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The “equilibrium and stability” framework

The concepts of equilibrium and of stability are often adopted in the
description of a plasma configuration and of its dynamics.

It may not always be obvious how to apply these concepts
operationally to conditions where the identification of an underlying
equilibrium state is rather arbitrary, see e.g., the case of a fully
developed turbulence.

Nevertheless they represent a very important logical framework
within which one can constrain the bewildering richness of the
plasma dynamics.

A meaningful definition of equilibria requires that we restrict the
dynamics under study to a selected range of spatial and temporal
scales. In this perspective magnetohydrodynamic equilibria can play
an important role in providing a first step, even if fairly incomplete, in
the investigation of the behaviour of magnetized plasma in the
laboratory, in space and in the universe.



The “equilibrium and stability” framework

e Besides being in general a useful descriptive tool, the concept of
MHD equilibrium is very relevant to the study of externally constrained
plasma configurations, such as most fusion plasmas in the laboratory.

It can also be usefully applied to the study of space plasmas such as
e.g. planetary magnetospheres, stellar and galactic discs, accretion
discs' on compact astrophysical objects, etc.

For these latter cases the role of the plasma flows is of paramount
importance and thus we are led to distinguish between static
equilibria (without flows) and stationary equilibria (with flows).

Note that the role of plasma flows, in particular of plasma rotation, is
now fully recognized also for (toroidal) plasma configurations in the
laboratory, e.g. as a possible source of improved energy transport.

1 see e.g. the Magnetorotational instability (Velikhov-Chandrasekhar instability or Balbus-Hawley instability)
of lonf ago: Stability of an ideally conducting liquid flowing between cylinders rotating in a magnetic field,
E.P. Velikhov - Sov. Phys. JETP, 1959



An extended framework

The generalization to equilibria with flows includes configurations
where the properties, e.g. the velocity vector, of a given plasma
element are not constant in time.

It may thus appear natural that some of the methods? that are applied
to study the stability of stationary equilibria can find application even

in cases where no concept of equilibrium is involved (e.g. in the study
of the orbital stability of the time evolution of a plasma configuration).

In fact, different definitions of stability can be given with, in general,
different mathematical and physical content.

2such as the so-called time-dependent relabelling which | will address
later in this presentation



Stability of equilibrium points of a dynamical system
with a finite number of degrees of freedom.

Generally spaeking, in a dynamical system stability concerns the
behaviour of solutions near equilibrium points.

An equilibrium point is stable if solutions starting close toitatr =0
remain close to it for all later times.
If these solutions are determined from the linearized dynamics, the
equilibrium point is linearly stable.

Equilibria that are unstable under nonlinear dynamics, yet stable
under linear dynamics, are said to be nonlinearly unstable®.

A linear system is spectrally stable if, assuming a time behaviour of
the form exp (y¢) and solving for y, there are no solutions with Rey > 0
Linear stability implies spectral stability but the converse is not true.

3Equi|ibria can be linearly unstable and nonlinearly stable



Stability of equilibrium points of a dynamical system
with an infinite number of degrees of freedom.

In a dynamical system with an infinite number of degrees of freedom
similar definitions apply with “equilibrium configuration” taking the
place of “equilibrium point” and functional derivatives that of partial
derivatives.

Global quantities such as, e.g., the total energy of a
plasma configuration will involve functionals in the form of space
integrals of local functions such as the plasma energy density.

Mathematical results that can be rigorously proven for a system
with a finite number of degrees of freedom turn out to be useful also
in the infinite number case: the well known MHD stability 6 % method
is in essence the infinite-degree-of-freedom version of Lagrange’s
theorem (1788), while for Hamiltonian systems that are not of the
separable form another old theorem, Dirichlet’s theorem (1846), gives
a sufficient condition for stability.



Useful formulae (taken from PJ Morrison notes)

Functional Differentiation

First variation of function:
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Ideal MHD stability of static plasma equilibria

Stability criteria can be obtained by constructing quadratic forms
starting from the linearized MHD equations. This approach requires
an explicit proof that the linear operator from which the quadratic form
is constructed is self-adjoint over the linear space of functions inside
which solutions of the linearized equations are searched for.

This is for example the method adopted for the case of static
equilibria in the famous article I. B. Bernstein, E. A. Frieman, M. D.
Kruskal, R. M. Kulsrud, Proceedings of the Royal Society of London, Series
A, Mathematical and Physical Sciences, 244, 17 (1958),

An energy principle for hydromagnetic stability problems ,  OW{EE}

By I. B. BErNsTEIN, E. A. FriemaN, M. D. KrRusgaAL AND R. M. KULSRUD K{g, ’é}
Project Matterhorn, Princeton. University

(Communicated by S. Chandrasekhar, F.R.S.—Received 18 April 1957—
Revised 26 August 1957)



Ideal MHD stability of static plasma equilibria

Conversely, stability criteria can be simply obtained as a
consequence of energy conservation.

e The full, i.e., nonlinear, ideal MHD equations, as | will mention
later, are Hamiltonian and thus possess a conserved energy.

