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The “equilibrium and stability” framework

The concepts of equilibrium and of stability are often adopted in the
description of a plasma configuration and of its dynamics.

It may not always be obvious how to apply these concepts
operationally to conditions where the identification of an underlying
equilibrium state is rather arbitrary, see e.g., the case of a fully
developed turbulence.
Nevertheless they represent a very important logical framework
within which one can constrain the bewildering richness of the
plasma dynamics.
A meaningful definition of equilibria requires that we restrict the
dynamics under study to a selected range of spatial and temporal
scales. In this perspective magnetohydrodynamic equilibria can play
an important role in providing a first step, even if fairly incomplete, in
the investigation of the behaviour of magnetized plasma in the
laboratory, in space and in the universe.



The “equilibrium and stability” framework

• Besides being in general a useful descriptive tool, the concept of
MHD equilibrium is very relevant to the study of externally constrained
plasma configurations, such as most fusion plasmas in the laboratory.
It can also be usefully applied to the study of space plasmas such as
e.g. planetary magnetospheres, stellar and galactic discs, accretion
discs1 on compact astrophysical objects, etc.

For these latter cases the role of the plasma flows is of paramount
importance and thus we are led to distinguish between static
equilibria (without flows) and stationary equilibria (with flows).

Note that the role of plasma flows, in particular of plasma rotation, is
now fully recognized also for (toroidal) plasma configurations in the
laboratory, e.g. as a possible source of improved energy transport.

1see e.g. the Magnetorotational instability (Velikhov-Chandrasekhar instability or Balbus-Hawley instability)
of lonf ago: Stability of an ideally conducting liquid flowing between cylinders rotating in a magnetic field,
E.P. Velikhov - Sov. Phys. JETP, 1959



An extended framework

The generalization to equilibria with flows includes configurations
where the properties, e.g. the velocity vector, of a given plasma
element are not constant in time.

It may thus appear natural that some of the methods2 that are applied
to study the stability of stationary equilibria can find application even
in cases where no concept of equilibrium is involved (e.g. in the study
of the orbital stability of the time evolution of a plasma configuration).

In fact, different definitions of stability can be given with, in general,
different mathematical and physical content.

2such as the so-called time-dependent relabelling which I will address
later in this presentation



Stability of equilibrium points of a dynamical system
with a finite number of degrees of freedom.

Generally spaeking, in a dynamical system stability concerns the
behaviour of solutions near equilibrium points.

An equilibrium point is stable if solutions starting close to it at t = 0
remain close to it for all later times.
If these solutions are determined from the linearized dynamics, the
equilibrium point is linearly stable.

Equilibria that are unstable under nonlinear dynamics, yet stable
under linear dynamics, are said to be nonlinearly unstable3.

A linear system is spectrally stable if, assuming a time behaviour of
the form exp(γt) and solving for γ, there are no solutions with Reγ > 0
Linear stability implies spectral stability but the converse is not true.

3Equilibria can be linearly unstable and nonlinearly stable



Stability of equilibrium points of a dynamical system
with an infinite number of degrees of freedom.

In a dynamical system with an infinite number of degrees of freedom
similar definitions apply with “equilibrium configuration” taking the
place of “equilibrium point” and functional derivatives that of partial
derivatives.

Global quantities such as, e.g., the total energy of a
plasma configuration will involve functionals in the form of space
integrals of local functions such as the plasma energy density.

Mathematical results that can be rigorously proven for a system
with a finite number of degrees of freedom turn out to be useful also
in the infinite number case: the well known MHD stability δ W method
is in essence the infinite-degree-of-freedom version of Lagrange’s
theorem (1788), while for Hamiltonian systems that are not of the
separable form another old theorem, Dirichlet’s theorem (1846), gives
a sufficient condition for stability.



Useful formulae (taken from PJ Morrison notes)



Ideal MHD stability of static plasma equilibria

Stability criteria can be obtained by constructing quadratic forms
starting from the linearized MHD equations. This approach requires
an explicit proof that the linear operator from which the quadratic form
is constructed is self-adjoint over the linear space of functions inside
which solutions of the linearized equations are searched for.

