

Recent advances in fast-ion generation and heating multi-ion plasmas with ion cyclotron waves

Yevgen Kazakov

Laboratory for Plasma Physics, LPP-ERM/KMS, Brussels, Belgium

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

Acknowledgements

J. Ongena¹, V.G. Kiptily², E. Lerche^{1,2}, M.J. Mantsinen^{3,4}, M. Nocente^{5,6}, D. Van Eester¹, J.C. Wright⁷, S.J. Wukitch⁷, Y. Baranov², J. Bielecki⁸, R. Bilato⁹, V. Bobkov⁹, A. Cardinali¹⁰, C. Castaldo¹⁰, T. Craciunescu¹¹, K. Crombé^{1,12}, A. Czarnecka¹³, R. Dumont¹⁴, P. Dumortier¹, F. Durodié¹, J. Eriksson¹⁵, J. Faustin¹⁶, R. Felton², M. Fitzgerald², D. Gallart⁴, L. Giacomelli⁶, C. Giroud², M. Goniche¹⁴, J. Graves¹⁶, C. Hellesen¹⁵, Ph. Jacquet², T. Johnson¹⁷, N. Krawczyk¹³, M. Lennholm^{18,19}, Y. Lin⁷, T. Loarer¹⁴, S. Menmuir², I. Monakhov², F. Nabais²⁰, M.F.F. Nave²⁰, M. Porkolab⁷, M. Schneider²¹, S.E. Sharapov², D. Valcarcel², H. Weisen¹⁶, and JET Contributors^{*}

¹ LPP-ERM/KMS, Brussels, Belgium ² CCFE, Culham Science Centre, Abingdon, UK ³ Barcelona Supercomputing Center (BSC), Barcelona, Spain ⁴ ICREA, Pg. Lluis Companys 23, Barcelona, Spain ⁵ Dipartimento di Fisica. Università di Milano-Bicocca, Milan, Italy ⁶ Istituto di Fisica del Plasma, CNR, Milan, Italy ⁷ MIT-PSFC, Cambridge, USA

- ⁸ Institute of Nuclear Physics, PAS, Krakow, Poland
- ⁹ Max-Planck-Institut für Plasmaphysik, Garching, Germany
- ¹⁰ ENEA Centro Ricerche, Frascati Italy
- ¹¹ NILPRP Bucharest, Romania

- ¹² Dep. Applied Physics, Ghent University, Gent, Belgium
- ¹³ IPPLM. Warsaw. Poland
- ¹⁴ CEA, IRFM, Saint-Paul-Lez-Durance, France
- ¹⁵ Dep. Physics and Astronomy, Uppsala University, Sweden
- ¹⁶ EPFL, Swiss Plasma Center (SPC), Lausanne, Switzerland
- ¹⁷ KTH Royal Institute of Technology, Stockholm, Sweden
- ¹⁸ European Commission, Brussels, Belgium
- ¹⁹ JET Exploitation Unit, Culham Science Centre, UK
- ²⁰ Instituto de Plasmas e Fusão Nuclear, IST, Portugal
- ²¹ ITER Organization, Route de Vinon-sur-Verdon, France

* See X. Litaudon et al., "Overview of the JET results in support to ITER", Nucl. Fusion 57,102001 (2017)

Reminder: burn curves for D-T plasmas

T. Pütterich et al., EPS (2015) T. Pütterich et al., *this conference* (I6)

 $T_{
m core}pprox 20-30~{
m keV}$

- ICRH: heating with waves in the ion cyclotron frequency range, $\omega_{ci} = (q_i/m_i)B$
- Intuitive idea: launch RF waves at the ion cyclotron frequency or harmonics $\omega = oldsymbol{n} \omega_{ci} + k_\parallel v_\parallel ~~(n=1,2,3,...)$
- Wave-particle resonance condition is satisfied locally since $\,B(R)pprox B_0R_0/R\,$

 $\omega = n\omega_{ci}$: vertical line in tokamaks

ICRH can also provide electron heating (mode conversion and ELD/TTMP)

