniki), Stephane Goriely (U Brussels)

Workshop on Binary Neutron Stars, Aristotle University, Thessaloniki

Gravitational Wave Sources

Ground-Based Interferometers

LIGO 6th Science Run (2010) Range ~ 20-50 Mpc

"Advanced" LIGO+Virgo (~2017) Range ~ 200-500 Mpc Detection Rate ~ 1-100 yr⁻¹

LIGO (North America)

Virgo (Europe)

Importance of EM Detection:

- ◆ Improve "confidence" in GW detection; dig deeper into GW data
- Independently constrain binary parameters
- Astrophysical context (e.g. host Galaxy & environment)
- ◆ Cosmology (e.g. H₀, w); test strong-field GR; constrain neutron star EOS

Importance of EM Detection:

- ♦ Improve "confidence" in GW detection; dig deeper into GW data
- Independently constrain binary parameters
- Astrophysical context (e.g. host Galaxy & environment)
- Cosmology (e.g. H_0 , w); test strong-field GR; constrain neutron star EOS

Sky Error Regions ~ 10-100 deg² (~2019)

Importance of EM Detection:

- ♦ Improve "confidence" in GW detection; dig deeper into GW data
- Independently constrain binary parameters
- Astrophysical context (e.g. host Galaxy & environment)
- ◆ Cosmology (e.g. H₀, w); test strong-field GR; constrain neutron star EOS

Gamma-Rays

BAT FOV ~ 15% XRT slews in ~min

GBM FOV ~ 60%

Optical

Palomar Transient Factory (PTF): new 7.8 deg² camera on the Palomar 48 inch Schmidt telescope

Soon: ZTF

l (ultimately 4) l.8 m mirrors w/ Gigapixel Cameras

THE DARK ENERGY SURVEY

Radio

Optical (Future)

Large Synoptic Survey Telescope (LSST)

<mark>~</mark>All sky m_{AB}<24.5 every ~3 d Online >~2020

Origin of R-Process Nuclei

Core Collapse Supernovae or NS Binary Mergers?

Numerical Simulation - Two 1.4 M_o NSs

Courtesy M. Shibata (Kyoto)

Electromagnetic Counterparts of NS-NS/NS-BH Mergers

Electromagnetic Counterparts of NS-NS/NS-BH Mergers

Numerical Simulation - Two 1.4 M_o NSs

Courtesy M. Shibata (Kyoto)

Remnant Accretion Disk

(e.g. Ruffert & Janka 1999; Shibata & Taniguchi 2006; Faber et al. 2006; Chawla et al. 2010; Duez et al. 2010; Foucart 2012; Deaton et al. 2013)

- Disk Mass ~0.01 0.1 M_☉ & Size ~ 10-100 km
- Hot (T > MeV) & Dense (ρ ~ 10⁸-10¹² g cm⁻³)
- Neutrino Cooled: ($\tau_v \sim 0.01-100$)
- Equilibrium $e^+ + n \rightarrow \overline{v}_e + p$ vs. $e^- + p \rightarrow v_e + n \Rightarrow Y_e \sim 0.1$

Accretion Rate $\dot{M} \sim 10^{-2} - 10 M_{\odot} \text{ s}^{-1}$

$$E_{\text{visc}} \sim 0.1 \left(\frac{M_{\bullet}}{3M_{\odot}}\right)^{1/2} \left(\frac{\alpha}{0.1}\right)^{-1} \left(\frac{R_d}{100 \text{ km}}\right)^{3/2} \left(\frac{H/R}{0.5}\right)^{-2} \text{ s}$$

Short GRB Engine?

Relativistic Jets and Short GRBs

Short & Long Gamma-Ray Bursts

Long GRBs = Death of Massive Stars Star-Forming Host Galaxies (z_{avg}~2-3)

Supernova Connection GRB 030329 ⇔ SN 2003dh

Long GRBs = Death of Massive Stars Star-Forming Host Galaxies (z_{avg}~2-3)

Supernova Connection GRB 030329 ⇔ SN 2003dh

Alternative Short GRB Models? Neutron Star Accretion-Induced Collapse

MacFadyen et al. 2005, Dermer & Atoyan 2006, Giocomazzo & Perna 2012

Q: Can the collapse of a rotating neutron star leave a debris disk around the new black hole (of the same mass and angular momentum)?