This is for example the method adopted for the case of static
equilibria in the famous article I. B. Bernstein, E. A. Frieman, M. D.
Kruskal, R. M. Kulsrud, Proceedings of the Royal Society of London, Series
A, Mathematical and Physical Sciences, 244, 17 (1958),



Ideal MHD stability of static plasma equilibria

Conversely, stability criteria can be simply obtained as a
consequence of energy conservation.

• The full, i.e., nonlinear, ideal MHD equations, as I will mention
later, are Hamiltonian and thus possess a conserved energy.

From the full Hamiltonian functional a conserved quadratic
functional can be derived in the linear limit. This procedure ensures
automatically that the linearized force operator is self-adjoint.

This is essentially the approach adopted by W. A. Newcomb,
“Lagrangian and Hamiltonian methods in magnetohydrodynamics,”
Nuclear Fusion Supplement, 2, 451 (1962).



Ideal MHD stability of plasma equilibria

In the case of static equilibria these two methods lead to linear
stability criteria that are both sufficient and necessary.

An extension of the δW method to plasma with flows was provided by
E. Frieman M. Rotenberg, Rev. Mod. Phys., 32 , 898 (1960) by
exploiting the concept of “equilibrium trajectory", by constructing
quadratic forms in the displacement ξ with respect to this trajectory
from which they can derive sufficient stability conditions.



Ideal MHD stability of plasma equilibria

In the rest of my presentation I will discuss the linear stability of ideal
MHD equilibria with flows.

The approach I will use is based on the Hamiltonian nature of the
ideal MHD equations.

Both a Lagrangian and an Eulerian formulation will be
considered and, as a consequence of the different constraints that
will be imposed on the perturbations, different sufficient stability
conditions will be derived.

A general “inclusion order” between the different sufficient
conditions obtained will be discussed.

I will mainly refer to the following string of articles

T. Andreussi, P. J. Morrison, F. Pegoraro,
Phys. Plasmas 20, 092104 (2013),
Phys. Plasmas 22, 039903 (2015),
Phys. Plasmas 23, 102112 (2016).



MHD stability of plasmas with flows

• In order to study the stability of magnetohydrodynamic (MHD)
plasma equilibria with stationary flows requires an approach that
generalizes the δW approach that is used for static configurations.
An obvious difficulty is mentioned by E. Frieman and M. Rotenberg:
the presence of a velocity field in the equilibrium state may lead to the
phenomenon of overstability. The manifestation of this in the mathe-
matical formalism is the appearance of non-Hermitian operators.”

• The generalization that overcomes this difficulty is best
performed by looking at the functional δW not as a quadratic form
derived from the linearized MHD equations, but as the second order
variation of the Hamiltonian functional H that describes the full
dynamics of a dissipationless MHD plasma.
In this approach the Hermitian property follows automatically.



Eulerian and Lagrangian variables

• As in the case of a standard fluid the MHD dynamics can be
described either in Eulerian or in Lagrangian variables.
• Lagrangian variables describe the dynamics of a plasma fluid
element whereas Eulerian variables describe the evolution in time of
the plasma quantities at a fixed spatial position. For an extensive
presentation of the Hamiltonian formulation of the MHD plasma
dynamics in Lagrangian and in Eulerian coordinates see Morrison4.
• The second order variation of the plasma Hamiltonian can be
computed either in Lagrangian or in Eulerian variables.
In the presence of stationary equilibrium flows these two procedures
follow somewhat different paths.
The aim of this presentation is to illustrate these differences and to
exemplify them in the simple case of a rotating pinch configuration.

4P. J. Morrison, Rev. Mod. Phys., 70 , 467 (1998).



