Theory of Nonlinear Ballooning Modes C J Ham, S C Cowley, G Brochard and H R Wilson 17th EFTC Athens 2017

Thanks also to: Jarrod Leddy, Guillermo Bustos Ramirez, G S Yun, S Ohdachi, S Saarelma, F Militello ...

CCFE is the fusion research arm of the **United Kingdom Atomic Energy Authority.** This work was funded by the RCUK Energy Programme [grant number EP/P012450/1]

Overview

- Motivation MAST, KSTAR, TFTR, LHD
- Hard and soft limits
- Review of some previous work
- Box geometry
- Toroidal geometry
- Discussion

Edge Localized Modes - MAST

- Edge Localized Modes (ELMs) are periodic eruptions of plasma from the pedestal/edge region
- Driven by the plasma pressure gradient
- Explosive ballooning mode filaments
- H mode pedestal limited by critical gradient

KSTAR

- ELMs are observed on KSTAR
- ECEI diagnostic shows nonlinear evolution
- Instability can saturate before crash
- Saturated state shows finger like filaments

FIG. 3 (color online). Simultaneous emergence and growth of multiple ELM filaments (shot no. 4431). Solid curves are contour lines of the same $\delta T_*/\bar{T}_*$ value representing the approximate boundary of the filaments. The arrows follow the same filament illustrating the counterclockwise rotation.

G S Yun et al. Phys Rev Lett 107 045004 (2012)

ITB

- Internal transport barrier (ITB) discharges have high pressure and confinement
- This would provide higher fusion power for a given magnetic field
- Thus more economic fusion power
- However, they are prone to very fast disruptions (30-100µs) which are difficult to control
- Without disruption control ITBs are unusable therefore understanding the disruption process is vital.
- There may be other problems with ITBs too

TFTR

- TFTR experiments show ballooning modes appearing prior to ITB disruption
- This is on top of n=1 mode activity
- ECE diagnostic results shown in figure

FIG. 1. Contour plot of constant electron temperature across the plasma midplane versus time. Data from the two GPCs, separated by 126° in the toroidal direction is shown. The shaded region indicates the 180° of toroidal angle where the n = 1 kink pushes outward in the major radius $[I_p = 2.5 \text{ MA}, B_T = 5.1 \text{ T}, q(a) = 4.0, \beta_n^{\text{dia}} = 1.9]$.

Fredrickson et al., Phys. Plasmas 3 2620 (1996)

Large Helical Device

- LHD is a large Heliotron device
- Super-Dense-Core (SDC) experiments can be terminated by a Core Density Collapse (CDC)
- CDC seems to be ballooning in nature
- Stellarator version of TFTR distruption?

Hypothetical mode structure with SX measurements

Ohdachi et al. Nucl. Fusion 57 (2017) 066042

Soft and Hard limits

- Linear stability can only tell us so much
- Nonlinear phase of fast MHD instabilities determines if there is a hard or soft limit
- Soft limit usually pins the pressure gradient to some critical value
 - possibly high *n* ballooning modes in the pedestal
 - JET pulse 79501 shows saturation of T_e at the pedestal long before an ELM crash

Frassinetti et al Nucl. Fusion 55 (2015) 023007

Soft and Hard limits

- Hard limit rapidly destroys confinement
 - -e.g. edge localized mode (ELM)
 - disruption
- ELMs show that ballooning modes may produce a hard limit as well as a soft limit
- Want to understand when we have hard or soft limits
- Most importantly how to remove hard limits

Nonlinear ballooning review

- Previous work on nonlinear ballooning modes has focussed on the early nonlinear state
- This shows that the mode is expected to form narrow finger-like structure
- Mode gets narrower as it grows
- Explosive growth expected
- Finite time singularity

Wilson & Cowley Phys Rev Lett 92 175006 (2004)

Slab geometry

- Myers *et al.* studied a line-tied slab with gravity and a density gradient numerically using ideal MHD – no reconnection
- They found a number of phases
 - Initial transient
 - Linear
 - Quasilinear
 - Explosive growth
- Explosive growth phase not fully resolved, extra physics required

Myers et al. Plasma Phys. Control. Fusion 55 (2013) 125016

Box model

- Cowley *et al.* investigated a box
 model again with ideal
 MHD and line tied
 boundary conditions
- Assume filaments are narrow to reduce field line bending
- Buoyancy balanced against magnetic curvature

Cowley et al. Proc. R. Soc A 471 20140913 (2015)

Box model

- Saturated states were found
- Linearly stable yet nonlinearly unstable flux tubes
- Flux tubes lower in the atmosphere erupted further than those above

Cowley et al. Proc. R. Soc A 471 20140913 (2015)