Alternative Short GRB Models? Neutron Star Accretion-Induced Collapse

MacFadyen et al. 2005, Dermer & Atoyan 2006, Giocomazzo & Perna 2012

Q: Can the collapse of a rotating neutron star leave a debris disk around the new black hole (of the same mass and angular momentum)?

Margalit et al., submitted

Alternative Short GRB Models? Neutron Star Accretion-Induced Collapse

MacFadyen et al. 2005, Dermer & Atoyan 2006, Giocomazzo & Perna 2012

Q: Can the collapse of a rotating neutron star leave a debris disk around the new black hole (of the same mass and angular momentum)?

Margalit et al., submitted

NO! (cf. Shibata 2003, Baoitti et al.)

Short GRBs are Rare in the LIGO Volume

Detectable fraction by all sky γ-ray telescope

$$f_{\gamma} \sim 3.4 \times \frac{\theta_j^2}{2} \sim 0.07 \left(\frac{\theta_j}{0.2}\right)^2$$

Electromagnetic Counterparts of NS-NS/NS-BH Mergers

 $M_{ej} \sim 10^{-3} - 10^{-2} M_{\odot}$

Neutron-Rich Ejecta

Dynamical Tidal Tails

(e.g. Janka et al. 1999; Rosswog 2005; Shibata & Taniguchi 2006; East et al. 2012; Hotokezaka et al. 2013)

$$Y_e = \frac{n_p}{n_p + n_n} < 0.1$$

~ ms but see Wanajo 2014, Goriely et al. 2015!

Model	M _{ej}	(10 ⁻³ M _o	.)
APR4-130160 1.8	BH	2.0	
APR4-140150 1.8	BH	0.6	
APR4-145145 1.8	BH	0.1	
APR4-130150 1.8	HMNS→BH	12	
APR4-140140 1.8	$HMNS \rightarrow BH$	14	
APR4-120150 1.6	HMNS	9	
APR4-120150 1.8	HMNS	8	
APR4-120150 2.0	HMNS	7.5	I
APR4-125145 1.8	HMNS	7	0
APR4-130140 1.8	HMNS	8	5
APR4-135135 1.6	HMNS	11	초
APR4-135135 1.8	HMNS	7	ß
APR4-135135 2.0	HMNS	5	
APR4-120140 1.8	HMNS	3	×
APR4-125135 1.8	HMNS	5	<u>a</u>
APR4-130130 1.8	HMNS	2	Ð
ALF2-140140 1.8	HMNS→BH	2.5	<u> </u>
ALF2-120150 1.8	HMNS	5.5	<u>a</u>
ALF2-125145 1.8	HMNS	3	
ALF2-130140 1.8	$HMNS \rightarrow BH$	1.5	N
ALF2-135135 1.8	$HMNS \rightarrow BH$	2.5	Q
ALF2-130130 1.8	HMNS	2	60
H4-130150 1.8	HMNS→BH	3	
H4-140140 1.8	HMNS→BH	0.3	
H4-120150 1.6	HMNS	4.5	
H4-120150 1.8	HMINS	3.5	
H4-120150 2.0	HMNS	4	
H4-125145 1.8	HMNS	2	
II4-130140 1.8	TIMINS	0.7	
H4-135135 1.0	IIMINS-BH	0.7	
H4 195135 1.0	IMINS → DI	0.5	
H4-130130 2.0	HMINS	0.4	
14-120140 1.0 U4 195125 1.9	HMNS	2.0	
H4-120100 1.0	LIMING	0.0	
MS1_140140 1 9	MNS	0.3	
MS1 120150 1 8	MNS	9.5	
MS1-120100 1.0	MNS	1.5	
MS1-120140 1.8	MNS	0.6	
MS1-135135 1.8	MNS	1.5	
MS1-130130 1.8	MNS	1.5	

Neutron-Rich Ejecta

Dynamical Tidal Tails

(e.g. Janka et al. 1999; Rosswog 2005; Shibata & Taniguchi 2006; East et al. 2012; Hotokezaka et al. 2013)

$${
m M}_{
m ej}$$
 ~ 10⁻³ - 10⁻² ${
m M}_{\odot}$

$$Y_e = \frac{n_p}{n_p + n_n} < 0.1$$

but see Wanajo 2014, ~ ms Goriely et al. 2015!