 $\omega = \omega_{ci}$

5

Wave propagation: cutoffs and resonances

$$n_{\perp,\,{
m FW}}^2(R)\simeq rac{(\epsilon_{
m L}-n_{\parallel}^2)(\epsilon_{
m R}-n_{\parallel}^2)}{\epsilon_{
m S}-n_{\parallel}^2}$$

species no. 1

e.g., ³He

 $R_{
m ic,1}$

 $(Z/A)_{i} = 2/3$

species no. 2

 $R_{
m ic,2}$

d pai

on-ion hybri

 $(Z/A)_{i} = 1/2$

e.g., D

Wave polarization:

$$\left|rac{E_+}{E_-}
ight|\simeq \left|rac{\epsilon_{
m R}-n_{\parallel}^2}{\epsilon_{
m L}-n_{\parallel}^2}
ight|$$

- Two ion species, (Z/A)₁ and (Z/A)₂: an ion-ion hybrid cutoff-resonance pair between R_{ic,1} and R_{ic,2}
 - Mixture plasmas (large minority concentrations)

 direct electron heating with ICRH

 $iggl\{ \epsilon_{
m L}=n_{\|}^2$, ion-ion hybrid cutoff (L-cutoff) $\epsilon_{
m S}=n_{\|}^2$, ion-ion hybrid resonance

 $\epsilon_{
m S}, \epsilon_{
m L}, \epsilon_{
m R}$ are the dielectric tensor components in the notation of Stix

ICRH in mixture plasmas with MC layer: electron heating \rightarrow ion absorption

Wave absorption by ions still possible: two-ion plasmas → multi-ion plasmas (≥ 3, 'three-ion' species scenarios)

7

- 'Three-ion' species ICRH scenarios: theoretical concept^{1,2,3}
- Recent experiments on Alcator C-Mod and JET
 Scenario 1, D-(³He)-H: minority heating of ³He ions in H-D mixtures^{4,5}
 Scenario 2, D-(D_{NBI})-H: minority heating of D-NBI ions in H-D mixtures⁶
- ³He-rich solar flares and three-ion species experiments⁴
- Applications of new scenarios for JET, W7-X⁵ and ITER²
- Conclusions

References:

- [1] Y. Kazakov, D. Van Eester, R. Dumont and J. Ongena, Nucl. Fusion 55, 032001 (2015)
- [2] Y. Kazakov, J. Ongena, D. Van Eester, R. Bilato et al., Phys. Plasmas 22, 082511 (2015)
- [3] D. Van Eester, Y. Kazakov and E. Lerche, *Plasma Phys. Control. Fusion* 59, 085012 (2017)
- [4] Y. Kazakov, J. Ongena, J.C. Wright et al., *Nature Physics* 13, 973–978 (2017); http://dx.doi.org/10.1038/nphys4167
- [5] J.M. Faustin, J.P. Graves, W.A. Cooper et al., Plasma Phys. Control. Fusion 59, 084001 (2017)
- [6] J. Ongena, Y. Kazakov et al., "Observations of synergetic acceleration of D-NBI ions in the vicinity of the mode conversion layer in H-D plasmas", *EPJ Web of Conferences*, accepted for publication

8

 Thermal and moderately energetic ions (~ 100 keV): wave absorption is due to the left-hand polarized RF electric field component *E*₊

$$\omegapprox\omega_{ci} ~~(n=1):~~P_{
m abs}\propto |E_+J_0(k_\perp
ho_{
m L})+E_-J_2(k_\perp
ho_{
m L})|^2pprox|E_+|^2$$

• *E*₊ and *E*_{_} vary locally and are mainly determined by plasma composition (number of ion species with different *Z*/*A* and their relative concentrations)

Case 1, single-ion plasmas:

fundamental (*n* = 1) cyclotron heating of H and H-NBI ions in hydrogen plasmas

Outcome: inefficient ICRH heating, $\omega = \omega_{cH} + k_{\parallel}v_{\parallel}$

Case 2, two-ion plasmas:

fundamental (*n* = 1) cyclotron heating of H (minority) ions in deuterium plasmas