Hamiltonian of an MHD plasma in Eulerian variables

• The MHD Hamiltonian in Eulerian variables takes the form

H =
∫

dx
[

ρ

2
|v|2 +ρ U(s,ρ)+

|B|2

8π

]
,

where ρ(x, t) is the density, v(x.t) the fluid velocity, U =U (s,ρ) is the
internal energy per unit mass, s(x, t) the entropy per unit mass and
B(x.t) the magnetic field.
The pressure is given by p = ρ2 ∂U/∂ρ and the temperature by
T = ∂U/∂ s. A closure condition for U (s,ρ) is assumed.
• The variables Z = ρ,v,s,B in terms of which the Hamiltonian
above is expressed are not canonical and their equations of
motion, i.e., the standard equations of ideal MHD, are obtained
by defining generalized noncanonical Poisson brackets such
that

∂Z
∂ t

= {Z,H}Z .



Non Canonical coordinates - finite dimensions



Non Canonical coordinates: free rigid body

A dot means time derivative



Noncanonical Poisson brackets: Casimirs

• Contrary to the canonical Poisson brackets that involve canonical
variables, the noncanonical Poisson brackets are degenerate.
This degeneracy gives rise to Casimir invariants5, i.e. to special
functionals C that satisfy {C,F}= 0 for all functionals F .
The general form of noncanonical Poisson brackets is given by

{F,G}=
∫

dx
δF
δZ
·J · δG

δZ
.

where F and G are two functionals and J is an anti-selfadjoint
operator that must satisfy the Jacobi identity

{F,{G,K}}+{G,{K,F}}+{K,{F,G}}= 0.

The Casimir invariance implies that the system evolution is restricted
to subdomains (foliations) of the space of Eulerian variables Z

5Magnetic helicity and cross helicity belong to such a class of invariants



Noncanonical Poisson brackets for MHD

{F,G}Z =
∫

dx
δF
δZ
·J · δG

δZ
, Z = ρ,v,s,B ,

{F,G}Z =−
∫

V

{
Fρ ∇ ·Gv−Gρ ∇ ·Fv

+
∇×v

ρ
· (Gv×Fv) +

∇s
ρ
· (FsGv−GsFv)

+B ·
[(

1
ρ

Fv ·∇
)

GB−
(

1
ρ

Gv ·∇
)

FB

]
+B ·

[(
∇

1
ρ

Fv

)
·GB−

(
∇

1
ρ

Gv

)
·FB

]}
d3r,

where F and G are two generic functionals and subscripts indicate
functional derivatives.
Morrison P J, Greene J M, Phys. Rev. Lett. 45 790 (1980) & Phys. Rev. Lett. 48 569 (1982). They are obtained

from the canonical Lagrangian brackets using the transformation that maps Lagrangian into Eulerian variables



Noncanonical MHD Poisson brackets:
Eulerian variables

Using
∂Z
∂ t

= {Z,H}Z .

with

H =
∫

dx
[

ρ

2
|v|2 +ρ U(s,ρ)+

|B|2

8π

]
,

and the brackets defined above we recover the MHD equations

∂ρ

∂ t
=−∇ · (ρv) ,

∂v
∂ t

=−∇

(
|v|2

2
+U +

p
ρ

)
− (∇×v)×v+T ∇s+

1
4πρ

(∇×B)×B,

∂ s
∂ t

=−v ·∇s,

∂B
∂ t

=−∇× (B×v) .



MHD Hamiltonian in Lagrangian variables

• Let q be the Lagrangian variable that determines the position of a
fluid element and suppose that q has a canonical conjugate π.
Both are labelled by a continuum variable a, i.e., the dynamical
variables of the Hamiltonian description are the pair q(a, t),π(a, t).
It is common to assume that the fluid element described by q is labelled by its
initial condition, q(0, t) = a, but this is not necessary.
The map from the Lagrangian variables (q,π) to the Eulerian
variables Z includes the mass, entropy and magnetic flux
conservation laws and is given by

ρ (x, t) =
ρ0 (a)
J (a, t)

∣∣∣∣
a=q−1(x,t)

, s(x, t) = s0(a)|a=q−1(x,t) ,

vi (x, t) =
πi (a, t)
ρ0 (a)

∣∣∣∣
a=q−1(x,t)

, Bi (x, t) =
∂qi (a, t)

∂a j

B0 j (a)
J (a, t)

∣∣∣∣
a=q−1(x,t)

,

where J =
∣∣∂qi/∂a j

∣∣ and 0 indicates that these functions are attributes
of the Lagrangian fluid elements and thus depend on the label a.