Toroidal geometry

- Develop box geometry to a torus to be able to study ELMs and disruptions quantitatively
- Consider a highly elliptical flux tube, $\delta_1 << \delta_2$
- Tube sufficiently narrow that the field and pressure outside are unperturbed

Ham et al. Phys Rev Lett 116 235001 (2016)

Forces on flux tube

• Denote field inside the tube as

 $-\mathbf{B}_{in} = \mathbf{B}_{in} \left(\theta, r_0, t\right)$

- $-\theta$, distance along field line
- $-r_0$, starting flux surface
- *t*, time
- The motion is assumed to be slow compared to the (sound) time to equalize pressure along the tube

 $-p_{in}(\theta, r_0, t) = p(r_0)$

Force on flux tube

 We calculate the nonlinear behaviour of erupting flux tubes by consideration of the two components of the MHD force equation perpendicular to the magnetic field

$$\mathbf{F} = \frac{1}{\mu_0} \left[\mathbf{B} \cdot \nabla \mathbf{B} - \nabla \left(\frac{B^2}{2} + \mu_0 p \right) \right]$$

Across the tube

- Force in the narrow direction is formally large and so must cancel to this order $O(p/\delta_1)$
- This implies total pressure inside must equal total pressure outside

$$\left[\frac{B_{in}^{2}}{2} + \mu_{0}p_{0}(r)\right]_{in} = \left[\frac{B_{0}^{2}}{2} + \mu_{0}p_{0}(r_{0})\right]_{out}$$

 $B_{in}^{2}(\theta, r_{0}, t) = B_{0}^{2}(\theta, r) + 2\mu_{0} [p_{0}(r) - p_{0}(r_{0})]$

Forces on flux tube

• In the radial direction we have

$$F_r = \frac{1}{\mu_0} \left[B_{in} \cdot \nabla B_{in} - \nabla \left(\frac{B^2}{2} + \mu_0 p \right) \right] \cdot e_r$$

 Using the results on the previous slide a generalized Archimedes' principle can be derived

$$F_r = \frac{1}{\mu_0} \left[B_{in} \cdot \nabla B_{in} - B_0 \cdot \nabla B_0 \right] \cdot e_r$$

• Net force is the curvature force of the tube minus the curvature force of the tube it has displaced

Model

• The physics of this model is represented by the following equations

$$B_{in}^{2}(\theta, r_{0}, t) = B_{0}^{2}(\theta, r) + 2\mu_{0} [p_{0}(r) - p_{0}(r_{0})]$$
$$F_{r} = \frac{1}{\mu_{0}} [B_{in} \cdot \nabla B_{in} - B_{0} \cdot \nabla B_{0}] \cdot e_{r}$$

• The rest is geometry!

Toroidal geometry

- Flux tube must follow the surface S which is tangent to both the surrounding field lines and the flux tube
- Consider displacement along the S=0 surface
- Field line shape will be given by $r=r(\theta, r_0, t)$

$$B_0 = -\overline{B}_0 R_0 \{f(r) \nabla r \times \nabla S\}$$
$$S = \phi - q(r)(\theta - \theta_0(r))$$

Equilibrium

- Large aspect ratio, circular cross section torus
- Region of steep pressure gradient
- Region of change of magnetic shear
- Model of some internal transport barriers

Force equation

We now use an 's-α' model to produce the required geometry

$$F_r = \frac{1}{\mu_0} \left[B_{in} \cdot \nabla B_{in} - B_0 \cdot \nabla B_0 \right] \cdot e_r$$

- Becomes $F_{\perp} = (\beta_{N}(r_{0}) - \beta_{N}(r))[\cos\theta + \sin\theta(\alpha\sin\theta - s\theta)] + \left(\frac{\partial}{\partial\theta}\right)_{r_{0}} \left(\left[1 + (\alpha\sin\theta - s\theta)^{2}\left(\frac{\partial r}{\partial\theta}\right)_{r_{0}}\right) - \frac{1}{2}\left(\frac{\partial r}{\partial\theta}\right)_{r_{0}}^{2}\left(\frac{\partial}{\partial r}\right)_{\theta}(\alpha\sin\theta - s\theta)^{2}\right)$
- Saturated states when force is zero.
- Nonlinear generalization of `s- α' model

where: s = rq'(r)/q(r) – magnetic shear $\alpha(r) = -d\beta_N/dr$ - pressure gradient