ivioae	91	IVI _{ej}	(10 ⁻³ M _e	。)
APR4-130160	1.8	BH	2.0	
APR4-140150	1.8	BH	0.6	
APR4-145145	1.8	BH	0.1	
APR4-130150	1.8	HMNS→BH	12	
APR4-140140	1.8	$HMNS \rightarrow BH$	14	
APR4-120150	1.6	HMNS	9	
APR4-120150	1.8	HMNS	8	
APR4-120150	2.0	HMNS	7.5	エ
APR4-125145	1.8	HMNS	7	O.
APR4-130140	1.8	HMNS	8	đ
APR4-135135	1.6	HMNS	11	초
APR4-135135	1.8	HMNS	7	<u>م</u>
APR4-135135	2.0	HMNS	5	0
APR4-120140	1.8	HMNS	3	ž
APR4-125135	1.8	HMNS	5	<u>a</u>
APR4-130130	1.8	HMNS	2	Ð
ALF2-140140	1.8	HMNS→BH	2.5	<u> </u>
ALF2-120150	1.8	HMNS	5.5	<u>മ</u>
ALF2-125145	1.8	HMNS	3	
ALF2-130140	1.8	$HMNS \rightarrow BH$	1.5	N
ALF2-135135	1.8	$HMNS \rightarrow BH$	2.5	2
ALF2-130130	1.8	HMNS	2	<u></u>
H4-130150	1.8	HMNS-BH	3	
H4-140140	1.8	HMINS→BH	0.3	
H4-120150	1.0	LIMINS	4.0	
H4-120150	1.0	LIMING	3.0	
H4-125145	1.8	HMNS	9	
H4-130140	1.8	HMNS	07	
H4-135135	1.6	HMNS->BH	0.7	
H4-135135	1.8	HMNS→BH	0.5	
H4-135135	2.0	HMNS	0.4	
H4-120140	1.8	HMNS	2.5	
H4-125135	1.8	HMNS	0.6	
H4-130130	1.8	HMNS	0.3	
MS1-140140	1.8	MNS	0.6	
MS1-120150	1.8	MNS	3.5	
MS1-125145	1.8	MNS	1.5	
MS1-130140	1.8	MNS	0.6	
MS1-135135	1.8	MNS	1.5	
MG1 190190	1 0	MNG	1.5	

. . . .

Disk Outflows

Neutrino-Powered (Early)

(e.g. McLaughlin & Surman 05; Surman+08; BDM+08; Dessart+09)

"Viscous"-Powered (Late)

~ seconds Beloborodov 08; BDM+08, 09; Lee+09; Fernandez & BDM 13; Just+14)

$$M_{ej} = f_w M_d \sim 10^{-3} - 10^{-2} (f_w / 0.1) M_{\odot}$$

R-Process Network (neutron captures, photo-dissociations, α - and β -decays, fission)

Courtesy G. Martinez-Pinedo

Final Abundance Distribution

Radioactive Heating of Merger Ejecta

(BDM et al. 2010; Roberts et al. 2011; Goriely et al. 2011; Korobkin et al. 2012; Bauswein et al. 2013)

Dominant β -Decays at t ~ 1 day: ^{132,134,135} I, ^{128,129}Sb,¹²⁹Te,¹³⁵Xe Insensitive to details (Y_e, expansion history, NSE or not)

How Supernovae Shine (Arnett 1982; Li & Paczynski 1998)
spherical ejecta - mass M, velocity v, thermal energy E = f Mc², & opacity k

$$R = v t \qquad \rho = \frac{M}{4\pi/_3 R^3}$$

$$\tau \sim \kappa \rho R \qquad t_{diff} \sim \tau R/_C$$

$$t \sim t_{diff} \Rightarrow pcak emission \ t_{pcak} \sim 2 \ weeks \left(\frac{v}{10^4} \ km \ s^{-1}\right)^{-1/2} \left(\frac{M}{M_{\odot}}\right)^{1/2} \left(\frac{\kappa}{\kappa_{Fe}}\right)^{1/2}$$