MHD Hamiltonian in Lagrangian variables

• The Hamiltonian H[q,π] is

H[q,π] =
∫

da
[

πiπ
i

2ρ0
+ρ0U (s0,ρ0/J)+

∂qi

∂ak
∂qi

∂a`
Bk

0B`
0

8πJ

]
.

and the equations of motion are

π̇i = {πi,H}=−
δH
δqi and q̇i =

{
qi,H

}
=

δH
δπi

,

where ‘ ˙ ’ means derivative with respect to t at fixed label a and the
Poisson bracket {·, ·} is canonical and given by

{F,G}=
∫

da
(

δF
δqi

δG
δπi
− δG

δqi
δF
δπi

)
.



Eulerian equilibria. The energy Casimir functional

• In the Hamiltonian context equilibrium configurations are extremal
points of the MHD Hamiltonian using the (known) Casimir invariants
as constraints6. Different choices of the Casimir invariants lead to
different equilibria. We consider the energy-Casimir functional

F= H +Σi Ci

and calculate its first variation.
In general it is not easy to find explicit expressions for the Casimir
invariants in such a way that sufficiently general families of equilibria
that include plasma flows can be described. Thus the energy
Casimir method is generally applied to the search of configurations
that are assumed to have geometrical symmetries.

See T. Andreussi, P. J. Morrison, and F. Pegoraro, Plasma Phys. Control. Fusion 52, 055001(2010),
& Phys. Plasmas 19, 2102 (2012), & Phys. Plasmas 20, 092104 (2013), & Phys. Plasmas 22, 039903 (2015),
& Phys. Plasmas 23, 102112 (2016)

6 In order to avoid the trivial null extremum



Eulerian equilibria. The energy Casimir functional

For an axisymmetric and translationally invariant configuration the
first variation leads to the generalized 1-D Grad-Shafranov equation

1
4πr

d
dr

[(
1− 4πF 2

ρ

)
r

dψ

dr

]
= ρTS ′−ρJ ′−BzH

′

−ρvzG
′−
(
vφ Bφ + vzBz

)
F ′,

where now a prime denotes differentiation with respect to the flux
function ψ (here Bφ = ∇ψ×∇z) and specific equilibrium solutions
are defined by the choice of the Casimir functions F , H , J , G and
S as functions of ψ

FBφ = ρvφ , FBz +ρG = ρvz ,

H +F vz =
Bz

4π
, J + vzG = v2

z/2+ v2
φ/2+ c2

s ln(ρ/ρ0) .

and all terms must be expressed in terms of ψ.



Dynamically accessible equilibria

Dynamically accessible variations7 (DA) allow us to bypass the
difficulty of having to find the explicit expression of the Casimirs.
DA restricts the variations to be those generated by the noncanonical
Poisson brackets. This ensures that kinematical constraints are
satisfied. The first order DA variations are:

δρda = ∇ · (ρg1) , δvda = ∇g3 + s∇g2 +(∇×v)×g1 +B× (∇×g4)/ρ

δ sda = g1 ·∇s , δBda = ∇× (B×g1) ,

with g1, g2, g3, and g4 arbitrary. The variation of the Hamiltonian gives

δHda =
∫

dx
[
g1 ·
(
ρv× (∇×v)−ρ∇|v|2/2−ρ∇h+ρT ∇s+ j×B

)
−g2∇ · (ρsv)−g3∇ · (ρv)+g4 ·∇× (v×B)

]
= 0 ,

The vanishing of the terms multiplying the independent quantities g1,
g2, g3, and g4 gives the Eulerian equilibrium equations.