Evolution equation

 An evolution equation can be derived using the previous equation, assuming drag evolution

$$\nu \left(\frac{\partial r}{\partial t}\right) \left[1 + \left(\alpha \sin \theta - s\theta\right)^{2}\right] = \left(\beta_{N}(r_{0}) - \beta_{N}(r)\right) \left[\cos \theta + \sin \theta \left(\alpha \sin \theta - s\theta\right)\right] \\ + \left(\frac{\partial}{\partial \theta}\right)_{r_{0}} \left(\left[1 + \left(\alpha \sin \theta - s\theta\right)^{2}\left(\frac{\partial r}{\partial \theta}\right)_{r_{0}}\right) - \frac{1}{2}\left(\frac{\partial r}{\partial \theta}\right)_{r_{0}}^{2}\left(\frac{\partial}{\partial r}\right)_{\theta} \left(\alpha \sin \theta - s\theta\right)^{2}\right]$$

where: s=rq'(r)/q(r) – magnetic shear $\alpha(r)=-d\beta_N/dr$ - pressure gradient

Linearized evolution equation

• We can linearize to find usual $s- \alpha'$ model

$$=\alpha$$

$$F_{\perp} = \left(\beta_{N}(r_{0}) - \beta_{N}(r)\right)\left[\cos\theta + \sin\theta\left(\alpha\sin\theta - s\theta\right)\right]$$

$$+ \left(\frac{\partial}{\partial\theta}\right)_{r_{0}} \left(\left[1 + \left(\alpha\sin\theta - s\theta\right)^{2}\left(\frac{\partial r}{\partial\theta}\right)_{r_{0}}\right) - \frac{1}{2}\left(\frac{\partial r}{\partial\theta}\right)_{r_{0}}^{2}\left(\frac{\partial}{\partial r}\right)_{\theta}^{2}\left(\alpha\sin\theta - s\theta\right)^{2}\right)$$

where: s=rq'(r)/q(r) – magnetic shear $\alpha(r)=-d\beta_N/dr$ - pressure gradient

Linearly stable case

- We investigate a case which is linearly stable across the whole profile but is nonlinearly unstable
- Physical motivation: Pedestal will be held at critical gradient by soft limit i.e. marginal stability

Equilibrium

- Quartic potential energy function
- Either trivial equilibrium
- Or three equilibria available
 Unperturbed field line
 - A critical field line
 - A nonlinear saturated state

Downwards evolution

 If the field line is initially perturbed just below the critical amplitude the field line drops back to the initial location

Upwards evolution

 If the field line is initially perturbed just above the critical amplitude the field line evolves to the saturated state

Movie

Evolution

- The evolution to the nonlinear saturated state shows explosive behaviour
- No resistivity is included in this model so the field lines remain frozen in

Saturated state

Saturated state

Colour just for illustration

Flux tube dynamics

• Movies of flux tube dynamics

Energy

- We have calculated the relative energies of the initial and saturated states
- The nonlinear saturated state is not necessarily a lower energy state

Ballooning displacement

- The ballooned field lines stretch across most of the pressure step
- Some field lines start closer to the core and end up closer to the edge i.e. they overtake.

saturated statecritical state

$$\Delta = \frac{\beta_N(r_0) - \beta_N(r_{\max})}{2\varepsilon_p \alpha_0}$$

Linearly unstable case

- We could start with a linearly unstable case
- Three equilibria available
 - Unperturbed field line
 - Inward saturated state
 - Outward saturated state

Field lines balloon inwards and outwards

Discussion

- Drag evolution is an approximation of the real dynamics. However, it is likely to capture key features such as:
 - explosive dynamics
 - equilibrium states
- Tube is assumed to have elliptical shape:
 - mildly nonlinear flux tube results
 - physical intuition
 - But, overtaking may change shape

Transport

- Model assumes perfectly conducting plasma i.e. no reconnection
- Good for fast eruption but other processes will take over once in saturated state:
 - Disconnection
 - Cross field transport (`leaky hosepipe')
 - Secondary instability (K-H, ITG etc.)
- Where does reconnection occur (if it occurs)?
- Future work required

Wilson et al. Plasma Physics Control. Fusion 48 (2006) A71

Realistic geometry

- Work in progress to look at real tokamak equilibria
- Numerical circular cross section equilibrium has been successfully modelled and saturated states found
- Next step to look at the effect of the separatrix on ideal MHD saturated states

Wilson et al. Plasma Physics Control. Fusion 48 (2006) A71

Numerical work

- Potentially difficult to capture these filaments in nonlinear MHD codes
- Narrowing of the ballooning mode structure is important and would require very high toroidal resolution

Conclusion

- We have produced a nonlinear version of the ballooning `s-α' model
- We have shown that a linearly stable profile may still allow nonlinear instabilities
- The resulting flux tubes can have displacements large enough to connect the two sides of the transport barrier
- This may be a mechanism to explain elements of fast disruptions of TFTR ITB shots and ELMs

