HOW WELL DO WE KNOW WAVEFORMS AND STATUS OF ADVANCED AND 3G DETECTORS

B.S. SATHYAPRAKASH CARDIFF UNIVERSITY, CARDIFF, UK

IF OUR WAVEFORMS ARE WRONG WE ARE DOOMED!

Wade+ 2014, Favata 2013, Yagi+ 2013

HOW WELL DO WE KNOW OUR WAVEFORMS? OR IS THE SITUATION AS BAD AS THAT?

MODELLING COALESCING BINARIES

Figure from Buonanno and BSS 2014

BINARY BLACK HOLE DYNAMICS

- to understand dynamics of binary neutron stars we must first control binary black hole dynamics
- \cdot signal from a binary black hole is characterised by
 - Slow adiabatic inspiral
 - fast and luminous merger
 - rapid ringdown phase
- \cdot shape of the signal contains information about the binary

BINARY BLACK HOLE DYNAMICS

- to understand dynamics of binary neutron stars we must first control binary black hole dynamics
- \cdot signal from a binary black hole is characterised by
 - Slow adiabatic inspiral
 - fast and luminous merger
 - rapid ringdown phase
- \cdot shape of the signal contains information about the binary

10

 10^{4}

Post-Newtonian theory

Einstein, Fock, Blanchet, Damour, Dereulle, Iyer, Faye, Will, Wiseman, Schäfer, Jaranowski, Thorne, ... TaylorT1, TaylorT2, TaylorF2, ...

Effective one-body model

NR

Pretorius, Baker, Campnelli, Lousto, Brügmann, Laguna, Shoemaker, Teukolsky, Kidder, Scheel,Szilagyi, Pfeiffer Rezzolla, Hinder, Hannam, Husa, Lehner, Shibata...

10

Buonanno, Damour, Nagar, Pan, Iyer, Schäfer, Jaranowski ... Perturbation theory gravitational self-force

Vishveshwara, Bardeen, Press, Teukolsky, Detweiler, Whiting, Poisson, Barack, Hughes, Flanagan, Mino, Sasaki, Tanaka, Quinn, Wald, ...

 10^{2}

 10^{3}

ORBITAL DYNAMICS AND METRIC PERTURBATION

- orbital dynamics is needed to obtain an accurate formula for evolution of phase $\varphi(t)$ and frequency $\omega(t)$
 - post-Newtonian theory gives energy and flux of gravitational waves
 - Phase and frequency evolution computed from either energy balance formula or a Hamiltonian description that uses a RR force
- metric perturbation to compute the detector response
 - ✤ post-Newtonian theory is used to iteratively solve for metric perturbation h^{lm} which is then used to compute the plus and cross polarizations: h₊ + i h_x = ∑₋₂Y_{lm} h^{lm}
 - detector response is a linear combination of the two polarisatios: $h(t) = h_+ F_+ + i h_x F_x$, where F_+ and F_x are antenna response functions

POST-NEWTONIAN (PN) SOLUTION TO ORBITAL DYNAMICS

- end product of post-Newtonian approximation is the computation of orbital binding energy E and gravitational wave luminosity L
- E and L are derived as asymptotic series in the small parameter v the orbital velocity:

$$E(v) = \frac{mv^2}{2} \left(1 + e_2 v^2 + e_4 v^4 + e_6 v^6 + \ldots \right)$$

$$L(v) = \frac{32\nu^2 v^{10}}{5} \left(1 + l_2 v^2 + l_3 v^3 + l_4 v^4 + l_5 v^5 + l_6 v^6 + l_7 v^7 \dots\right)$$

• a phasing formula is derived using energy balance:

ENERGY BALANCE EQUATION

 energy lost to gravitational waves comes from the (negative) time rate of change of binding energy:

$$L(v) = -\frac{\mathrm{d}E(v)}{\mathrm{d}t} = -\frac{\mathrm{d}E(v)}{\mathrm{d}v}\frac{\mathrm{d}v}{\mathrm{d}t} \quad \Rightarrow \quad \frac{\mathrm{d}v}{\mathrm{d}t} = \frac{L(v)}{E'(v)}$$

 to obtain an expression for the orbital phase as a function of time one must supplement the above energy balance equation with Kepler's third law:

$$\omega \equiv \frac{\mathrm{d}\varphi}{\mathrm{d}t} = \frac{v^3}{GM}, \quad \frac{\mathrm{d}\varphi}{\mathrm{d}t} = \frac{\mathrm{d}\varphi}{\mathrm{d}v}\frac{\mathrm{d}v}{\mathrm{d}t} \quad \Rightarrow \quad \frac{\mathrm{d}\varphi}{\mathrm{d}v} = \frac{v^3}{GM}\frac{E'(v)}{L(v)}$$

WHY DO WE HAVE SO MANY POSTNEWTONIAN WAVEFORM MODELS?