$$L_{pcak} \sim \frac{E(t_{pcak})}{t_{pcak}} \sim 10^{43} \ ergs \ s^{-1} \ \left(\frac{f}{10^{-5}}\right) \left(\frac{v}{10^4} \ km \ s^{-1}\right)^{1/2} \left(\frac{M}{M_{\odot}}\right)^{1/2} \left(\frac{\kappa}{\kappa_{Fe}}\right)^{-1/2}$$
Type la Supernova:

v ~10⁴ km s⁻¹, M_{ej} ~ M_☉, f_{Ni→Co} ~ 10⁻⁵ \Rightarrow t_{peak} ~ week, L ~ 10⁴³ erg s⁻¹ NS Merger:

 $v \sim 0.1 \text{ c}, \text{ M}_{ej} \sim 10^{-2} \text{ M}_{\odot}, \text{ f} \sim 10^{-6} \implies t_{peak} \sim 1 \text{ day}, \text{ L} \sim 3 \text{ } 10^{41} \text{ erg s}^{-1}$

High Opacity of the Lanthanides (Kasen et al. 2013; Barnes & Kasen 2013)																		
s-shell (g=2) $N_{\text{lev}} \sim \frac{g!}{n!(q-n)!}$																		
1 1.0079 Ithium 3 Li 6.941	beryflium 4 Be 9.0122 macresium					$N_{ m li}$	\mathbf{nes}	~ 1	$V_{ m lev}^2$,		[boron 5 B 10.811	P-S carton 6 C 12.011 sticon	ritrogen 7 N 14.007	(g=6	fluorine 9 F 18.998 chlorine	2 4.0026 neon 10 Ne 20.180
11 Na 22.990 potassium	12 Mg 24.305		scandium	titanium	vanadium	chromium	I-she	ell (g:	=10)	rickel	copper	zinc	13 AI 26.982 gallum	14 Si 28.096 germanium	15 P 30.974 arsenic	16 S 32.065 selenium	17 CI 35.453 bromine	18 Ar 39.948 krypton
19 K 39.098	20 Ca 40.078		21 Sc 44.956	22 Ti 47.867	23 V 50.942	24 Cr 51.996	25 Mn 54.938	26 Fe	27 Co 58.933	28 Ni 58.693	29 Cu 63.546	30 Zn 65.39	31 Ga 69.723	32 Ge 72.61	33 As 74.922	34 Se 78.96	35 Br 79.904	36 Kr 83.90
37 Rb 85.468	38 Sr 87.62		39 Y 88.906	40 Zr 91,224	41 Nb 92,906	42 Mo 95.94	43 TC	44 Ru 101.07	45 Rh	46 Pd 106.42	47 Ag 107.87	48 Cd 112.41	49 In 114.82	50 Sn 118.71	51 Sb 121.76	52 Te 127.60	53 126.90	54 Xe 131.29
55 Cs 132.91	56 Ba 137.33	57-70 *	71 Lu 174.97	72 Hf 178,49	73 Ta 180.95	74 74 183.84	75 Re 186.21	osmium 76 OS 190.23	192.22	78 Pt 195.08	79 Au 196.97	80 Hg 200.59	81 TI 204.38	82 Pb 207.2	83 Bi 208.98	PO 12061	85 At	86 Rn
87 Fr [223]	Ra [226]	89-102 ★ ★	103 Lr [262]	104 Rf [261]	105 Db [262]	106 Sg	107 Bh [264]	108 HS [269]	109 Mt [268]	110 Ununnillum 110 Uun	111 Uuu [272]	112 Uub [277]		114 Uuq				
lanthanum cerium praseodymium promethium samarium europium gadoinium terbium dysprosium holmium erbium thulium ytterbium																		
*Lan	thanide	series	57 La 138.91	58 Ce 140.12	59 Pr 140.91 protactinium	60 Nd 144.24 uranium	61 Pm [145] neptunium	62 Sm 150.36 plutonium	63 Eu 151.96 americium	64 Gd 157.25 curium	65 Tb 158.93 berkelium	66 Dy 162.50 californium	67 HO 164.93 einsteinium	68 Er 167.26	69 Tm 168.93 mendelevium	70 Yb 173.04	f-s	hell
**Ac	tinide s	eries	89 Ac [227]	90 Th 232.04	91 Pa 231.04	92 U 238.03	93 Np	94 Pu [244]	95 Am [243]	96 Cm [247]	97 Bk [247]	98 Cf [251]	99 Es [252]	100 Fm [257]	101 Md [258]	102 No [259]	(g=	14)
	Slide courtesy D. Kasen																	

