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Overview
•The pedestal is crucial for tokamak reactor operation
•Multiscale modelling is extremely succesful for core transport
•We develop a multiscale model for ELMs, inter-ELM transport,

and residual turbulence in the pedestal.

Orderings for Pedestal Physics

•The system is strongly anisotropic L⊥/L‖� 1,

•The scale lengths are larger than the gyroradius ρi/L⊥� 1,

•But frequencies are low ω/Ωi� 1.

Key Assumptions
• Full diamagnetic effects ω ∼ ω∗, for all species.

• Fully nonlinear ω ∼ uE/L⊥.

• Finite amplitude perturbations δf/f ∼ 1. Small magnetic perturbations δB/B � 1.

•At most marginally ballooning unstable β . L⊥/L‖ i.e. αMHD ∼ 1.

•Marginally Collisional – λmfp ∼ L‖.

Orderings for ELMs
Assembling these assumptions, we produce the maximal ordering for fast dynamics in
the pedestal:
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Equations for ELMs
From our ordering we can obtain dynamical equations for sharp-gradient regions. The
total magnetic field is

B = B0 + b0 ×∇A‖. (2)

The kinetic equation for electrons:
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and ions:
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The electron kinetic equation above could give rise to a large parallel electron flow; this
would violate Ampére’s law. To maintain a small electron flow, we have the constraint:
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where Re is the collisional friction force on electrons.
The final equation for the field is a vorticity equation for ϕ.
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The parallel current in (6) is found from Ampére’s law:
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These equations contain all the physics that ELMs may entail:

• Fully nonlinear filamentary physics

•Linear Peeling-Ballooning modes [Connor et al.(1998)]

•Kinetic effects on all modes (electron Landau damping, trapped particles)

•Diamagnetic stabilization on ballooning modes [Rogers & Drake(1999)]

Inter-ELM Orderings
To slow down the dynamics to handle the Inter-ELM timescale, we introduce a new
length scale:

L∧ ∼
√
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and insist that one of the perpendicular length scales is L∧ not the shorter L⊥. In a
pedestal, only the radial extent is narrow! Under this assumption, we see that all the
nonlinearities can be writen in the form

b×∇g · ∇f ∼ gf

L⊥L∧
, (9)

which slows down the nonlinear dynamics compared to the ELMs.

Equations for the Inter-ELM pedestal
The electrons are an isothermal fluid, with simple evolution equations for the density(
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where Te = Te(ψ).
The ions obey a drift-kinetic equation:(
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The fluctuating magnetic field is given by the lowest-order voriticity equation
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to find the electrostatic potential, up to a flux function ϕ(ψ).
These equations allow the turbulent transport effects to compete with sound-waves. This
allows pedestals to build up, but also inhomogeneities in this transport to compete with
coherent oscillations in the pedestal.
Pedestal Turbulence
The residual turbulence that is consistent with the above transport and The fluctuations
are small, with
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The fluctuations will have typical length scales,
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and occur on the rapid timescale corresponding to high-k‖ electron turbulence

ω ∼ k‖vthe ∼ k‖vA. (17)

These orderings give rise to sheared-slab gyrokinetic equations, which are a generalisation
of [Zocco & Schekochihin(2011)].
The physics contained in these orderings includes:

• Small-scale high-k‖ electromagnetic turbulence

•Microtearing modes

• Strong slab-like ETG (both electromagnetic and electrostatic)

which comprise turbulence suggested to be important in pedestals [Hatch et al.(2017)].

Future Work: Stability Theory and Open Field Lines

• Analytic theory for a large-aspect-ratio pedestal region

• Detailed analysis of how the pedestal stabilises ITG

• Extend this approach to the open-field-line region

Summary
•A fully multiscale approch is applied to the pedestal
•We provide a first-principles basis for EPED-like modelling
•We consistently include kinetic effects, and full diamagnetic effects
•Self-consistent inclusion of turbulence alongside ELMs, and inter-

ELM transport
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