From the full Hamiltonian functional a conserved quadratic
functional can be derived in the linear limit. This procedure ensures
automatically that the linearized force operator is self-adjoint.

This is essentially the approach adopted by W. A. Newcomb,
“Lagrangian and Hamiltonian methods in magnetohydrodynamics,’
Nuclear Fusion Supplement, 2, 451 (1962).

) ‘NUCLEAR FUSION: 1862 SUPPLEMENT, PART 2
LAGRANGIAR AND HAMILTONIAN METHODS IN MAGNETOHYDRODYNAMICS* .

WiLiam A. NEWCOMB
LAWRENCE RADIATION LaABORATORY, UNIVEESITY OF CALIFORNIA

LIvERMORE, CALIFORNIA, UNITED STATES OF AMERICA



Ideal MHD stability of plasma equilibria

In the case of static equilibria these two methods lead to linear
stability criteria that are both sufficient and necessary.

An extension of the 6W method to plasma with flows was provided by
E. Frieman M. Rotenberg, Rev. Mod. Phys., 32, 898 (1960) by
exploiting the concept of “equilibrium trajectory”, by constructing
quadratic forms in the displacement & with respect to this trajectory
from which they can derive sufficient stability conditions.

PERTURBED oy . .
TRAJECTORY The position vector r of a fluid element which at t=0
] was at 1o is given by

EQUILIBRIUM

TRAJECTORY /_\» r=r+£(r'1), (12)
where r° describes the equilibrium trajectory and £(r%¢)

T z° describes the displacement from equilibrium. We choose

£ to be a function of 1°¢ rather than a function of ro¢

so that the equilibrium quantities are time independent

F1c. 1. Definitions of 1 and (x%,). The vector r, represents and solutions of the form et are Dermitted.
the original position of the fluid elements. Note. In Figs. 1 and 2,
vectors are indicated by a bar beneath the letter.




Ideal MHD stability of plasma equilibria

In the rest of my presentation | will discuss the linear stability of ideal
MHD equilibria with flows.

The approach I will use is based on the Hamiltonian nature of the
ideal MHD equations.

Both a Lagrangian and an Eulerian formulation will be
considered and, as a consequence of the different constraints that
will be imposed on the perturbations, different sufficient stability
conditions will be derived.

A general “inclusion order” between the different sufficient

conditions obtained will be discussed.

| will mainly refer to the following string of articles
T. Andreussi, P. J. Morrison, F. Pegoraro,
Phys. Plasmas 20, 092104 (2013),
Phys. Plasmas 22, 039903 (2015),
Phys. Plasmas 23, 102112 (2016).



MHD stability of plasmas with flows

e In order to study the stability of magnetohydrodynamic (MHD)
plasma equilibria with stationary flows requires an approach that
generalizes the § 7 approach that is used for static configurations.
An obvious difficulty is mentioned by E. Frieman and M. Rotenberg:
the presence of a velocity field in the equilibrium state may lead to the
phenomenon of overstability. The manifestation of this in the mathe-
matical formalism is the appearance of non-Hermitian operators.”

e The generalization that overcomes this difficulty is best
performed by looking at the functional 67 not as a quadratic form
derived from the linearized MHD equations, but as the second order
variation of the Hamiltonian functional 7# that describes the full
dynamics of a dissipationless MHD plasma.

In this approach the Hermitian property follows automatically.



Eulerian and Lagrangian variables

e Asin the case of a standard fluid the MHD dynamics can be
described either in Eulerian or in Lagrangian variables.

e Lagrangian variables describe the dynamics of a plasma fluid
element whereas Eulerian variables describe the evolution in time of
the plasma quantities at a fixed spatial position. For an extensive
presentation of the Hamiltonian formulation of the MHD plasma
dynamics in Lagrangian and in Eulerian coordinates see Morrison®.
e The second order variation of the plasma Hamiltonian can be
computed either in Lagrangian or in Eulerian variables.

In the presence of stationary equilibrium flows these two procedures
follow somewhat different paths.

The aim of this presentation is to illustrate these differences and to
exemplify them in the simple case of a rotating pinch configuration.

4P. J. Morrison, Rev. Mod. Phys., 70 , 467 (1998).



Hamiltonian of an MHD plasma in Eulerian variables

e The MHD Hamiltonian in Eulerian variables takes the form

2
H= /dx[ V2 pU(s,p) + 'Jt ,

where p(x,?) is the density, v(x.r) the fluid velocity, U = U (s,p) is the
internal energy per unit mass, s(x,7) the entropy per unit mass and
B(x.t) the magnetic field.