Plasma composition: **X**[D] ≈ 95%, **X**[H] ≈ 5%

- Wave accessibility to the plasma core
- Presence of resonant ions, $\omega = \omega_{ci} + k_{||}v_{||}$
- Left-hand polarized component, *E*₊ ≠ 0 (two-ion plasmas)

Outcome: efficient ICRH heating, $\omega = \omega_{cH} + k_{\parallel}v_{\parallel}$

- ✓ Minority heating is efficient at $X_{mino} = n_{mino}/n_e \approx 2-10\%$
- ✓ 'Three-ion' species scenarios extend the operational range for MH

Yevgen Kazakov | 17th EFTC (Athens, Greece) | 09-12 October 2017

10

Ion cyclotron heating in two-ion plasmas

• Two ion species: $(Z/A)_1$ and $(Z/A)_2$

11

• Two ion cyclotron layers:

$$egin{aligned} R &= R_{ ext{ic},1} & (\omega &= \omega_{ ext{c}1}) \ R &= R_{ ext{ic},2} & (\omega &= \omega_{ ext{c}2}) \end{aligned}$$

- Two ion species: (Z/A)₁ and (Z/A)₂
- Two ion cyclotron layers:

$$egin{aligned} R &= R_{ ext{ic},1} & (\omega &= \omega_{ ext{c}1}) \ R &= R_{ ext{ic},2} & (\omega &= \omega_{ ext{c}2}) \end{aligned}$$

• Every IC layer has a natural width $\delta R_{1,2}$

Ion cyclotron heating in two-ion plasmas

- Ion-ion hybrid (IIH) layer, large E₊:
 located in between R_{ic,2} and R_{ic,1}
- IIH layer close to cyclotron resonance if X_2 is a few % \rightarrow minority heating

* Minority absorption in two-ion plasmas is not efficient at very low concentrations (‰): no ion-ion hybrid layer

 At larger X_{mino}, lack of resonant ions capable to absorb RF power

$$v_{\parallel} = \left|rac{\omega-\omega_{ci}^{(1,2)}}{k_{\parallel}}
ight| \gg v_{ ext{th}}^{(1,2)}$$

- Localized electron heating through mode conversion dominates
- Still very strong E_{+} in the vicinity of the IIH layer

Effective ion absorption still possible! Two-ion plasmas \rightarrow multi-ion plasmas

Mixture plasmas with MC layer: from electron heating to ion absorption

 $(Z/A)_2 < (Z/A)_3 < (Z/A)_1$

can have (Z|A) as the majority ions

'Three-ion' species ICRH scenarios (option no. 1): optimal plasma composition

 ✓ Three-ion species plasmas, (Z/A)₂ < (Z/A)₃ < (Z/A)₁ (multi-ion plasmas also ok)
 ✓ Proper choice of plasma composition: X₁ ≥ X₁^{*}, X₂ ≤ X₂^{*}
 1 (Z/A)₁ - (Z/A)₃ U* 1 (Z/A)₃ - (Z/A)₂

$$X_1^* pprox rac{1}{Z_1} rac{(Z/H)_1}{(Z/A)_1 - (Z/A)_2} \quad X_2^* pprox rac{1}{Z_2} rac{(Z/H)_3}{(Z/A)_1 - (Z/A)_2} \quad ext{[Y. Kazakov et al., NF (2015)]}$$

✓ Proof-of-principle test:

H-D mixture (X[H] \ge 70%) Small amount of ³He (\le 1%, see figure)

Alcator C-Mod and JET experiments: ICRH heating of ³He ions in H-D mixture plasmas

nature physics

OCTOBER 2017 VOL 13 NO 10 www.nature.com/naturephysics

A recipe for more plasma

Ye.O. Kazakov, J. Ongena, J.C. Wright, S.J. Wukitch et al., *Nature Physics* 13, 973–978 (2017); https://www.nature.com/articles/nphys4167 ATOM INTERFEROMETRY Testing gravity

SOFT-MATTER PHYSICS Hairy on the inside

QUANTUM MAGNETISM Plaquette phase revealed

High heating efficiency ... while using a factor of 10 less ³He

• Reducing minority concentrations from % to % levels \rightarrow increasing absorbed ICRH power per resonant ion