7P. J. Morrison and D. Pfirsch, Phys. Rev. A 40, 3898 (1989)



Non static Lagrangian equilibria

Eulerian equilibria with flows are not Lagrangian equilibria. To treat
equilibria that are not static we use a time dependent relabelling
transformation8 a = A(b, t), with the inverse b =B(a, t), which gives
rise to the new dynamical variables and non separable Hamiltonian

Π(b, t) = Jπ(a, t) , Q(b, t) = q(a, t) ,

H̃[Q,Π] = H−
∫

dbΠ · (V ·∇bQ) = K +H f +W

=
∫

db
[

Πi Πi

2ρ̃0
−ΠiV j ∂Qi

∂b j + ρ̃0 U
(
s̃0, ρ̃0/J̃

)
+

∂Qi

∂bk
∂Qi

∂b`
B̃k

0B̃`
0

8π J̃

]
K is the kinetic energy, H f is due to the relabelling,
W is the sum of the internal and magnetic field energies,
V(b, t) = Ḃ◦B−1 = Ḃ(B(b, t), t) , is the velocity of the label,
∇b = ∂/∂b, J= det(∂ai/∂b j), J̃ = det(∂Qi/∂b j) = JJ,
ρ̃0/J̃ = ρ0/J, s̃0(b, t) = s0(A(b, t)), Bi(x, t) = [∂Qi/∂b j] [B̃0 j/J̃]|b=Q−1(x,t)

8T. Andreussi, P. J. Morrison, and F. Pegoraro, Phys. Plasmas 22, 039903 (2015)



Non static Lagrangian equilibria: relabelling

The extremization of Hamiltonians give equilibrium equations.
For the Hamiltonian H[q,π] this gives static equilibria,
from the Hamiltonian H̃[Q,Π] in relabelled variables one obtains
stationary equilibria.
Relabelling allows us to express stationary equilibria in terms of
Lagrangian variables, which would ordinarily be time dependent, as
time-independent orbits with moving labels.
The equilibrium equations are (index e)

0 = ∂tQe = Πe/ρ̃0−Ve ·∇bQe 0 = ∂tΠe =−∇b · (Ve⊗Πe)+ Fe ,

where Fe comes from the W part of the Hamiltonian.

Using b = Qe(b) =Be(a, t) and V(b, t) = ve(b), where ve(b) denotes
an Eulerian equilibrium state and setting b = x we recover the usual
stationary equilibrium equation ∇ · (ρeveve) = Fe , where ρe(x) is the
usual equilibrium density.



Energy Casimir stability: translational symmetry

For MHD equilibria that satisfy δF= 0 a sufficient condition for
stability follows if the second variation δ 2F can be shown to be
positive definite.

For perturbations invariant along z, δ 2F can be put into the form

δ
2F[Ze;δZs] =

∫
dx
[
a1 |δS|2+a2 (δQ)2+a3(δRz)

2+a4 |δR⊥|2+a5 (δψ)2
]
,

where (δS,δR,δQ,δψ) are linear combinations of (δv,δB,δρ,δψ).

The coefficients ai depend on space through the equilibrium density,
Alfvén and sound velocity c2

a = B2/(4πρ) and c2
s = ∂ p/∂ρ and the

poloidal Alfvén Mach number M2 = 4πF 2/ρ.



Energy Casimir stability: translational symmetry

Extremizing over all variables except δψ and back substituting

δ
2F[Ze;δψ] =

∫
dx
[

b1 |∇δψ|2 +b2 (δψ)2 +b3
∣∣eψ ×∇δψ

∣∣2 ] ,
with eψ = ∇ψ/|∇ψ|

b1 =
1−M 2

4π

c2
s −M 2

(
c2

s + c2
a
)

c2
s −M2 (c2

s + c2
a)+

M 4

4πρ
|∇ψ|2

,

b2 = ∇ ·
[

∂

∂ψ

(
M 2

4π

)
∇ψ

]
− ∂ 2

∂ψ2

(
p+

B2
z

8π
+

2

4π
|∇ψ|2

)
,

b3 =
1−M 2

4π
−b1 .

and M 2 = 4πF 2/ρ < 1 has been assumed.