The pressure is given by p = p2dU /dp and the temperature by

T = JU/ds. A closure condition for U (s, p) is assumed.

e The variables Z = p,v,s,B in terms of which the Hamiltonian
above is expressed are not canonical and their equations of
motion, i.e., the standard equations of ideal MHD, are obtained
by defining generalized noncanonical Poisson brackets such

that
0z

ot _{ZH}Z



Non Canonical coordinates - finite dimensions

Noncanonical Coordinates:

i R [2%, H], [A,B] = %Jij(z)a—g
ozJ azt ozl

Poisson Bracket Properties:

antisymmetry —  [A, B] = —[B, 4],

Jacobi identity —  [A,[B,Cl1+ [B,[C,A]l+ [C,[A,B]] =0
G. Darboux: detJ # 0 — J — J. Canonical Coordinates

Sophus Lie: detJ =0 — Canonical Coordinates plus Casimirs



Non Canonical coordinates: free rigid body

daf @
1 1) [ﬁg]z_fijkfka_;ia_z-

3
c=12 72,
i=1
which satisfies
[C.fl=0, V¥ f.

A dot means time derivative



Noncanonical Poisson brackets: Casimirs

e Contrary to the canonical Poisson brackets that involve canonical
variables, the noncanonical Poisson brackets are degenerate.

This degeneracy gives rise to Casimir invariants®, i.e. to special

functionals C that satisfy {C,F} =0 for all functionals F.
The general form of noncanonical Poisson brackets is given by

" O0F _ 6G

where F and G are two functionals and J is an anti-selfadjoint
operator that must satisfy the Jacobi identity

{F,{G,K}}+{G,{K,F}}+{K,{F,G}} =0.

The Casimir invariance implies that the system evolution is restricted
to subdomains (foliations) of the space of Eulerian variables Z

5Magnetic helicity and cross helicity belong to such a class of invariants



Noncanonical Poisson brackets for MHD

OF _ 6G
{F7G}Z:/dx67jga Z:pvvvszv

(F,.G}, = —/ {F,,V-Gv —G,V-F,
\4

Vxv

(1) (L)l
B Kv;p) G- (V;GV) .FB} }d%

where F and G are two generic functionals and subscripts indicate
functional derivatives.

Morrison P J, Greene J M, Phys. Rev. Lett. 45 790 (1980) & Phys. Rev. Lett. 48 569 (1982). They are obtained

Vs
'(GVXFV) +?'(FS‘GV_GSFV)

from the canonical Lagrangian brackets using the transformation that maps Lagrangian into Eulerian variables



Noncanonical MHD Poisson brackets:
Eulerian variables

Using
2z
W - {Z7H}Z
with
2 [B”
H= /dx{ VI*+pU(s,p)+ o |

and the brackets defined above we recover the MHD equations

PV (pv).
g‘;:—V<|‘72|2+U+p>—(va)xv—&-TVs—i-4;p(V><B)><B,
%z—v-vx

%—?:—VX(BXV).



MHD Hamiltonian in Lagrangian variables

e Let q be the Lagrangian variable that determines the position of a
fluid element and suppose that q has a canonical conjugate 7.

Both are labelled by a continuum variable a, i.e., the dynamical
variables of the Hamiltonian description are the pair q(a,7), w(a,7).

It is common to assume that the fluid element described by q is labelled by its
initial condition, q(0,t) = a, but this is not necessary.

The map from the Lagrangian variables (q, ) to the Eulerian
variables Z includes the mass, entropy and magnetic flux
conservation laws and is given by

_ pofa) _
P (XJ) o J(aJ) a=q~(x,) , S(th) - SO(a)‘a:qil(XJ)’
Vi(X t): Tci(aJ) Bi(X l): aqi(a7t) BOj(a)
7 po(a) a=‘l’1(X~I)7 7 daj J(a) a=q~!(x/)

where J = |dq'/da’| and ( indicates that these functions are attributes
of the Lagrangian fluid elements and thus depend on the label a.



MHD Hamiltonian in Lagrangian variables

e The Hamiltonian H[q, 7] is

dq; 9q' BB,
(s0,p0/J) + o 24 070}

dak da’ 8mJ

and the equations of motion are

O0H : : O0H
ﬂl:{niaH}zi?qi and ql:{qlvH}:g

where * *’ means derivative with respect to ¢ at fixed label a and the
Poisson bracket {-,-} is canonical and given by

O0F 6G O6G O6F
(.G} = [ da (5<‘5m_5q"5m>'



Eulerian equilibria. The energy Casimir functional

¢ In the Hamiltonian context equilibrium configurations are extremal
points of the MHD Hamiltonian using the (known) Casimir invariants
as constraints®. Different choices of the Casimir invariants lead to
different equilibria. We consider the energy-Casimir functional

§=H+%LC;

and calculate its first variation.

In general it is not easy to find explicit expressions for the Casimir
invariants in such a way that sufficiently general families of equilibria
that include plasma flows can be described. Thus the energy
Casimir method is generally applied to the search of configurations
that are assumed to have geometrical symmetries.