 \cdot solves a pair of ODEs to obtain a phasing formula $\varphi(t)$:

$$\frac{\mathrm{d}\varphi}{\mathrm{d}t} = \frac{v^3}{GM} \quad \text{or} \quad \frac{\mathrm{d}\varphi}{\mathrm{d}v} = \frac{v^3}{GM}\frac{E'(v)}{L(v)} \quad \text{and} \quad \frac{\mathrm{d}v}{\mathrm{d}t} = \frac{L(v)}{E'(v)}$$

- recall that L and E are both asymptotic series or Taylor series with a finite number of turns
- they can be approximated in different ways leading to numerically different, but perturbatively equivalent, formulas for the phasing of the binary orbit

ENERGY AT DIFFERENT PN ORDERS

LUMINOSITY AT DIFFERENT PN ORDERS

PROBLEMS WITH PN AND CURES

PN being a Taylor series, quantities of interest cannot have poles

- poles can be artificially introduced by approximating a Taylor series as a rational polynomial
- energy is expected to have an extrema but PN series might not have any in the region of interest
 - one can introduce extrema at desired points by factorising the zeroes
- PN series is poorly convergent
 - re-summation techniques can be used to accelerate the convergence of PN series (but has converged to the right value?)

EXAMPLES OF TRANSFORMATIONS

$$E(v) = E_0(v)(1 + e_2v^2 + e_3v^3 + \ldots)$$

a zero $= E_0(v)(1 - v/v_0)(1 + f_1v + f_2v^2 + f_3v^3 + ...)$

 $\Rightarrow f1 = 1/v_0, f_2 = e_2 + (f_1/v_0), f_3 = e_3 + (f_2/v_0)$

a pole

$$F(v) = F_0(v)(1 + a_2v^2 + a_3v^3 + ...)$$

$$= \frac{F_0(v)}{(1 - v/v_p)}(1 + b_1v + b_2v^2 + b_3v^3 + ...)$$

$$\Rightarrow b_1 = -1/v_p, \ b_2 = a_2, \ b_3 = a_3 - a_2/v_p$$

 Reformed expressions are perturbatively equivalent but numerically different and have different asymptotic structure

LANDSCAPE OF WAVEFORMS AND WHY THEY ARE NOT ALL RIGHT

PROLIFERATION OF PN APPROXIMATES

$$\frac{\mathrm{d}\varphi}{\mathrm{d}t} = \frac{v^3}{GM} \quad \text{or} \quad \frac{\mathrm{d}\varphi}{\mathrm{d}v} = \frac{v^3}{GM} \frac{E'(v)}{L(v)} \quad \text{and} \quad \frac{\mathrm{d}v}{\mathrm{d}t} = \frac{L(v)}{E'(v)}$$

There are many Taylor models

- TaylorT1: numerical solve the ODEs to get $\varphi(t)$ and v(t)
- TaylorT4: expand L(v)/E'(v) in Taylor series and then solve
- TaylorT2: solve $\varphi'(v)$ and t'(v) ODEs to get $\varphi(v)$, t(v)
- TaylorT3: invert t(v) PN series to get v(t) and use in $\varphi(v)$
- TaylorF2: stationary phase approximation to TaylorT2
- Could also have introduced many more
 - TaylorF1, TaylorF3, TaylorF4, even more Taylor models and their frequency domain equivalents

BEFORE MATURE NR SIMULATIONS ALL WE COULD DO WAS COMPARISON OF TAYLOR MODELS

- figures-of-merit used for comparison
- ★ overlap: scalar product of two waveforms w₁ and w₂: $\langle w_1, w_2 \rangle \equiv 4 \Re \int_{f_{\text{lo}}}^{f_{\text{hi}}} \frac{W_1(f) W_2^*(f)}{S_h(f)} \mathrm{d}f$
- faithfulness: overlap maximised over phase and time:

$$\mathcal{F}_{w_1,w_2} \equiv \max_{\phi_0,t_C} \langle w_1, w_2 \rangle$$

• effectualness: faithfulness maximised also over masses and spins

$$\mathcal{E}_{w_1,w_2} \equiv \max_{\phi_0,t_C,M_1,\nu_1,\dots} \langle w_1,w_2 \rangle$$