High Opacity of the Lanthanides

(Kasen et al. 2013; Barnes & Kasen 2013)

Kasen et al. 2013

light curves of radioactive transients effect of high lanthanide opacity

Gravitational Wave Follow-Up

light curves of radioactive transients effect of high lanthanide opacity

Neutron-Rich Ejecta

Dynamical Tidal Tails

(e.g. Janka et al. 1999; Rosswog 2005; Shibata & Taniguchi 2006; East et al. 2012; Hotokezaka et al. 2013)

$${
m M}_{
m ej}$$
 ~ 10⁻³ - 10⁻² ${
m M}_{\odot}$

$$Y_e = \frac{n_p}{n_p + n_n} < 0.1$$

~ ms

Disk Outflows

Neutrino-Powered (Early)

(e.g. McLaughlin & Surman 05; Surman+08; BDM+08; Dessart+09)

"Viscous"-Powered (Late)

 $Y_e \sim ???$

Beloborodov 08; BDM+08, 09; Lee+09; Fernandez & BDM 13; Just+14)

$$M_{ej} = f_w M_d \sim 10^{-3} - 10^{-2} (f_w / 0.1) M_{\odot}$$

Mode	el l	M _{ej}	(10 ⁻³ M _c	。)
APR4-130160	1.8	BH	2.0	
APR4-140150	1.8	BH	0.6	
APR4-145145	1.8	BH	0.1	
APR4-130150	1.8	HMNS→BH	12	
APR4-140140	1.8	$HMNS \rightarrow BH$	14	
APR4-120150	1.6	HMNS	9	
APR4-120150	1.8	HMNS	8	
APR4-120150	2.0	HMNS	7.5	エ
APR4-125145	1.8	HMNS	7	O.
APR4-130140	1.8	HMNS	8	đ
APR4-135135	1.6	HMNS	11	デ
APR4-135135	1.8	HMNS	7	Ð
APR4-135135	2.0	HMNS	5	
APR4-120140	1.8	HMNS	3	ž
APR4-125135	1.8	HMNS	5	<u>a</u>
APR4-130130	1.8	HMNS	2	n
ALF2-140140	1.8	HMNS→BH	2.5	÷.
ALF2-120150	1.8	HMNS	5.5	<u>a</u>
ALF2-125145	1.8	HMNS	3	
ALF2-130140	1.8	$HMNS \rightarrow BH$	1.5	N
ALF2-135135	1.8	$HMNS \rightarrow BH$	2.5	Ń
ALF2-130130	1.8	HMNS	2	<u></u>
H4-130150	1.8	HMNS→BH	3	
H4-140140	1.8	HMNS→BH	0.3	
H4-120150	1.0	HMNS	4.5	
H4-120150	1.0	IIMNO	3.0	
H4-120100	2.0	LIMING	4	
H4 120140	1.0	HMNS	07	
H4 135135	1.0	HMNS	0.7	
H4-135135	1.0	HMNS_BH	0.5	
H4-135135	2.0	HMNS	0.0	
H4-120140	1.8	HMNS	2.5	
H4-125135	1.8	HMNS	0.6	
H4-130130	1.8	HMNS	0.3	
MS1-140140	1.8	MNS	0.6	
MS1-120150	1.8	MNS	3.5	
MS1-125145	1.8	MNS	1.5	
MS1-130140	1.8	MNS	0.6	
MS1-135135	1.8	MNS	1.5	
MS1-130130	1.8	MNS	1.5	

Remnant Torus Evolution

(Fernandez & Metzger 2012, 2013; Fernandez et al., in prep)