See T. Andreussi, P. J. Morrison, and F. Pegoraro, Plasma Phys. Control. Fusion 52, 055001(2010),

& Phys. Plasmas 19, 2102 (2012), & Phys. Plasmas 20, 092104 (2013), & Phys. Plasmas 22, 039903 (2015),
& Phys. Plasmas 23, 102112 (2016)

6In order to avoid the trivial null extremum



Eulerian equilibria. The energy Casimir functional

For an axisymmetric and translationally invariant configuration the
first variation leads to the generalized 1-D Grad-Shafranov equation

1 d A Z?\ dy , ,
- — T —B;
4rr dr [(1 p ) dr } =p1S =p S 7

—pv. 9 — (v¢B¢ -i-Vsz) T,

where now a prime denotes differentiation with respect to the flux
function y (here By = Vy x Vz) and specific equilibrium solutions
are defined by the choice of the Casimir functions .%, ¢, #,% and
7 as functions of y

FBy = pvy, FB.:+pY =pv;,
B
H+Fv, = ﬁ, /—i—vzg:vf/Z—i—vé/Z—i—cfln(p/po).

and all terms must be expressed in terms of y.



Dynamically accessible equilibria

Dynamically accessible variations’ (DA) allow us to bypass the
difficulty of having to find the explicit expression of the Casimirs.

DA restricts the variations to be those generated by the noncanonical
Poisson brackets. This ensures that kinematical constraints are
satisfied. The first order DA variations are:

8psa=V-(pg1), OVaa=Vg3+sVgr+(Vxv)xg +Bx(Vxgy)/p
O854a = g1 Vs, 0B, =Vx(Bxg),
with g1, g2, g3, and g4 arbitrary. The variation of the Hamiltonian gives

SHyy — /dx (21 (pv x (Vx¥) — pVI¥[2/2 = pVh+pTVs+ x B)
g2V (psv) — g3V - (pV) +84-V x (vx B)| =0,

The vanishing of the terms multiplying the independent quantities g,

22, g3, and g4 gives the Eulerian equilibrium equations.
7

P. J. Morrison and D. Pfirsch, Phys. Rev. A 40, 3898 (1989)



Non static Lagrangian equilibria

Eulerian equilibria with flows are not Lagrangian equilibria. To treat
equilibria that are not static we use a time dependent relabelling
transformation® a = 24(b,7), with the inverse b = 9(a, ), which gives
rise to the new dynamical variables and non separable Hamiltonian

H(b’t)::jn(a’t)’ Q(b’t):q(avt)v
I:I[Q,H} :H—/de~(V~VbQ) =K+Hy+W

H H‘ 20! 00; 00" BEBL
7/db STV R0l (o Pol) + Gk gy ﬁ}
K is the klnetlc energy, Hy is due to the relabelling,
W is the sum of the internal and magnetic field energies,
V(b,1) =B oB~! =B(B(b,1),1), is the velocity of the label,
V,=0/db, J=det(da'/db’), J=det(dQ'/db)) =J3,
Po/J = po/J, So(b,1) =so(A(b,1)), B(x,r)=[0Q"/b;][Bo;/lp—q-1(xs)

8

T. Andreussi, P. J. Morrison, and F. Pegoraro, Phys. Plasmas 22, 039903 (2015)



Non static Lagrangian equilibria: relabelling

The extremization of Hamiltonians give equilibrium equations.

For the Hamiltonian H{q, 7] this gives static equilibria,

from the Hamiltonian A[Q,I1] in relabelled variables one obtains
stationary equilibria.

Relabelling allows us to express stationary equilibria in terms of
Lagrangian variables, which would ordinarily be time dependent, as
time-independent orbits with moving labels.

The equilibrium equations are (index ,)

Ozath:He/ﬁO_Ve'ver Ozatne:_vb'(ve®ne)+Fm
where F, comes from the W part of the Hamiltonian.

Usingb = Q.(b) = B.(a,r) and V(b,r) = v.(b), where v,(b) denotes
an Eulerian equilibrium state and setting b = x we recover the usual
stationary equilibrium equation V - (p.v.v.) = F., where p.(x) is the
usual equilibrium density.



Energy Casimir stability: translational symmetry

For MHD equilibria that satisfy §F = 0 a sufficient condition for
stability follows if the second variation 5> can be shown to be
positive definite.

For perturbations invariant along z, 2§ can be put into the form
52§(2.:52,) — / ax[ar |88+ (8Q) +as (8R-)*+as |5R [P +-as (5y)* |

where (6S,0R,80,6y) are linear combinations of (6v,8B,dp,dvy).

The coefficients a; depend on space through the equilibrium density,
Alfvén and sound velocity ¢2 = B?/ (4np) and ¢? = dp/dp and the
poloidal Alfvén Mach number M? = 47.%2/p.



Energy Casimir stability: translational symmetry

Extremizing over all variables except 6 y and back substituting
8231 Ze; 8y = /dx {bl IVSW|*+bs (8y)” +bs ey x vsqﬂ ,

with ey, = Vy/|Vy|

) 1 —.? 2= M (2 +c2)
1= 4 3
AT M2 (2 +2)+ 45|V

d (.M* 9? B 2 5
=75 (5 7] e (g or).

1 —.#?
by = —b.
3 P |

and .7” = 4.7 /p < 1 has been assumed.




