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Abstract
The noncanonical Hamiltonian structure of translationally symmetric extended MHD (XMHD) [1, 2, 3] with
barotropic ion and electron fluids, is obtained by employing a method of Hamiltonian reduction [5] on the
three-dimensional noncanonical Poisson bracket of XMHD [2]. The existence of the continuous spatial trans-
lation symmetry allows the introduction of the so-called poloidal representation for the magnetic field and
an analogous Clebsch-like representation for the velocity field, consistent with the Helmholtz decomposition
theorem. Upon employing the chain rule for functional derivatives, the 3D Poisson bracket is reduced to its
translationally symmetric counterpart. Using this symmetric version of the noncanonical Poisson bracket, the
families of extended MHD Casimir invariants are identified and used to obtain Energy-Casimir variational
principles for generalized XMHD equilibrium equations with arbitrary macroscopic flows. The obtained set
of equilibrium equations is cast into one of the Grad-Shafranov-Bernoulli (GSB) type. Hall MHD equilibria
with finite ion flow but neglected electron inertia is studied as a special case. The barotropic Hall MHD equi-
librium equations are derived as a limiting case of the XMHD GSB system and they are consistent with those
derived for axisymmetric plasmas in [6] via direct projection of the 3D equilibrium equations. In addition, we
present a numerically computed equilibrium with D-shaped boundary, that plausibly shows the separation of
ion flow from electron-magnetic surfaces, since in the framework of Hall MHD the magnetic field is frozen
into the electron fluid.

The XMHD model
By extended MHD (XMHD) we mean the one-fluid model obtained by reduction of the standard two-fluid
plasma model, when the quasineutrality assumption is imposed and expansion in the smallness of the electron
mass is performed (e.g. [1]). The resulting model has a generalized Ohm’s law that contains Hall drift and
electron inertia physics. The dynamical equations of the XMHD model, written in the standard Alfvén units,
are the following:

∂tρ = −∇ · (ρv) , (1)

∂tv = v ×∇× v −∇
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where
J = ∇×B , B∗ = B + d2

e∇×
(
∇×B

ρ

)
. (4)

Here, a barotropic equation of state has been assumed, which means the enthalpy h is related to pressure by
∇h = ρ−1∇p, and the parameters di and de are the normalized ion and electron skin depths, respectively, with
ds = c/(ωpsL) and s = i, e.

Hamiltonian structure
The equations (1)-(3) can be cast into the following Hamiltonian form [2, 3]

∂tu = {u,H} , (5)

with u = (ρ,v,B∗), H being a Hamiltonian functional and {F,G} a non-canonical Poisson bracket, given
below

H =
1

2

∫
V
d3x

[
ρv2 + 2ρU(ρ) + B ·B∗

]
, (6)

{F,G} =

∫
V
d3x

{
Gρ∇ · Fv − Fρ∇ ·Gv + ρ−1 (∇× v) · (Fv ×Gv)

+ ρ−1B∗ · [Fv × (∇×GB∗)−Gv × (∇× FB∗)]− diρ−1B∗ · [(∇× FB∗)× (∇×GB∗)]

+ d2
eρ
−1 (∇× v) · [(∇× FB∗)× (∇×GB∗)]

}
, (7)

Reduction to translationally symmetric formulation
Assuming continuous translational symmetry and adopting a Cartesian system (x, y, z) the fields B∗ and v
can be written in the following Clebsch representation [4, 5]

B∗ = B∗z (x, y, t)ẑ +∇ψ∗(x, y, t)× ẑ , (8)
v = vz(x, y, t)ẑ +∇χ(x, y, t)× ẑ +∇Υ(x, y, t) , (9)

Functional derivatives with respect to the new variables

Fv = Fvzẑ +∇FΩ × ẑ −∇Fw , FB∗ = FB∗z ẑ −∇
(

∆−1Fψ∗
)
× ẑ , (10)

∇× FB∗ = Fψ∗ẑ +∇FB∗z × ẑ . (11)

Translationally symmetric Poisson bracket of barotropic XMHD:

{F,G}
XMHD

TS
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∫
D
d2x
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−1Gψ∗]
)
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, (12)

where [a, b] := (∇a×∇b) · ẑ = (∂xa)(∂yb)− (∂xb)(∂ya).

Casimir invariants and equilibrium variational principle
The Casimirs satisfy {F, C} = 0, ∀F . For the bracket (12) this gives

C1 =

∫
D
d2x (B∗z + µΩ)A(ψ∗ + µvz) , C2 =

∫
D
d2x (B∗z + λ−1Ω)G(ψ∗ + λ−1vz) , (13)

C3 =

∫
D
d2x ρK(ψ∗ + µvz) , C4 =

∫
D
d2x ρM(ψ∗ + λ−1vz) , (14)

where the parameters λ and µ are either (λ, µ) = (λ+, µ+) or (λ, µ) = (λ−, µ−), with µ± := di − λ−1
± = λ−1

∓
and λ± = (−di ±

√
d2
i + 4d2

e)/(2d2
e).