- P-W potential with $M_{BH} = 3,10 M_{\odot}$
- hydrodynamic α viscosity
- NSE recombination $2n+2p \Rightarrow {}^{4}He$
- run-time $\Delta t \sim 1000-3000 t_{orb}$
- neutrino self-irradiation: "light bulb"+ optical depth corrections:

See also Just et al. 2014

Outflow Composition

Mass per bin (M_{\odot})

AN R-PROCESS KILONOVA ASSOCIATED WITH THE SHORT-HARD GRB 130603B E. Berger¹, W. Fong¹, and R. Chornock¹

A 'kilonova' associated with the short-duration y- ray burst GRB130603B

N. R. Tanvir, A. J. Levan, A. S. Fruchter, J. Hjorth, R. A. Hounsell, K. Wiersema & R. L. Tunnicliffe

Tanvir et al. 2013

Long-Lived Hyper-massive Neutron Star

Ye distribution of wind ejecta

optical and infrared light curves of winds multi-dimensional radiative transport calculations

Viewing Angle Dependence

Kasen, Fernandez, Metzger. submitted

Kilonova light curves probe composition & geometry of merger ejecta \Rightarrow info on viewing angle and neutron star equation of state

12.0437 ms

Bauswein et al. 2013

Free Neutrons in the Outermost Ejecta

$$t_{\rm d,m} = \left(\frac{3m\kappa}{4\pi\beta vc}\right)^{1/2} \approx 3\,{\rm hr}\,\left(\frac{m}{10^{-4}M_{\odot}}\right)^{1/2} \left(\frac{\kappa}{10\,{\rm cm}^2\,{\rm g}^{-1}}\right)^{1/2} \left(\frac{v}{0.5\,{\rm c}}\right)^{-1/2}$$

Neutron-Powered Precursor

BDM, Bauswein, Goriely, Kasen 2015

Stable Merger Remnant?

(e.g. BDM+08; Ozel et al. 2010; Bucciantini et al. 2012; Zhang 13; Yu et al. 2013; Giacomazzo & Perna 13; ; Rezzolla & Kumar 15; Ciolffi & Siegel 15)

- Requires: low total mass binary, stiff EOS*, and/or mass loss during merger *supported by recent discovery of $2M_{\odot}$ NS by Demorest et al. 2011
- Remnant rotating at centrifugal break-up limit, spin period P ~ 1 ms
- Magnetic field amplified by rotational energy + convection \Rightarrow "Magnetar" ?

Short GRBs with Extended Emission

- 1/5 Swift Short Bursts have X-ray Tails
- Rapid Variability

 Ongoing Engine Activity
- Energy up to ~30 times Burst Itself!

Stable Merger Remnant?

(e.g. BDM+08; Ozel et al. 2010; Bucciantinii+12; Yu+13; Giacomazzo & Perna 13; BDM & Piro 13; Rezzolla & Kumar 15; Ciolffi & Siegel 15)

spin-down luminosity
$$L_{sd} = \frac{\mu^2 \Omega^4}{c^3} \approx 6 \times 10^{49} \left(\frac{P}{1 \text{ ms}}\right)^{-4} \left(\frac{B_{dip}}{10^{15} \text{ G}}\right)^2 \text{ erg s}^{-1}$$

spin-down time $\tau_{sd} = \frac{E_{rot}}{L_{sd}} \approx 5 \left(\frac{P_0}{1 \text{ ms}}\right)^2 \left(\frac{B_{dip}}{10^{15} \text{ G}}\right)^{-2} \text{ min}$

Baryon Loading a Game Stopper?

P Rns BDM+11

ł

$$\Gamma_{\rm max} = \frac{L_P}{\dot{M}c^2}$$

$$\bar{f}_{\Phi} = R_{\rm ns}/R_{\rm L} \approx 0.4 (R_{\rm ns}/20\,{\rm km})(P/{\rm ms})^{-1}$$

e.g. Murguia-Berthier+14, Fryer+15

$$\dot{M} = 2 \times 10^{-5} M_{\odot} \,\mathrm{s}^{-1} \,\frac{f_{\Phi}}{\bar{f}_{\Phi}} \left(\frac{L_{\nu}}{10^{52} \,\mathrm{erg}\,\mathrm{s}^{-1}}\right)^{5/3} \left(\frac{\epsilon_{\nu}}{10 \,\mathrm{MeV}}\right)^{10/3}$$