Lagrangian stability

Expand Q = Qe(b, t)+η(b, t) , Π = Πe(b, t)+πη(b, t) , and calculate
the second variation of the Hamiltonian in terms of the relabelled
canonically conjugate variables (η ,πη)

δ
2Hla [Ze;η ,πη ] =

1
2

∫
dx
[

1
ρe

∣∣πη −ρeve ·∇η
∣∣2 +η ·Ve ·η

]
,

which depends on the time independent equilibrium quantities
Ze = (ρe,se,ve,Be), the operator Ve has no explicit time dependence.

δ
2Wla [Ze;η ] =

1
2

∫
dx η ·Ve ·η =

1
2

∫
dx
[
ρe (ve ·∇ve) · (η ·∇η)−ρe |ve ·∇η |2

]
+δ

2W [Ze;η ] ,

is identical to the functional obtained by Frieman and Rotenberg.



Lagrangian stability

The Hamilton equations for πη and η give

ρe
(
∂

2
η/∂ t2)+2ρeve ·∇(∂η/∂ t) = Fe,

with

Fe (η) = ∇ · (ρeηve ·∇ve−ρeveve ·∇η)+

∇ [ρe(∂ pe/∂ρe)∇ ·η +η ·∇pe]+[Be ·∇δB+δB ·∇Be−∇(Be ·δB)]/(4π).

Due to the arbitrariness of πη which does not contribute to δ 2Wla,
the quadratic term

∣∣πη −ρeve ·∇η
∣∣2 in the integrand can be put equal

to zero and a sufficient condition for stability is given by δ 2Wla > 0 for
any perturbation η .



Lagrangian stability

The term δ 2W can be written in the standard way9

δ
2W [Ze;η ] =

1
2

∫
dx
[

ρe
∂ pe

∂ρe
(∇ ·η)2 +(∇ ·η)(∇pe ·η)+

|δB|2

4π
+Je×η ·δB

]
,

where 4πJe = ∇×Be is the equilibrium current and δB = ∇× (η×Be) .

• The first order Eulerian perturbations induced by the Lagrangian
variation written in terms of the displacement η :

δρla =−∇ · (ρeη) , δ sla =−η ·∇se

δvla = πη/ρe−η ·∇ve = ∂η/∂ t +ve ·∇η−η ·∇ve

δBla =−∇× (Be×η)

where δ sla can be replaced by the pressure perturbation,
δ pla =−γ pe∇ ·η−η ·∇pe, that is often used.

9 I. B. Bernstein, E. A. Frieman, M. D. Kruskal, and R. M. Kulsrud, Proc. R. Soc. London, Ser. A 244, 17 (1958)



Dynamical accessible stability

Dynamically accessible stability is assessed by expanding the
Hamiltonian expressed in Eulerian variables to second order using
the dynamically accessible constraints to this order:

δ
2Hda [Ze;g] =

∫
dx ρ

∣∣δvda−g1 ·∇v+v ·∇g1
∣∣2 +δ

2Wla [g1] .

If δvda = ∇g3 + s∇g2+(∇×v)×g1+B× (∇×g4)/ρ were
independent and arbitrary we could use it to nullify the first term.
Then setting g1 =−η , we would see that dynamically accessible
stability is identical to Lagrangian stability.

However in general there is not sufficient freedom in the
generating functions to cancel the positive definite first term10

[solvability condition].

10see also E. Hameiri, Phys. Plasmas 10, 2643 (2003), Phys. Plasmas 11, 3423 (2004)



Comparison between the three different criteria

Because different constraints are imposed, stability conditions for
dissipationless fluids and magnetofluids take different forms when
derived within the Lagrangian, Eulerian (energy-Casimir), or
dynamical accessible frameworks.
We obtained three quadratic energy expressions which can be written
in terms of the Eulerian perturbation variables

P= {δρ,δv,δ s,δB} .