 $E_{
m mino}^{
m (Stix)}(
m keV) \simeq rac{0.24 \, [T_e(
m keV)]^{3/2} A_{
m mino} \langle P_{
m RF}
angle_{
m MW/m^3}}{n_{e,20}^2 \, Z_{
m mino}^2}$ T.H. Stix et

- T.H. Stix et al., Nucl. Fusion, 1975
- Efficient tool for generating energetic ions in a plasma
- Sawteeth stabilization and core localized TAE modes

JET: unambiguous detection of MeV-range ³He ions

MeV-range ³He ions generated with ICRH \rightarrow characteristic gamma-ray emission from nuclear reactions between ³He and intrinsic ⁹Be impurities (~ 0.5%)

³He + ⁹Be \rightarrow ¹¹B* + *p*; ³He + ⁹Be \rightarrow ¹¹C* + *n E_y* = 4.44MeV / 5.02MeV / 5.5MeV / 5.85MeV / 6.48MeV / 6.91MeV / 7.28MeV / 7.98MeV / ...

Reconstructed gamma-ray emission: visualization of fast-ion population

ICRH: dipole phasing (4.3MW)

ICRH: dipole (2.3MW) and $+\pi/2$ phasing (2.1MW)

- Efficiency of fast-ion generation enhanced by using $+\pi/2$ phasing of ICRH antennas
- RF-induced pinch effect and lower |k_{||}|

M.J. Mantsinen et al., PRL 89, 115004 (2002); J.M. Faustin et al. PPCF 59, 084001 (2017)

Energetic ³He ions produced in H-D fusion plasmas

Energetic 3He ions in solar plasmas

3He-Rich Solar Energetic Particle Events (PDF Download Available) https://www.researchgate.net/.../251566850_3He-Rich_Solar_Ener... - Tłumaczenie strony Official Full-Text Paper (PDF): 3He-Rich Solar Energetic Particle Events. ... He enrichment was plasma resonance heating. that could single out the rare isotope ...

19-22 Oct. 2002: high ³He abundance seen over several days

Source: Wikipedia

³He-rich solar flares

- A class of solar flares with anomalously high ³He/⁴He ratio in the MeV-energy range
 D. Reames, Space Sci. Rev. 90, 413-491 (1999); G.M. Mason, Space Sci. Rev. 130, 231-242 (2007)
- > Typical ratio ${}^{3}\text{He}/{}^{4}\text{He} \sim 1/2500 \rightarrow {}^{3}\text{He}/{}^{4}\text{He} \sim 1$ in ${}^{3}\text{He}$ -rich solar flares

Mechanism for observed ³**He enrichment (?)**

- Production by nuclear reactions ruled out (no increase in D and T)
- Selective interaction of ³He with plasma waves (unique charge-to-mass ratio)
 - → electrostatic waves: H-⁴He-³He plasma (Fisk, 1978) second-stage acceleration process required
 - → electromagnetic waves: H-³He plasma (Roth-Temerin, 1997)
 - → electromagnetic waves: H-⁴He-³He plasma (Kazakov et al., 2017)

³He-rich solar flares and ⁴He-(³He)-H three-ion species scenario

24

Input: experimental data for 24 ³He-rich events (S. Ramadurai et al., 1984)

Output: the largest number of energetic ³He ions observed at *X*[H] ≈ 70-80%

JET experiments:

n = 1 ICRF heating of NBI ions in mixture plasmas

.

JAKE

.

-

5100 100

Extension of 'three-ion' species ICRH scenarios: use NBI ions as a resonant absorber in mixture plasmas

 $k_\parallel = n_{
m tor}/R_{
m ic,2}$

 NBI system provides ions resonating in the vicinity of the MC layer, where the *E*₊ field is strong

$$R_{
m MC} pprox R_{
m ic,2} imes \left[1 + \left(rac{(Z/A)_1}{(Z/A)_2} - 1
ight) Z_2 X_2
ight]$$

 NBI: seed of fast ions with a velocity distribution ranging from v_{ti} to v_{II, max} (large Doppler-shift)