Qian & Woosley 96

$$L_{\rm P} = \left(\frac{f_{\Phi}}{\tilde{f}_{\Phi}}\right)^2 \frac{\mu^2 \Omega^4}{c^3} \approx 3 \times 10^{51} \left(\frac{f_{\Phi}}{\tilde{f}_{\Phi}}\right)^2 \left(\frac{B_{\rm d}}{10^{15} \,\mathrm{G}}\right)^2 \left(\frac{P}{\mathrm{ms}}\right)^{-4} \,\mathrm{erg \, s}^{-1}$$

$$\Gamma_{\rm max} = \frac{L_{\rm P}}{\dot{M}c^2} \approx 100 \frac{f_{\Phi}}{\bar{f}_{\Phi}} \left(\frac{B_{\rm d}}{10^{15}\,{\rm G}}\right)^2 \left(\frac{P}{{\rm ms}}\right)^{-3} \left(\frac{L_{\nu}}{10^{52}\,{\rm erg\,s^{-1}}}\right)^{-5/3} \left(\frac{\epsilon_{\nu}}{10\,{\rm MeV}}\right)^{-10/3}$$

Radio constraints on stable merger remnants (BDM & Bower 2013)

• Rotational energy

$$E_{\rm rot} = \frac{1}{2}I\Omega^2 \simeq 3 \times 10^{52} {\rm ergs} \left(\frac{P}{1\,{\rm ms}}\right)^{-2}$$

transferred to ISM via relativistic shock ⇒ bright radio emission

- Observed 7 short GRBs with VLA on timescales ~1-3 years after burst
- NO DETECTIONS
 ⇒ stable remnant disfavored in 2 GRBs
- Additional JVLA observations **now** much more constraining
- New radio surveys (ASKAP, VLASS, SKA) will tightly constrain birth rate of stable NS merger remnants (BDM, Williams, Berger 15).

Timeline of Binary NS Mergers

1.	Chirp enters LIGO Bandpass	t (minus) ~ mins
2.	Precursors (X-ray, coherent radio burst)	t (minus) ~ few s
3.	Last Orbit, Plunge & Dynamical Ejecta	t ~ ms
4.	BH Formation	~ ms - ∞
5.	Accretion of Remnant Disk, Jet Formation (y-rays)	~ 0.1-1 s
6.	He-Recombination + Disk Evaporation	~ 0.3-3 s
:	\Rightarrow outflow Y _e depends on NS collapse time	
7.	R-Process in Merger Ejecta	~ few s
8.	Jet from Magnetar (X-rays)	~ min (or longer)
9.	Neutron Precursor (Optical/UV, L ~ 10 ⁴¹ erg s ⁻¹)	~ hours
10.	Kilonova \Rightarrow prompt BH formation $Y_e < 0.25$ (NIR, L ~ 10 ⁴¹ erg s ⁻¹) \Rightarrow delayed BH formation $Y_e > 0.25$ (Optical, L ~ 10 ⁴⁰⁻⁴¹ erg s ⁻¹) \Rightarrow stable magnetar (Optical, L ~ 10 ⁴⁴ erg s ⁻¹)	~ week ~ day ~ day
11.	Ejecta ISM Interaction (Radio, much brighter if stable NS)	~ years

Kasen, Fernandez, Metzger, submitted

Conclusions

• The first direct detection of gravitational waves will likely be a binary NS merger, within the next ~3 years. *Identifying an EM counterpart will be essential to maximize the scientific impact of this discovery.*

• The most promising isotropic counterpart is an optical/IR transient ("kilonova") powered by the radioactive decay of r-process nuclei.

• The radioactive heating of the ejecta is now well understood, but the photon opacity of r-process ejecta remains uncertain.

• The first kilonova was detected following the gamma-ray burst 130603B last June, confirming the association of mergers with short GRBs.

• Kilonova provide a direct probe of the formation of r-process nuclei, a long standing mysteries in nuclear astrophysics.

• The sensitive dependence of opacity on the ejecta composition (lanthanide fraction) implies that kilonova colors provide a sensitive probe of physical processes at work during the merger, such as the delay until black hole formation.