Different perturbations are associated with the three expressions
and, we recall, can be written as

δρla =−∇ · (ρη)

δvla = ∂η

∂ t +v ·∇η−η ·∇v
δ sla =−η ·∇s
δBla =−∇× (B×η)


δρec

δvec

δ sec

δBec


δρda =−∇ · (ρg1)

δvda = X+v ·∇g1−g1 ·∇v
δ sda =−g1 ·∇s
δBda =−∇× (B×g1)

where X = 2(v ·∇)g1 +v× (∇×g1)+ s∇g2 +∇g3 +
1
ρ

B× (∇×g4)



Comparison between the three different criteria

In the case of the Lagrangian energy, the set of perturbations Pla are
constrained, while for the energy-Casimir expression the
perturbations Pec are entirely unconstrained provided they satisfy the
translation symmetry we have assumed.
The dynamically accessible perturbations are constrained.
Thus the following inclusion applies

Pda ⊂Pla ⊂Pec ,

which leads to the conclusion

stabec⇒ stabla⇒ stabda ,

Dynamically accessible stability is the most limited because its
perturbations are the most constrained, while energy-Casimir stability
is the most general, when it exists, for its perturbations are not
constrained at all.



Explicit comparison in the case of a rigid rotating
isothermal configuration

We use cylindrical coordinates (r,φ ,z) and consider plasma
equilibrium configurations where all equilibrium quantities depend
only on the radial coordinate r:

B = Bz(r)ẑ+Bφ (r)φ̂ , v = vz(r)ẑ+ vφ (r)φ̂ ,

ρ = ρ(r), s = s(r), Bφ = φ̂ ·∇ψ× ẑ =−dψ(r)
dr

.

Generalized Grad-Shafranov equation for the flux function ψ(r)

1
r

d
dr

(
1−M 2

4π
rBφ

)
− 1

ψr

d
dr

(
p+

B2
z

8π

)
+

d
dr

(
M 2

4π
Bφ

)
= 0,

where
M (r) =

[
4πρ(r)v2

φ (r)/B2
φ (r)

]1/2

is the poloidal Alfvèn Mach number, vz(r) does not appear in GGS
and will be set equal to zero.



Explicit comparison in the case of a rigidly rotating,
isothermal, uniform current configuration

Define a dimensionless radius r and use dimensionless units.
Set Bz(r) = Bz , Bφ (r) = B0r, and vφ (r) = Ωr with Bz,B0,Ω constants.
Treat GGS as an equation for p(r). Since the plasma is isothermal
the relationship between p(r) and ρ(r) is linear.˙ One obtains a
one-parameter family of equilibria with w = Ωr0/cs (w2/2 < 1)

p̂(r) =
2

w2

[
1−
(

1− w2

2

)
exp
(

w2r2

2

)]
,

cs sound velocity, p̂(0) = 1, p̂(r̄) = 0 for r̄2 =−(2/w2) ln(1−w2/2).
For w→ 0 it reduces to the standard parabolic pinch with r̄ = 1 and
p̂(r) = 1− r2, while for w2→ 2 we have r̄ = ∞ and p̂(r)≡ 1.
A uniform Bz field does not alter these equilibrium configurations but
affects their stability.



Explicit comparison in the case of a rigidly rotating,
isothermal, uniform current configuration

We performed11 an analytical comparison of the stability boundaries
in the w, b̂ = Bz/B0 plane for translationally invariant perturbations
illustrating the different steps in the procedure including the derivation
of the equilibrium from the first variation of the Hamiltonian in the
three different formulations and the explicit implementation of the time
dependent relabelling.

• The Lagrangian and the dynamically accessible approaches lead to
equivalent conditions.
The constraints obeyed by the dynamically accessible perturbations
in the presence of flows lead to an additional stabilizing term that
cannot be made to vanish for azimuthally symmetric perturbations.
This term does not modify the stability analysis since azimuthally
symmetric perturbations are stable even within the Lagrangian
framework. For more general equilibria this need not be the case.

11T. Andreussi, P.J. Morrison, F. Pegoraro, Phys. Plasmas, 23, 102112 (2016).



Explicit comparison in the case of a rigidly rotating,
isothermal, uniform current configuration

The minimization of δ 2Wla leads to the study of the positivity of a 3×3
matrix12 function of the equilibrium quantities for |m|= 1
perturbations.
A necessary and sufficient condition for the positivity of this matrix is
provided by the Sylvester criterion which yields w2 < 1/2 for Bz = 0
and w2B2

z < 1 for Bz 6= 0 and w2→ 0 and B2
z/B0 < 1/3, for w2→ 1/2− .