Lagrangian stability

Expand Q = Q.(b.7) +n(b,r), I1=IL(b.7)+m,(b,r), and calculate
the second variation of the Hamiltonian in terms of the relabelled
canonically conjugate variables (n,7y)

5° H]a[Ze,T] ﬁn /dX[!ﬂn PeVe Vn} +1n-De- n]

which depends on the time independent equilibrium quantities
Z. = (Pe,Se, Ve, Be), the operator 20, has no explicit time dependence.

8" Wi [Ze:m] = /dxn‘lT n=
o
> [ ax[pe(ve-Vv0) - (n-V) — pulve- V] + W (ziim]

is identical to the functional obtained by Frieman and Rotenberg.



Lagrangian stability

The Hamilton equations for 7, and n give

pe (9°n/9t*) +2p.v. -V (dn/dt) = F,,
with

F.()=V-(p.NVe:VV,— peVeve - VN)+
V1pe(0pe/dp.)V-11+1-Vp,]+[B.-V6B+6B-VB,— V (B, -6B)]/(47).

Due to the arbitrariness of z;, which does not contribute to 5*Wi,,

the quadratic term |7 — p.v.-Vn |2 in the integrand can be put equal
to zero and a sufficient condition for stability is given by §°W;, > 0 for
any perturbation 7.



Lagrangian stability

The term §?W can be written in the standard way®

| 2

3 (Zan] = 3 [ p. 5 (7 )P+ (7 m) (Ve m) + 5 0, B,

where 4mJ, =V x B, is the equilibrium current and 6B =V x (n xB,).

e The first order Eulerian perturbations induced by the Lagrangian
variation written in terms of the displacement n:

8p13- = 7V(p£’n)a 551a =-n 'Vse
OVia =Ty /pe—N-VVe=0N/dt+Vv.- VN —10-Vyv,
0B, =-Vx (B, x1n)

where Jds), can be replaced by the pressure perturbation,
Opla = —ypr.V-1n—n-Vp,, thatis often used.

9I. B. Bernstein, E. A. Frieman, M. D. Kruskal, and R. M. Kulsrud, Proc. R. Soc. London, Ser. A 244,417 (1958)



Dynamical accessible stability

Dynamically accessible stability is assessed by expanding the
Hamiltonian expressed in Eulerian variables to second order using
the dynamically accessible constraints to this order:

8%Hy, | Ze; /dXP}(Sle g1 -Vv+tv: Vgl} +8°Wi [g1].-

If Ovga=Vgs+sVar+(Vxv)xg+Bx(Vxgs)/p were
independent and arbitrary we could use it to nullify the first term.
Then setting g, = —n, we would see that dynamically accessible
stability is identical to Lagrangian stability.

However in general there is not sufficient freedom in the
generating functions to cancel the positive definite first term?
[solvability condition).

1Osee also E. Hameiri, Phys. Plasmas 10, 2643 (2003), Phys. Plasmas 11, 3423 (2004)



Comparison between the three different criteria

Because different constraints are imposed, stability conditions for
dissipationless fluids and magnetofluids take different forms when
derived within the Lagrangian, Eulerian (energy-Casimir), or

dynamical accessible frameworks.
We obtained three quadratic energy expressions which can be written
in terms of the Eulerian perturbation variables

B = {5p,5v,5s,5B}.

Different perturbations are associated with the three expressions
and, we recall, can be written as

pn =-V-(p7n) Opec dpaa =-V-(pg1)

Sy, :%—?Jrv-ann-Vv OVec OVga =X+v-Vg —g-Vv
8s, =-1m-Vs O5ec 854a = —g1-Vs

6B, =-Vx(Bxn) 0B, 0By =-Vx(Bxgp)

where X =2(v-V)g, +vx(Vxg)+sVg +Vgs %BX(ngn



Comparison between the three different criteria

In the case of the Lagrangian energy, the set of perturbations 93, are
constrained, while for the energy-Casimir expression the
perturbations B, are entirely unconstrained provided they satisfy the
translation symmetry we have assumed.

The dynamically accessible perturbations are constrained.

Thus the following inclusion applies

‘Bda C qgla C ;Bec )
which leads to the conclusion
stab,. = stab, = stabgy,,

Dynamically accessible stability is the most limited because its
perturbations are the most constrained, while energy-Casimir stability
is the most general, when it exists, for its perturbations are not
constrained at all.



Explicit comparison in the case of a rigid rotating
isothermal configuration

We use cylindrical coordinates (r, ¢,z) and consider plasma
equilibrium configurations where all equilibrium quantities depend
only on the radial coordinate r:

B= Bz(r)i—FBq)(r)(f), v=v.(r)Z+v (r)(]A),

Generalized Grad-Shafranov equation for the flux function y(r)

1d [1—.#? 1 d B2 d (.#*?
Pl By | — — — _Z —( =—B,; | =
rdr( an "’) v, dr (p+87t>+dr(47r > %

where

1/2
A (r) = [dmp(r )3 (r) /B3 (r)]"
is the poloidal Alfvén Mach number, v,(r) does not appear in GGS
and will be set equal to zero.