 $R_{ ext{fast}} = R_{ ext{ic},2} + \delta R^{(ext{fast})}; \; \delta R^{(ext{fast})} = n_{ ext{tor}} v_{\parallel}^{(ext{fast})} / \omega$

• Resonant wave-particle interaction:

$$v_\parallel^{(\mathrm{fast})} = rac{\omega}{k_\parallel} rac{(Z/A)_1 - (Z/A)_2}{(Z/A)_2} Z_2 X_2 \leq v_{\parallel,\mathrm{max}}^{(\mathrm{NBI})}$$

Extension of 'three-ion' species ICRH scenarios: use NBI ions as a resonant absorber in mixture plasmas

Conditions of the JET experiments:

H-D plasma mixture, $E_{\text{D-NBI}} = 100 \text{keV}$, $v_{\parallel}/v = 0.62$, f = 25 MHz, dipole phasing $\rightarrow \delta R^{(\text{fast})} \approx 35 - 40 \text{ cm}$ $p \approx \delta R^{(\text{fast})}/R_0 \approx 0.11$ $X_{\text{D}}^{(\text{max})} \simeq p/(1-p) \approx 13\%$ Yevgen Kazakov | 17th EFTC (Athens, Greece) | 09-12 October 2017

D-(D_{NBI})-H heating scenario: effect of the plasma composition

#91255, *X*[D] ≈ 10-15%

#91206, *X*[D] ≈ 30%

ICRF heating of D-NBI ions (*n* = 1) in H-rich plasmas

29

D-(D_{NBI})-H scenario, H-D plasma with *X*[H] ≈ 85-90% and *X*[D] ≈ 10-15%

Acceleration of D-NBI ions to MeV-range energies and increase in neutron rate observed

A ten-fold increase in neutron rate with 2.5MW of ICRH

Presence of energetic D ions and TOFOR observations

 $D + D \rightarrow {}^{3}He (0.82MeV) + n (2.45MeV)$

$$E_npprox 2.9 {
m MeV} imes igg[rac{60}{t_{
m TOF}(n)}igg]$$

TOFOR: time-of-flight neutron spectrometer C. Hellesen et al., *NF* 50, 032001 (2010)

<i>t</i> _{TOF}	65ns	60ns	55ns	50ns
E _n	2.5MeV	2.9MeV	3.5MeV	4.2MeV

D ions with energies up to ~2MeV

Highlights for future studies

D-T plasma: D + T \rightarrow ⁴He (3.5 MeV) + n (14.1 MeV) D-³He plasma: D + ³He \rightarrow ⁴He (3.6 MeV) + p (14.7 MeV)

D-(D_{NBI})-³He scenario, X[D] ≈ 50-60%, X[³He] ≈ 20-25%: source of (nearly) isotropic alpha particles

This technique is also applicable for future D-T experiments in JET-ILW

- T-(T_{NBI})-D scenario: ICRH heating of T-NBI ions in D-rich plasmas
- T-(D_{NBI})-D scenario: ICRH heating of D-NBI ions in T-rich plasmas

[J. Ongena et al., RF Topical Conf. 2017]

Applications of three-ion species scenarios for JET and ITER

Main ions no. 1 Resonant ions (no. 3) Main ions no. 2

1 H Hydrogen 1.01	Periodic table of the elements				2 Helium 4.00		
³ Lithium 6.94	4 Be Beryllium 9.01	5 Boron 10.81	6 Carbon 12.01	7 N Nitrogen 14.01	8 Oxygen 16.00	9 F Fluorine 19.00	10 Ne Neon 20.18
11 Na Sodium 22.99	12 Mg Magnesium 24.31	13 Aluminum 26.98	14 Silicon 28.09	15 P Phosphorus 30.97	16 Sulfur 32.06	17 Cl Chlorine 35.45	18 Ar Argon 39.95

lon	Т	⁹ Be, ⁴⁰ Ar, ²² Ne,	D, ⁴He,	³ He	н
species		⁷ Li, ¹¹ B, …	¹² C, ¹⁶ O,		
(<i>Z</i> / <i>A</i>) _i	1/3	≈ 0.43-0.45	1/2	2/3	1