The Energy-Casimir variational principle reads as follows

δ (H− C1 − C2 − C3 − C4) = 0 (15)

For the first variation to vanish, the coefficients of the arbitrary variations must separately vanish, yielding
the following conditions:

δρ :
v2

2
+ [ρU(ρ)]ρ −M(φ)−K(ϕ)− d2

e

ρ2

{
1

2
(∆ψ)2 +

1

2
|∇Bz|2 −∇Bz · ∇ [A(ϕ) + G(φ)]

+∆ψ
[
(B∗z + µΩ)A′(ϕ) + (B∗z + λ−1Ω)G′(φ) + ρ(M′(φ) +K′(ϕ))

]}
= 0 , (16)

δvz : ρvz − λ−1ρM′(φ)− µρK′(ϕ)− µ(B∗z + µΩ)A′(ϕ)− λ−1(B∗z + λ−1Ω)G′(φ) = 0 , (17)
δχ : ∇ · (ρ∇χ)− [ρ,Υ] = µ∆A(ϕ) + λ−1∆G(φ) , (18)
δΥ : ∇ · (ρ∇Υ) = [χ, ρ] , δB∗z : Bz = A(ϕ) + G(φ) , (19)
δψ∗ : ∆ψ + ρM′(φ) + ρK′(ϕ) + (B∗z + µΩ)A′(ϕ) + (B∗z + λ−1Ω)G′(φ) = 0 , (20)

where φ := ψ∗ + λ−1vz, ϕ := ψ∗ + µvz and ′ denotes the derivative with respect to argument. For the deriva-
tion of the equilibrium equations above we used the expressions for B∗z , ψ∗ in terms of the ordinary magnetic
field variables ψ and Bz according to B∗ := B + d2

e∇ × (ρ−1∇ × B) = B∗z (x, y)ẑ + ∇ψ∗(x, y) × ẑ with
B = Bz(x, y)ẑ +∇ψ(x, y)× ẑ:

B∗z = Bz − d2
e∇ · (ρ−1∇Bz) , ψ∗ = ψ − d2

eρ
−1∆ψ . (21)

Grad-Shafranov-Bernoulli equilibrium equations and special equilibria
We can show that the system (16)-(20), can be written conveniently as a Grad-Shafranov-Bernoulli system:

α1A′(ϕ)∇ ·
(
A′(ϕ)

ρ
∇ϕ
)

+ α2ρ(ϕ− φ)− α3
ρ

d2
e

(
ψ − ϕ− λµφ

1− λµ

)
= [A(ϕ) + G(φ)]A′(ϕ) + ρK′(ϕ) ,

γ1G′(φ)∇ ·
(
G′(φ)

ρ
∇φ
)

+ γ2ρ(ϕ− φ) + γ3
ρ

d2
e

(
ψ − ϕ− λµφ

1− λµ

)
= [A(ϕ) + G(φ)]G′(φ) + ρM′(φ) ,

∆ψ =
ρ

d2
e

(
ψ − ϕ− λµφ

1− λµ

)
, P̃ (ρ) = ρ [M(φ) +K(ϕ)]− ρv

2

2
− d2

e

2ρ

[
(∆ψ)2 + |∇Bz|2

]
, (22)

where

α1 = µ2 + d2
e , α2 =

λ2

(1− λµ)2
, α3 =

1

1− λµ
, γ1 = λ−2 + d2

e , γ2 = −α2 , γ3 = λµα3 . (23)

HMHD equilibria
For de→ 0 we have µ→ 0 and λ−1→ di; therefore, the independent flux functions are the poloidal magnetic
flux function ψ and the ion flow function φ := ψ + divz. One can find that

vz = d−1
i (φ− ψ) , vp =

di
ρ
G′(φ)Bip , where Bip := ∇φ× ẑ . (24)

Next, with de = 0 Eqs. (22) reduce to

d2
iG
′(φ)∇

(
G′(φ)

ρ
∇φ
)

+
ρ

d2
i

(φ− ψ)− [G(φ) +A(ψ)]G′(φ)− ρM′(φ) = 0 , (25)

∆ψ +
ρ

d2
i

(φ− ψ) + ρK′(ψ) + [G(φ) +A(ψ)]A′(ψ) = 0 , (26)

P̃ (ρ) = ρ
[
K(ψ) +M(φ)− (φ− ψ)2

2d2
i

]
−
d2
i

2ρ

(
G′(φ)

)2 |∇φ|2 . (27)

The system above is in agreement with the system derived in [6] for axisymmetric HMHD equilibria.
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Figure 1: Numerical Hall MHD equilibrium with ε =
1.7, δ = 0.33, a0 = 0.325 with dimensionless Hall pa-
rameter di = 0.03 (normalized ion skin depth). The
solid black line represents the boundary, the solid-red
contours are the ion flow surfaces (φ = constant)
and the dashed-blue contours are magnetic surfaces
(dashed-blue) ( ψ = constant). Departure of the flow
surfaces from the magnetic surfaces due to the Hall
term in Ohm’s law is observed, with a separation dis-
tance of the order of 0.04L0.

Conclusion
• The Hamiltonian formulation of translationally symmetric barotropic extended magnetohydrodynamics is

presented.
•We derived the symmetric Casimir integrals of motion and produced the Energy-Casimir variational prin-

ciple for obtaining the generalized equilibrium equations, which govern XMHD stationary states. These
states may be particularly interesting for the study of 2D collisionless reconnection configurations.
• The equilibrium system of equations were shown to be a Grad-Shafranov-Bernoulli type, and we studied

special case of HMHD equilibria with arbitrary flow.
•We computed a numerical HMHD equilibrium on a D-Shaped domain, relevant to fusion experiments. The

resulting configuration is representative of the predicted separation of the ion-flow and magnetic surfaces.
• Extension of the present study to cases of arbitrary symmetry, as done for MHD in [7], in particular for

helically symmetric configurations, is in progress.
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