Explicit comparison in the case of a rigidly rotating,
isothermal, uniform current configuration

Define a dimensionless radius r and use dimensionless units.

Set B.(r) = B, By(r) = Bor, and vy (r) = Qr with B;, By, Q constants.
Treat GGS as an equation for p(r).  Since the plasma is isothermal
the relationship between p(r) and p(r) is linear.” One obtains a
one-parameter family of equilibria with w = Qro/c, (w?/2 < 1)

-3 (-5) (7))

¢s sound velocity, p(0) =1, p(¥) =0 for 7 = —(2/w?)In (1 —w?/2).
For w — 0 it reduces to the standard parabolic pinch with 7 =1 and
p(r) =1—r%, while for w> — 2 we have 7 = and p(r) = 1.

A uniform B, field does not alter these equilibrium configurations but
affects their stability.




Explicit comparison in the case of a rigidly rotating,
isothermal, uniform current configuration

We performed'" an analytical comparison of the stability boundaries
in the w, b = B. /B plane for translationally invariant perturbations
illustrating the different steps in the procedure including the derivation
of the equilibrium from the first variation of the Hamiltonian in the
three different formulations and the explicit implementation of the time
dependent relabelling.

e The Lagrangian and the dynamically accessible approaches lead to
equivalent conditions.

The constraints obeyed by the dynamically accessible perturbations
in the presence of flows lead to an additional stabilizing term that
cannot be made to vanish for azimuthally symmetric perturbations.
This term does not modify the stability analysis since azimuthally
symmetric perturbations are stable even within the Lagrangian
framework. For more general equilibria this need not be the case.

11

T. Andreussi, P.J. Morrison, F. Pegoraro, Phys. Plasmas, 23, 102112 (2016).



Explicit comparison in the case of a rigidly rotating,
isothermal, uniform current configuration

The minimization of §2W,, leads to the study of the positivity of a 3 x 3
matrix'? function of the equiliorium quantities for |m| = 1
perturbations.

A necessary and sufficient condition for the positivity of this matrix is
provided by the Sylvester criterion which yields w”? < 1/2 for B, =0
and w?B? < 1 for B, # 0 and w? — 0 and B? /B, < 1/3, for w* — 1/2

A partial minimization procedure with respect to 1, (to . and n, for
B, # 0) leads to less restrictive conditions: w? < 0.62 for B. = 0 and
w? < 0.46 choosing, e.g., B,/By = 1.

Even less restrictive conditions could be found by solving the
Euler-Lagrange equation for n, obtained via variation of the resulting
“reduced” §°W;, subject to the constraint of [rdr|rn,|*.

Such a procedure leads to an eigenvalue equation that can be
searched for the lowest eigenvalue.

12 4 % 4 matrix for B, # 0 as 7 is no longer decoupled



Explicit comparison in the case of a rigidly rotating,
isothermal, uniform current configuration

Extremization of the energy-Casimir functional over all variables
except Sy leads to sufficient stability bounds on w? that, similarly to
the Lagrangian case, become stricter as B? increases.

These bounds are in general more restrictive than those found within
the Lagrangian framework, as shown, e.g., by considering again
B2 =1, in which case we find w? < 0.31.

Sharper stability conditions could be obtained by solving the
Euler-Lagrange equation associated with this “reduced ”
energy-Casimir functional subject to a normalization constraint on s y.



Conclusions

The methods described in this presentation for the three approaches
are of general utility — they apply to all important plasma models,
kinetic as well as fluid, when dissipation is neglected. In fact, the
approaches were compared'? for the Vlasov and guiding-center
kinetic equations including a dynamically accessibly calculation in this
kinetic context.

Given the large amount of recent progress on extended magnetofluid
models a great many stability calculations like the ones described
here are possible.

Finally note that the time dependent relabelling does not require that
the configuration be stationary in Eulerian variables and thus can be
applied to the time evolution of any ideal MHD configuration in order
to study its orbital stability.

13F’. J. Morrison and D. Pfirsch, Phys. Rev. A 40, 3898 (1989) & Phys. Fluids B2, 1105 (1990).
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Energy Casimir - second variation- helical symmetry
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Circulation Integral

Consider the variation of the circulation integral I'= §.v-dx on a
fixed closed contour ¢ for an equilibrium with v, = 0 and B, # 0.
A general Lagrangian variation dv;, can generate any amount
of circulation.  For a dynamically accessible variation,

6F:%6vda-dx:7{ng2-dx+j{(V><g4)‘(dx><B)/p

If ¢ is a closed magnetic field line dx || B and B- Vs =0 along ¢

8Ty = fsvgz.dx: f(V(sgz)—gZVs) -dx = —%gQVs'dx:O.

Cc Cc

If instead c is taken at constant s, and B- Vs # 0 along c,

6T, = (¥ x @) (dxx B)/p #0 (1)



In silico studies

A number of numerical magnetohydrodynamic (MHD) codes have been
developed for modeling plasma flows in astrophysics.

