
Analytic anisotropic-pressure equilibria with incom-
pressible flow in helically symmetric geometry
A. Evangelias1, A. Kuiroukidis2, and G. N. Throumoulopoulos1

1University of Ioannina, Department of Physics, Section of Astrogeophysics, GR 451 10 Ioannina, Greece
2Technological Education Institute of Central Macedonia, GR 621 24 Serres, Greece

Introduction

In this project we derive a generalized Grad-Shafranov equation (GGSE) that governs the equi-

librium states of an MHD helically symmetric plasma in the presence of pressure anisotropy and

incompressible flow of arbitrary direction. This equation generalizes previous equations obtained

both for axisymmetric and translationally symmetric equilibria. Through the most general lin-

earizing ansatz for the various free functions involved therein, we construct equilibrium solutions

and study their properties. It turns out that pressure anisotropy can act either paramagnetically

or diamagnetically, the parallel flow induces paramagnetism, while the non-parallel component

of the flow associated with the electric field has a diamagnetic effect. Also, pressure anisotropy

and flow noticeably affect the current density.

Model and Geometry
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Ideal MHD

~∇ · (%~v) = 0 (1)

%(~v · ~∇)~v = ~J × ~B − ~∇·
↔
P (2)

~∇× ~E = 0⇒ ~E = −~∇Φ (3)
~∇× ~B = µ0

~J (4)
~∇ · ~B = 0 (5)
~E + ~v × ~B = 0 (6)

The expected plasma configuration consists of a helically symmetric vessel composed of nested

helicoidal surfaces of arbitrary poloidal cross-section. The innermost of these surfaces denotes

the magnetic axis. The shape of the cross-section remains invariant along the helical direction.

Derivation Procedure

I Employ helical coordinates: (r = ρ, u = mφ − kz , ξ = z). The condition of helical

symmetry implies that equilibrium quantities depend only on r and u.

I On account of helical symmetry express the divergence-free fields ~B , %~v , ~J into a helical and

a poloidal component, in terms of scalar functions.

I Project the Ohm’s law (6) onto ~h, ~B , ~∇ψ, and Eq. (2) along the helical direction ~h to obtain

four integrals of the system involving functions of the magnetic flux ψ.

I Project the momentum density equation (2) along ~B and ~∇ψ to obtain the GGSE together

with a Bernoulli equation for the effective pressure p̄ := (p⊥ + p‖)/2. These two equations

valid for generic (compressible) flows are coupled through the density % and the anisotropy

function σd.
I Consider incompressibility, % = %(ψ), and assume that the anisotropy function is uniform on

the magnetic surfaces, σd = σd(ψ) [2]. In this case the aforementioned equations decouple

to obtain a single Grad-Shafranov equation for the magnetic flux ψ.

I Adopt the generalized transformation, U(ψ) =
∫ ψ

0

√
1− σd(g)−M2

p(g)dg [3], where U

relabels the magnetic surfaces in the place of ψ, to obtain a GGSE which can be solved

analytically for linear choices of the surface functions included.

Generalized Grad-Shafranov Equation
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I Φ(U) is the electrostatic potential, F (U) labels the velocity surfaces, p̄s(U) is the static

effective pressure (in the absence of flow), M2
p(U) is the poloidal Alfvén Mach function, and

X (U) is related with the helical magnetic field; L ≡ (1/q)~∇ · (q~∇), q := (k2r 2 + m2)−1.

I The form of the GGSE indicates that in the absence of the electric field term pressure

anisotropy through σd and parallel flow through M2
p have an additive effect on equilibrium.

I Eq. (7) recovers the respective axisymmetric and translationally symmetric ones, either with

pressure anisotropy and flow or not, as particular cases [3]-[5].
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Equilibrium

Under the linearizing ansatz (8) a solution for

U(r , u) is obtained in terms of series expansion

around the geometric center r0.

X

(1− σd −M2
p)1/2

= X0 + X1(U − Ub)

%(1− σd)
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dΦ

dU

)2

= 2G1(U − Ub) + G2(U − Ub)2

p̄s − X
dF

dU

dΦ

dU
= 2P1(U − Ub) + P2(U − Ub)2 (8)

Figure 1: Equilibrium configurations of banana and triangular shape obtained for Wendelstein 7-X geometrical

characteristics: major radius, r0 = 5.5 m,and minor radius, α = 0.53 m. The cross-sections remarkably resemble

the ones of the actual 3-D device for toroidal angles 0o and 36o respectively [6]-[7].

Impact of Flow and Pressure Anisotropy

Figure 2: Pressure anisotropy has a paramagnetic effect for p‖ > p⊥ and a diamagnetic one for p‖ < p⊥ (left

figure), while it affects the current density mainly in the central plasma region (centered figure). The parallel flow

induces paramagnetism (right figure), since it acts in an additive way with pressure anisotropy.

Figure 3: The non-parallel flow has a diamagnetic impact on equilibria (left figure), while the stronger this

diamagnetic effect is the higher M2
p (centered figure). Also, the non-parallel flow affects the helicoidal current

density in a broader region than pressure anisotropy.

Conclusions

I A generalized Grad-Shafranov equation governing helically symmetric equilibria with pressure

anisotropy and incompressible flow of arbitrary direction is derived. This equation recovers

the respective axisymmetric and translationally symmetric ones as particular cases.

I For linearizing choices of the arbitrary functions contained in the GGSE a new class of exact

helically symmetric equilibrium solutions is obtained.

I It is found that pressure anisotropy can act either paramagnetically or diamagnetically de-

pending on the ratio of the scalar pressures parallel and perpendicular to the magnetic field.

I For ~v//~B the parallel flow induces paramagnetism. The non parallel flow associated with the

electric field has a diamagnetic impact on equilibria, in this case the parallel flow enhances

this diamagnetic action.

I Both the pressure anisotropy and the flow have an appreciable impact on the current density.
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