Scenario	Resonant ions	ITER phase		
^₄ He-(³He)-H	³ He	non-active		
⁹ Be/ ⁴⁰ Ar-(⁴ He)-H	⁴He	non-active		
T-(⁹ Be)-D	⁹ Be	active		

* Also scenarios with NBI ions as a minority in mixture plasmas

Fast-ion confinement studies in a stellarator Wendelstein 7-X

- Demonstrate good confinement of energetic ions at high plasma beta ($n_{e0} > 10^{20} \text{ m}^{-3}$)
- Source of fast ions ($E_i \approx 50-100 \text{ keV}$) in the plasma core required (ICRH and NBI)


```
Recipe for W7-X:
```

```
Hydrogen (~70–80%) +
D-like ions (<sup>12</sup>C, <sup>16</sup>O, <sup>4</sup>He, D, ...) +
<sup>3</sup>He (~ 0.1-0.2%)
```

Three-ion species scenario provides a factor of 20 larger number of ions at *E*_i > 50 keV than MH scenarios

[J.M. Faustin et al., PPCF 59, 084001 (2017); SCENIC modeling]

- $(Z/A)_T < (Z/A)_{9Be} < (Z/A)_D$: efficient ICRH absorption by ⁹Be impurities (~ 0.5-1%)
- ⁹Be provides dominant heating of bulk D and T ions

[1] Y. Kazakov et al., *Phys. Plasmas* 22 (2015) 082511 [2] J.R. Wilson et al., *Phys. Plasmas* 5 (1998) 1721-1726

Observed in TFTR D-T plasmas: T-(⁷Li)-D scenario

- > Three-ion species scenarios: a new set of ICRH scenarios for efficient heating of mixture plasmas, $\omega = \omega_{ci} + k_{||}v_{||}$
 - \rightarrow resonant ions satisfy $(Z/A)_2 < (Z/A)_3 < (Z/A)_1$
 - \rightarrow resonant ions have (Z/A) as one of the main ions, but a large Doppler-shift (v_{\parallel})
- Successfully demonstrated on Alcator C-Mod and JET tokamaks (2016):
 - → H-D plasma mixture (H-D \approx 75%-25%) + ³He
 - → H-D plasma mixture (H-D ≈ 85%-15%) + D-NBI
- **Efficient generation of energetic ³He and D ions confirmed**
 - \rightarrow sawtooth stabilization, γ -ray emission, excitation of TAE modes, neutrons, ...
- > Various applications for JET, W7-X, ITER, DEMO
 - $\rightarrow\,$ extends the flexibility of ICRH for fusion research studies
- Developed technique can also be applied to explain observations of energetic ions in space plasmas, in particular, ³He-rich solar flares

Thank you for your attention !

Backup slides

D-(D_{NBI})-H ICRH+NBI heating scenario in JET-ILW: enhanced neutron rate

Time-dependent TRANSP modeling e.g., R. Budny et al., NF (2009)

t = 10.5s: *X*[D_{NBI}] ≈ 4%, *X*[H] ≈ 85%, H/(H+D)_{edge} ≈ 0.89-0.91

JET: efficient plasma heating observed, both at *X*[³He] ~ 0.1-0.2% and at ~1%

JET: minority heating of ³He ions in H-D mixtures more efficient than in H plasmas

- JET: effective plasma heating as a result of slowing down of energetic ³He ions (good fast-ion confinement)
- JET: ~50% higher performance of ³He minority heating in H-D ≈ 80%-20% mixture if compared to heating H plasmas
- Extension for ITER: use H-⁴He plasmas (H + 10% of ⁴He) + a tiny amount of ³He

Yevgen Kazakov | 17th EFTC (Athens, Greece) | 09-12 October 2017

³He ICRH experiments in H-D plasmas: observation of TAE and EAE modes

#91304, *P*_{ICRH} = 4.5MW, no NBI, EAE modes *X*[H] ≈ 70-75%, *X*[³He] ≈ 1%

GENESIS-SCENIC synthetic gamma-ray diagnostics

- ICRH modeling: SCENIC code (J.M. Faustin, H. Patten et al.)
- Gamma modeling: GENESIS code (M. Nocente et al.)