Some of the most well-known codes are ZEUS (Stone and Norman, 1992a),
FLASH (Fryxell, 2000), PLUTO (Mignone et al., 2007), and ATHENA (Stone
et al., 2008; Skinner and Ostriker, 2010).

A number of different numerical algorithms have also been developed for the
numerical integration of the MHD equations including different approaches for
the spatial and temporal approximations (Brio and Wu, 1988; Cockburn et al.,
1989; Dai and Woodward, 1994a; 1994b; Ryu et al., 1995; Balsara and
Spicer, 1999; Gurski, 2004; Ustyugov, 2009).

The linear MHD stability code MINERVA investigates the toroidal rotation
effect on the stability of ideal MHD modes in tokamak plasmas. This code
solves the Frieman-Rotenberg equations.



Non canonical Poisson brackets fo

Fp,=Fg-h, Fy=V-(Fgxkh), and
Fy = Fyh+ Fy,. (16)
In term of the variables Zs:= (p,M,,M;,0,y,B)), the

Poisson bracket of Eq. (3) transforms into the “symmetric”
MHD bracket given by

(7, Ghyw =~ 10(Fw. - V6, ~ G, - VF,)
+ My[Fm, - V(kGum,) — Gm, - V(kFu, )] /k
+ (K[]sin 2c)Myh - (Fm, x G, ) + ML
[(Fy, - V)G, — (Gm, - VIFu]
+a(Fm. - VGs — Gum, - VF,)
+ kBy[Fm, - V(Gg,/k) — Gm, - V(Fg,/k)]
+¥(Fu, - VGy — Gy, - VFy)
—W(FyV - Gm, —GyV - Fum.)
— (P[l]sin22)Vyr - (Fg,Gu. — Gp,Fy.)
+ Y((Gs,/k; kFus,) — [, /k, kG, }r,

an

where [F, G| := (VF x VG) - kh. Because this calculation is

The Poisson bracket of (3) can be rewritten in terms of
any complete set of variables—switching from one set to
another amounts to a change of coordinates. A convenient
form of the MHD Poisson bracket is obtained by using,
instead of the variables v and s, the density variables
M =pvando = ps. We let Z:= (p,M,q,B) denote the
new set. To transform from Z to Z, we use the functional
chain rule identities,

Fplys =Fplyms +V-Fm+5Fs, Fy=pFu, F;=pFg,
(10)

with Fg unchanged, to transform the Poisson bracket of (3)
into

(PG} == [ {o(P VG, — G- VF,)
.
+ M- [(Fm-V)Gu — (G - V)Fu]
+ o(Fm - VGy — Gy - VF,)
+ B [(Fm - V)Gy — (Gm - V)Fa]
+ B (VFy-Gp —VGy - Fg)}dr.  (11)

The bracket of (11) is the Lie-Poisson bracket (see Ref. 22),
i.e., a bracket linear in each variable, obtained in Ref. 16.

helical symmetry



Hamiltonian symmetries

Systems with symmetry possess other invariants, con-
stants of motion that commute with the particular
Hamiltonian (unlike Casimir invariants, which commute
with all Hamiltonians). Extremization of the energy with
these constants held fixed, which can be achieved by us-
ing Lagrange multipliers, yields relative equilibria, i.e.,
equilibria in frames of reference generated by the invari-
ants. For example, extremization of H+M - P, where P is
the momentum, gives a state that is uniformly translat-
ing at the velocity \. Alternatively, one can interpret the
extremal points obtained from extremizing the Hamil-
tonian at fixed invariants as being the equilibrium of
interest observed in a different frame of reference. If
there exists any frame of reference in which the energy
functional is definite, then both linear and, for finite sys-
tems, nonlinear instability are precluded. Further, one
can analyze the energy with the variations restricted to
lie within the surfaces defined by the invariants,

In general, if any com-
bination of known invariants |mphes the existence of a
family of compact invariant sets about an equilibrium,
then 1 that equilibrium is
nonlinearlv stable.
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G-operator

Stability of ideal MHD configurations. I. Realizing the generality of the ¥

operator
R. Keppens® and T. Demaerel®
Centre for M. ical Plasma-Astrophysics, KU Leuven, Celestij 2008, 3001 Heverlee, Belgium

(Received 1 September 2016; accepted 26 October 2016; published online 19 December 2016)