A partial minimization procedure with respect to ηφ (to ηz and ηφ for
Bz 6= 0) leads to less restrictive conditions: w2 . 0.62 for Bz = 0 and
w2 . 0.46 choosing, e.g., Bz/B0 = 1.
Even less restrictive conditions could be found by solving the
Euler-Lagrange equation for ηr obtained via variation of the resulting
“reduced” δ 2W̃la subject to the constraint of

∫
rdr |rηr|2.

Such a procedure leads to an eigenvalue equation that can be
searched for the lowest eigenvalue.

12A 4×4 matrix for Bz 6= 0 as ηz is no longer decoupled



Explicit comparison in the case of a rigidly rotating,
isothermal, uniform current configuration

Extremization of the energy-Casimir functional over all variables
except δψ leads to sufficient stability bounds on w2 that, similarly to
the Lagrangian case, become stricter as B2

z increases.

These bounds are in general more restrictive than those found within
the Lagrangian framework, as shown, e.g., by considering again
B2

z = 1, in which case we find w2 . 0.31.

Sharper stability conditions could be obtained by solving the
Euler-Lagrange equation associated with this “reduced ”
energy-Casimir functional subject to a normalization constraint on δψ.



Conclusions

The methods described in this presentation for the three approaches
are of general utility – they apply to all important plasma models,
kinetic as well as fluid, when dissipation is neglected. In fact, the
approaches were compared13 for the Vlasov and guiding-center
kinetic equations including a dynamically accessibly calculation in this
kinetic context.

Given the large amount of recent progress on extended magnetofluid
models a great many stability calculations like the ones described
here are possible.

Finally note that the time dependent relabelling does not require that
the configuration be stationary in Eulerian variables and thus can be
applied to the time evolution of any ideal MHD configuration in order
to study its orbital stability.

13P. J. Morrison and D. Pfirsch, Phys. Rev. A 40, 3898 (1989) & Phys. Fluids B 2, 1105 (1990).
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Energy Casimir - second variation- helical symmetry



Circulation Integral

Consider the variation of the circulation integral Γ =
∮

c v ·dx on a
fixed closed contour c for an equilibrium with ve ≡ 0 and Be 6= 0.
A general Lagrangian variation δvla can generate any amount
of circulation. For a dynamically accessible variation,

δΓ =
∮

c
δvda ·dx =

∮
c
s∇g2 ·dx+

∮
c
(∇×g4) · (dx×B)/ρ

If c is a closed magnetic field line dx ‖ B and B ·∇s = 0 along c

δΓB =
∮

c
s∇g2 ·dx =

∮
c
(∇(sg2)−g2∇s) ·dx =−

∮
c
g2∇s ·dx = 0 .

If instead c is taken at constant s, and B ·∇s 6= 0 along c,

δΓs =
∮

c
(∇×g4) · (dx×B)/ρ 6= 0 (1)



In silico studies

A number of numerical magnetohydrodynamic (MHD) codes have been
developed for modeling plasma flows in astrophysics.
Some of the most well-known codes are ZEUS (Stone and Norman, 1992a),
FLASH (Fryxell, 2000), PLUTO (Mignone et al., 2007), and ATHENA (Stone
et al., 2008; Skinner and Ostriker, 2010).
A number of different numerical algorithms have also been developed for the
numerical integration of the MHD equations including different approaches for
the spatial and temporal approximations (Brio and Wu, 1988; Cockburn et al.,
1989; Dai and Woodward, 1994a; 1994b; Ryu et al., 1995; Balsara and
Spicer, 1999; Gurski, 2004; Ustyugov, 2009).
The linear MHD stability code MINERVA investigates the toroidal rotation
effect on the stability of ideal MHD modes in tokamak plasmas. This code
solves the Frieman-Rotenberg equations.



Non canonical Poisson brackets for helical symmetry



Hamiltonian symmetries



G-operator



Shear stabilization?
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