EFFECTUALNESS: BINARY NEUTRON STARS

BNS: (1.38, 1.42) solar masses

Figure from Buonanno+ 2009

EFFECTUALNESS: BINARY BLACK HOLES

BBH: (4.8, 5.2) solar mases

Figure from Buonanno+ 2009

EFFECTUALNESS: NEUTRON STAR-BLACK HOLE BINARY

NSBH: (1.4, 10) solar masses

Figure from Buonanno+ 2009

EFFECTUALNESS: BINARY BLACK HOLES

BBH: (9.5, 10.5) solar masses

Figure from Buonanno+ 2009

PN MODELS OK FOR DETECTION, BUT THEY SHOULD NEVER BE USED FOR PARAMETER ESTIMATION

WHY AREN'T MISSING POST-NEWTONIAN TERMS IMPORTANT

- starting point of analytical waveform models, such as EOB, is PN equations
 - additionally, convergence techniques are used in EOB
- In a straight is a straight of the straight in the straight of the straight is a straight of the straight o
 - typically parameters are tuned or calibrated at a small number of points in the parameter space
 - models are then tested at other points in the parameter space
- so missing post-Newtonian terms are of no consequence

BEYOND INSPIRAL: EFFECTIVE ONE BODY FORMALISM

Buonanno and Damour 1999

Summed PN conservative dynamics in the EOB formalism

"Effective" description $H_{\text{real}}^{\text{PN}} = H_{\text{Newt}} + \frac{1}{c^2} H_{1\text{PN}} + \frac{1}{c^4} H_{2\text{PN}} + \cdots$ $H_{\text{eff}}^{\nu} = \mu \sqrt{A_{\nu}(r) \left[1 + \frac{p^2}{\mu^2} + \left(\frac{1}{B_{\nu}(r)} - 1\right) \frac{p_r^2}{\mu^2}\right]}$ $H_{\text{real}}^{\text{EOB}} = M \sqrt{1 + 2\nu \left(\frac{H_{\text{eff}}^{\nu}}{\mu} - 1\right)}$ $ds_{\text{eff}}^2 = -A_{\nu}(r) dt^2 + B_{\nu}(r) dr^2 + r^2 d\Omega^2$

- Dynamic condensed in $A_
 u(r)$ and $B_
 u(r)$
- $A_{\nu}(r)$, which encodes the energetics for circular orbits, is rather *simple*

$$A_{\nu}(r) = 1 - \frac{2M}{r} + \frac{2M^{3}\nu}{r^{3}} + \left(\frac{94}{3} - \frac{41}{32}\pi^{2}\right)\frac{M^{4}\nu}{r^{4}} + \frac{a_{5}(\nu)}{r^{5}} + \frac{a_{6}(\nu)}{r^{6}} + \cdots$$

YKIS2013, Kyoto, Japan

Buonanno and Damour 1999+, many papers since

27

14

EOB dynamics and waveforms

• EOB dynamics

$$\dot{\mathbf{r}} = \frac{\partial H^{\text{EOB}}}{\partial \mathbf{p}}, \quad \dot{\mathbf{p}} = -\frac{\partial H^{\text{EOB}}}{\partial \mathbf{r}} + \mathbf{F}, \quad \mathbf{F} \propto \frac{dE}{dt}, \quad \frac{dE}{dt} = \frac{1}{16\pi} \sum_{\ell,m} |\dot{h}_{\ell m}|^2$$

$$\dot{\mathbf{S}}_1 = \frac{\partial H^{\text{EOB}}}{\partial \mathbf{S}_1} \times \mathbf{S}_1, \qquad \dot{\mathbf{S}}_2 = \frac{\partial H^{\text{EOB}}}{\partial \mathbf{S}_2} \times \mathbf{S}_2$$

[AB & Damour 00; Damour et al. 98; AB et al. 05; Damour et al. 07-09; AB et al. 09; Pan et al. 09]

• EOB (factorized) waveforms

$$h_{22}(t) = -\frac{8\pi}{5} \frac{\nu M}{R} v^2 e^{-2i\Phi} \left\{ 1 - \left(\frac{107}{42} - \frac{55}{42}\nu\right) v^2 + \left[2\pi + 12i\log\left(\frac{v}{v_0}\right)\right] v^3 + \dots \right\}$$

$$h_{\ell m}^{\text{insp-plunge}}(t) = \hat{h}_{\ell m}^{N} e^{-im\Phi} \mathcal{S}_{\text{eff}} T_{\ell m} e^{i\delta_{\ell m}} (\rho_{\ell m})^{\ell} h_{\ell m}^{\text{NQC}}(a_i, b_i)$$

