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1. Summary

I Collisionless gyrokinetics (GK). In the absence of dissipation, statistical steady state
can never be reached [Krommes PoP 2009]. Indefinite filamentation of phase space,
unrestricted entropy growth while low-order moments may seem to have saturated
(“entropy paradox”).

I GK codes include some form of (unphysical) dissipative ‘regularization’ mechanism,
⇒ smoothing of phase space. Lagrangian (PIC): various ‘noise control’ methods.
Eulerian (grid-based): (explicit) hyperdiffusion term and (implicit) dissipation due to
finite grid size.

I Aim of this paper: ensure the noise control method provides enough phase
space smoothing without a large unphysical impact on the physics of interest.

I In addition, source terms are typically added for maintaining, or driving the system in
a quasi-steady state with gradients above marginality. Conserving or not
conserving certain moments will be shown to have a measurable effect on
transport, parallel and E × B flows, and avalanche behaviour.

Global features observed in TCV experiments: coherent oscillations, f < fGAM ,
large radial extension, radially propagating [deMeijere PPCF 2014]
I Global GK simulations with ORB5 [Vernay PhD 2014] and GENE [Merlo PPCF

2017]: similar feature, some agreement with experiment. Here: Conserving or
non-conserving source terms has an effect on the presence of absence of this
feature.

I These GAM-like features are in fact avalanches that propagate radially [McMillan
PoP 2009, Candy 2003, Görler PoP 2011, Dif-Pradalier PRE 2010] non-resonantly
driven by turbulence.

2. Global gyrokinetic model and sources

∂fσ
∂t
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C(fσ, fσ′) + S(fσ) , (1)

In this paper: collisionless (C = 0), electrostatic, adiabatic electrons.
Hybrid electron model: see [Lanti, EFTC 2017]
Solved using the ORB5 code: global, PIC

Source terms, flux-averaged momentum conservations [McMillan PoP 2008]
S = −γK δf + Scorr, with Scorr such that〈∫

d~vMi (γK δf + Scorr)

〉
= 0,with Mi = [1, v‖, (v‖/B − (v‖/B)b), v2/2 + µB] (2)

M3 preserves phase space structure of the undamped Rosenbluth-Hinton E × B
Zonal Flow (ZF) residual (long radial wavelength limit) [McMillan PoP 2008] (subscript
b = bounce-average. Defining the matrix Sij and the vector δSj as:

Sij(s, t) =

〈∫
d~vMiMj f0

〉
, δSj(s, t) = γK

〈∫
d~vδfMj

〉
, (3)

We solve the linear system Sijgj = δSi for the coeffs gi and we have:

Scorr =
∑
i=1

gi f0Mi (4)

Three purposes:
I Obtain a quasi-steady state: constant (time-averaged) values of fluxes, gradients,

entropy
I Maintain the signal/noise ratio steady at high enough values
I Heat source (if kinetic energy conservation is disabled)

3. TCV equilibrium and profiles

Magnetic configuration: Ideal MHD equilibrium (CHEASE code)
TCV shot nr.43516, L-mode discharge
Radial coordinate ρV =

√
V (ψ)/V (ψa), V = volume inside ψ = const surface.

Profiles
Flat profiles inside sawtooth inversion radius (ρV < 0.5), constant logarithmic
gradients in the core (0.5 < ρV < 0.8), constant linear gradients in the pedestal
region (0.8 < ρV > 1.0) [Sauter PoP 2014]

T (ρV ) = min
(

T0,Tped exp (−κT (ρV − ρV ,ped))
)

ρ ≤ ρV ,ped

T1(1− µT (ρV − ρV ,edge)) ρV ,ped < ρ ≤ ρV ,edge (5)

where T0, T1, ρV ,ped, ρV ,edge, κT and µT are given input parameters. Density profiles
are defined in a similar way, with parameters n0, n1, κn and µn.
Normalized with Te(ρV = 1), Baxis : cs0, ρ∗0 = ρs0/a = 244.8, χGB0 = ρs0cs0ρ∗0

4. Effect of (non)-conserving sources on heat transport and flows

Figure 1: Effective ion heat diffusivity (left), E × B shearing rate (right) radially-avaeraged over ρV ∈ [0.5,0.9], vs time, for various E × B ZF and parallel flows conserving or non-conserving source operators.

Non conserving parallel flows alone: little effect on heat transport. Non-conserving E × B ZFs: 25% higher transport.
Non-conserving both E × B ZF and parallel flows leads to an overestimation of heat transport by a factor of more than
2. Higher transport is related to lower time-averaged E × B ZF shearing rates.

Figure 2: Effective ion heat diffusivity vs time for ZF- and v‖-conserving (black, grey) and non-

conserving (blue, red) sources.

Non-conserving ZF and parallel flows by the source leads
to a (non-physical) ∼ 3.6 times enhanced sensitivity of
the heat transport on the strength of the source operator.
A factor 2 increase in γK → increase of χ by 0.14, which
is within the uncertainty due to finite-time statistics, for
the conserving case, but→ increase of χ by 0.51, which
is significant.

In more detail: effect of (non-)conservation on v‖ and E × B ZF radial, time-averaged, profiles

Interesting cross-effect of v‖ and E × B ZF non-conservation: Non-ZF-conservation leads to a change in the parallel
flow profile evolution.
Similarly, non-conservation of v‖ leads to a marked decrease of the E × B ZF shearing rate in the region
0.6 < ρV < 0.95.

5. GAM or not GAM, that is the question

TCV TPCI measurements:
radially extended, coherent
signal, f ≤ fGAM [deMeijere
PPCF 2014]

‘Global GAM’? but theoretically a global GAM should propagate above the local
GAM frequency, not below. So what is it?
The ‘global feature’ is also seen in global GK simulations [Vernay PhD 2012;
Merlo PhD 2016; Villard Varenna 2014].

Artificially supressing all n 6= 0 modes at t = 4 × 105Ω−1
i → immediate

disappearance of the regular oscillations. Restoring them at t = 4.6×105Ω−1
i

→ immediate reappearance. The signal after switch-off does not show any
well-defined frequency. It is showing a very different response from the decay
of an initial ZF (Rosenbluth-Hinton test)

Switch-off n 6= 0 Linear ZF decay (RH test)

→ The global feature is a non-resonant excitation of avalanches by turbulence

6. Effect of (non-)conserving sources on avalanches

Conserve n, v‖, ZF Conserve n, not v‖, ZF Conserve n, v‖, not ZF Conserve n, not v‖, not ZF

Using non-ZF-v‖- conserving sources leads to the disappearance of the global feature.

→ Importance of keeping flow conservation in sources.
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