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Motivation: Impurity ions alter tokamak plasma evolution.

Impurities denote ions that are not part of the intended reactor fusion cycle, but are inevitably present in the
plasma: Operating a tokamak involves plasma-wall interaction, intended at strike zones on divertor plates while
undesirable anywhere else. Subjected to further ionisation, a significant number of sputtered wall particles will
propagate into and severely disturb the plasma [].

I Negative effects on tokamak performance stem from impurity accumulation at the plasma core, resulting
in increased radiation losses (high mass impurities) and plasma dilution (low mass impurities) [].

I Beneficial effects are expected from heat mitigation via impurity seeding at the divertor [].

Preliminaries: Blobs dominate transport across the plasma edge.

At the edge of magnetised fusion plasmas radially propagating filaments, elongated along field-lines,
dominate heat and particle transport. Fueled by steep pressure gradients at the vicinity of the last closed
flux surface these “blobs” are expelled into the scrape-off layer (SOL).

I Particle density amplitudes of such perturbations compared to the background can be well above
unity [], defying any model based on separation of background and fluctuating quantities.

I The strong anisotropy of a tokamak magnetic field decouples perpendicular from parallel blob
dynamics and scales (taking the B-field orientation as a reference) [].

Question: Impurities alter blob evolution?

Dependent on their concentrations, masses, charges and
temperatures in a magnetised fusion plasma, how do non-
fuel ions, i.e. impurities, modify the dynamics of blobs
propagating through the scrape-off layer?

Common approaches in modelling turbulent impurity ion
transport do not provide toolsets suitable for parameter
studies on impurity-blob interaction:

I Gyrokinetic simulations [] remain computationally
expansive, whereas

I computationally attractive models most often resort
to a “trace-approximation” with impurities as passive
test particles not altering plasma evolution.

Result: Impurites slow blob propagation!

A parameter-scan on cold isothermal seeded blob simulations
(initial fuel particle densities as Gaussian peaks with constant
impurity background) for maximum perpendicular center-off-
mass (COM) blob velocities (parameter proportional to heat
and particle transport by the filaments) depicts:

I Increased impurity concentration and/or higher
mass-to-charge proportion of non-fuel ions results in
slower blob propagation (fig. ) and hence less spatial
dilation of the filament (compare fig. ).

I Numerical experiments reproduce the analytical velocity
scaling law for the set of full-F multi-species d gyrofluid
equations. 10−3 10−2 10−1 100aj
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Fig. : Maximum perpendicular COM blob velocity vxmax (physical parameters resemble ASDEX-U
low field side) dependent on impurity concentration aj for different mass/charge proportions µj.
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Fig. : Seeded cold fuel ion blob simulation with constant
impurity background: Electron density ne and electric
potential φ. Physical parameters resemble the SOL on the
low field side of the ASDEX Upgrade tokamak (simulation
parameters: Initial gaussian density distribution of fuel ions
with amplitude ∆ni/ni = 1 and σ = 10, for κ = 0.000457
and Reynolds number chosen to Ra = 105).
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Model: Full-F multi-species 2d gyrofluid equations

The evolution of electron particle density ne and ion gyrocenter densities Ns of fuel respectively impurity ions
(s= i, j) in a quasi-neutral, isothermal and electrostatic plasma is described via a full-F multi-species gyrofluid
model. No distinction is made between dynamical background and fluctuations.

By gyro-Bohm normalisation (referencing ion gyrofrequency Ωi = eB0/mi, drift scale ρs =
√
miTe/(eB0) and

cold ion acoustic speed cs = ρsΩi) dimensionless equations are derived in an orthonormal D slab geometry.
Dynamics parallel to ẑ direction are neglected, the magnetic field strength B varies radially alongside x̂ via
1/B = (1 + x/R)/B0, with R the major tokamak radius:
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With reference to fuel ion mass mi and electron temperature Te a set of three dimensionless parameters:

µs =
ms
Zsmi

, τs =
Ts
ZsTe

and as =
Zsns,0
ne,0

accounts for charge numbers Zs, masses ms, temperatures Ts and concentrations of different ion species.
Poisson-Brackets { , } are used in denoting E × B advection, ∇⊥ abbreviates application of −ẑ × (ẑ ×∇) and
κ = 1/R. Fourth order hyperdiffusion −ν∇4

⊥ ensures numerical stability.

Model: Energy conservation
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Model: Velocity scaling

Scaling analysis of the vorticity equation
provides an equation for the growth rate γ
and hence for the maximum perpendicular
velocity of a σ-sized blob with amplitude A:

vxmax := γσ ∝

√
Aκσ (1 +

∑
s asτs)∑

s asµs

Model: Derivation

gyrofluid
equations

gyro-center (gy)
H dynamics

gyrokinetic
VM equations

guiding-center (gi)
H dynamics

particle
H dynamics

Vlasov-Maxwell
(VM) equations

take moments
apply closure

average gi gyromotion
in perturbed field

average gyration of particles
in equilibrium B-field

Method: FELTOR numerical library

The multi-species d gyrofluid equation set is integrated using the
FELTOR C++ numerical library []:

I Discontinous Galerkin spatial discretisation,
I semi-implicit multistep time integrator (Karniadakis),

both access a preconditioned conjugate gradient solver.
Calculations scale on distributed as well as on shared memory

systems, efficiently executable on CPUs and GPUs (NVIDIA) as
well as on accelerators (Intel Xeon Phi: Knights Landing).

Outlook: Hot ions & impurity inhomogeneity

Model and method include multiple impurity species, finite ion
temperatures and arbitrary initial impurity distributions (examples
depicted in fig. ). Further simulations will examine:

I temperature effects on impurity-blob interaction,
I Blob propagation/multi-species impurity transport with

inhomogeneous particle distributions.
Comparison with gyrokinetic calculations for impurity transport
by blobs and holes [] will provide a useful benchmark.
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Fig. : (top) Seeded hot blob simulation;
Impurity wall: Impurity density nj and
fuel ion density ni.
Simulation parameters as for fig. , with

wall amplitude ∆nj/nj = 1 and wall width
σwall = 10, temperatures are chosen to
result in τi = τj = 1).
(right) ~; Constant impurity background:

Fuel ion density ni and electric potential φ.
Simulation parameters as for fig. , with

temperatures chosen to accord to
τi = τj = 2 and concentration aj = 0.01).
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