[Damour, Iyer & Nagar 09; Fujita & Iyer 10; Pan, AB, Fujita, Racine & Tagoshi 10]

YKIS2013, Kyoto, Japan

BUILDING AN EOB MODEL

Buonanno and Damour 1999

BUILDING AN EOB MODEL

Buonanno and Damour 1999

FIRST EOB-NR COMPARISON

Waveform

Phase

 $1M_{\odot} c^2 \sim 10^{54} \,\mathrm{erg} \sim 10^{56} \,\mathrm{GeV!}$

- Very *short* transition merger-ringdown
- Energy quickly released during merger

COMPARISON OF EOB AND NR WAVEFORMS

In aligned large spins (not expected in BNS), equal masses

COMPARISON OF EOB AND NR WAVEFORMS

Precessing BH spin but non-spinning NS, unequal masses 1:5

170-ORBITS, MASS RATIO 1:7, NON-SPINNING

Szilagyi+ arXiv:1502.04953

THEY COVER QUITE A LARGE FREQUENCY RANGE

Szilagyi+ arXiv:1502.04953

TIDAL EOB MODEL FOR BINARY NEUTRON STAR INSPIRALS

EOB uses a single parametrisation but this may not be adequate for all EoS

Bernuzzi+ PRL 2015

BEYOND INSPIRAL

• many, many papers on understanding merger state

Bernuzzi+ arXiv:1504.0176v1

CURRENT STATUS AND FUTURE CHALLENGES

- Vacuum solution, binary black holes, known pretty well
 - good agreement between NR simulations and EOB over several hundred cycles
 - still it is necessary to confirm no de-phasing between NR and EOB over ~1000 cycles
 - spin effects (and possibly mass ratios) need to be controlled as well
- \cdot NR simulations with matter still at infancy
 - BNS merger simulations don't converge well
 - comparison between different groups is necessary
 - Ionger BNS simulations with ~100 cycles would be needed

INITIAL INTERFEROMETER NETWORK

- Between 2006-2010 larger detectors took 2 years worth of data at unprecedented sensitivity levels
- No detections so far but beginning to impact astrophysics

ADVANCED DETECTOR NETWORK

During 2015-2022 five large detectors will become operational

Advanced LIGO detectors both installed and locked, commissioning over the next 3 years should see first detections

GW DETECTOR NETWORK - HIKLV

A network of
 A

gravitational wave detectors is always on and sensitive to *most* of the sky

We can integrate
 and build SNR by
 coherently tracking
 signals in phase

Aasi et al 2013 (arXiv:1304.0670)

ADVANCED LIGO DETECTORS HAVE MADE RAPID PROGRESS

BOTH HANFORD AND LIVINGSTON ON TARGET

DESIGN SENSITIVITY BY 2018

EXPECTED HORIZON DISTANCE OF ALIGO DISTANCE TO A FACE-ON OVERHEAD SNR 8 BINARY

COMPLETENESS OF SURVEYS

SHORT GRBS AND ALIGO EVENT RATES

- Observed short GRB rate ~ 10 yr⁻¹ Gpc⁻³
 - known for a while and has not changed much since SWIFT or Fermi
- We won't observe all GRBs because
 - most GRB satellites are not sensitive to the whole sky
 - SWIFT is typically covers between 10-25 %
 - gamma emission is not expected to be isotropic
 - half opening angle could be anywhere from a few degrees to isotropic
- \cdot Comoving volume rate depends on the beaming angle
 - Smaller the beaming angle, less likely we will observe them and so greater the rate
- · A half beam open angle of 5° gives a rate of ~2,000 yr⁻¹ Gpc⁻³
 - This implies a detection rate of ~ 50 yr⁻¹ at design sensitivity

EXPECTED LINEAR RATE DENSITY

CUMULATIVE RATE AS A FUNC. OF DIST.

• Cosmic Explorer (CE) is a new concept studied by colleagues in LIGO; sensitivity here for a 40 km arm length detector

CONCLUSIONS

- LIGO and Virgo on track, on budget, on time
 - Engineering run next week, first observing run starting second week of September
 - KAGRA construction in good shape and provides a 3rd generation facility
 - awaiting the final word on LIGO India
- \cdot We are thinking and planning next generation of detectors
 - enhancements within current facilities will take us a factor
 2-3 better in strain sensitivity (10-30 in volume)
 - new facilities will be necessary to detect binary black holes from the edge of the Universe