A field theoretical approach, applied to the time-reversible system described by the ideal
magnetohydrodynamic (MHD) equations, exposes the full generality of MHD spectral theory.
MHD spectral theory, which classified waves and instabilities of static or stationary, usually
axisymmetric or translationally symmetric configurations, actually govems the stability of flowing,
(self-)gravitating, single fluid descriptions of nonlinear, time-dependent idealized plasmas, and this
at any time during their nonlinear evolution. At the core of this theory is a self-adjoint operator %,
discovered by Frieman and Rotenberg [Rev. Mod. Phys. 32, 898 (1960)] in its application to
stationary (i.e., time-independent) plasma states. This Frieman-Rotenberg operator dictates the
acceleration identified by a Lagrangian displacement field &, which connects two ideal MHD states
in four-dimensional space-time that share initial conditions for density, entropy, and magnetic field.
The governing equation reads &&= %[¢], as first noted by Cotsaftis and Newcomb [Nucl. Fusion,
Suppl. Part 2, 447 and 451 (1962)]. The time derivatives at left are to be taken in the Lagrangian
way, i.e., moving with the flow v. Physically realizable displacements must have finite energy, cor-
responding to being square integrable in the Hilbert space of displacements equipped with an inner
product rule, for which the % operator is self-adjoint. The acceleration in the left-hand side features
the Doppler-Coriolis operator v+ V, which is known to become an antisymmetric operator when
restricting attention to stationary equilibria. Here, we present all derivations needed to get to these
insights and connect results throughout the literature. A first illustration elucidates what can happen
when self-gravity is incorporated and presents aspects that have been overlooked even in simple
uniform media. Ideal MHD flows, as well as Euler flows, have essentially 6 + 1 wave types, where
the 6 wave modes are organized through the essential spectrum of the % operator. These 6 modes
are actually three pairs of modes, in which the Alfvén pair (a shear wave pair in hydro) sits
comfortably at the middle. Each pair of modes consists of a leftgoing wave and a rightgoing wave,
or equivalently stated, with one type traveling from past to future (forward) and the other type
that goes from future to past (backward). The Alfvén pair is special, in its left-right
categorization, while there is full degeneracy for the slow and fast pairs when reversing time and
mirrorine space. The Alfvén pair eroup speed diaeram leads to the familiar Elsisser variables.



Shear stabilization?
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A sufficient condition for the ideal instability of shear flow with paraliel
magnetic field
X. L. Chen and P. J. Morrison

Stability of localized modes in rotating tokamak
plasmas
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A simple suffcient condition is given for the lmear ideal instability of plane paralll equilibria
witl shear flow and magnetic field. of

this condition shows that plane Couctte flow, which s stable in the absence of & magnetic field,

can be driven unstable by a symmetric magnetic field. Also, although strong magnetic shear
can stabilize shear flow with a hyperbolic tangent profile, there exists a range of magnetic shear
Abstract B that causes destabilization.

The ideal magnetohydrodynamic stability is investigated of localized

interchange modes in a large-aspect ratio tokamak plasma. The resulting

stability criterion includes the effects of toroidal rotation and rotation shear and

contains various well-known limiting cases. The analysis allows for a general

Online at stacks.iop.org/PPCF/S3/045008

A further stabilizing effect from rotation exists when the angular frequency

squared decreases radially more rapidly than the density. Flow shear, however,

also decreases the stabilizing effect of magnetic shear through the Kelvin-
merical i

of the performed local analysis.
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Stabilization in the ZaP Flow Z-Pinch

Abs(vac(
wer and divertor heat
Ioad and 5 such, charcteization of 1 ‘pedestal structure has significantly progressed. Tn high-confinement mode (H-mode)
plasmas, the pedestal component plays the role of a boundary condition in determining the core heat transport through profile
stifffess. On the other hand, a higher global poloidal beta or Shafranov shift improves the stability of the plasma edge in the
low magnetic field side particularly at high triangularity. Toroidal rotation also infiuences the edge stability boundary. While
toroidal flow stabilizes high-n ballooning modes, it destabilizes low-n kink/peeling modes. On the basis of this background.
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Variational principles for equilibrium states with plasma flow

Eliezer Hameiri®

Courant Institute of Mathematical Sciences, New York University, New York, New York 10012

(Received 14 April 1998: accepted 18 June 1998)

A new constant of the motion is utilized to formulate a variational principle for plasma equilibria
with general flow fields. Two additional variational principles are derived from the original one.
None of these formulations leads to a stability criterion if the velocity is not parallel to the magnetic
field since the functionals used, the first of which being the energy, do mot possess in this case a
minimum but only stationary points. It is shown that other stability criteria already reported in the
literature also suffer from the same deficiency. It is suggested that the lack of a minimum is due to
the presence of ballooning modes. © 1998 American Institute of Physics.
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A Lagrangian perspective on the stability of ideal MHD equilibria with flow
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We take a careful look at two approaches to deriving stability criteria for ideal MHD equilibria. One is based
on a tedious analysis of the linearized equations of motion, while the other examines the second variation of
the MHD Hamiltonian computed with proper variational constraints. For equilibria without flow, the two
approaches are known to be fully consistent. However, for equilibria with flow, the stability criterion obtained
from the constrained variation approach was claimed to be stronger than that derived using the linearized
equations of motion. We show this claim is incorrect by deriving and comparing both criteria within the
same framework. Tt turns out that the criterion obtained from the constrained variation approach has stricter
requirements on the initial perturbations than the other. Such requirements naturally emerge in our new
treatment of the constrained variation approach using the Euler-Poincaré structure of ideal MHD, which is
more direct and simple than the previous derivation from the Poisson perspective.




