

Impurities in a Reactor

T. Pütterich¹, E. Fable¹, R. Dux¹, M. O'Mullane², R. Wenninger³, R. Neu^{1,4}, M. Siccinio¹

¹Max-Planck-Institut für Plasmaphysik, D-85748 Garching, Germany ²CCFE, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB, United Kingdom ³EUROfusion Programme Management Unit, 85748 Garching, Germany ⁴Technische Universität München, 85748 Garching, Germany

Acknowledgements

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

Overview

Introduction

⇒Impurities in Fusion Plasmas

Impurity limits

- ⇒ Simple 0D and 0.5D approach
- ⇒ 1D ASTRA model

What Physics Issues Need to be Addressed?

Overview

Introduction

⇒Impurities in Fusion Plasmas

Impurity limits

- ⇒ Simple 0D and 0.5D approach
- ⇒ 1D ASTRA model

What Physics Issues Need to be Addressed?

IPP

 Erosion from first wall (e.g. W, Be, C....)

 Erosion from first wall (e.g. W, Be, C....)

Production of He in reactor core

$${}^{2}_{1}\mathbf{D} + {}^{3}_{1}\mathbf{T} \rightarrow {}^{4}_{2}\mathbf{He} + {}^{1}_{1}\mathbf{n}$$

3.5MeV 14.1MeV

divertor

 Erosion from first wall (e.g. W, Be, C....)

Production of He in reactor core

$${}^{2}_{1}\mathbf{D} + {}^{3}_{1}\mathbf{T} \rightarrow {}^{4}_{2}\mathbf{He} + {}^{1}_{n}\mathbf{D}$$

3.5MeV 14.1MeV

 Intentionally injected impurities (e.g. N, Ne, Ar, Kr...)

Overview

- Introduction
 ⇒Impurities in Fusion Plasmas
- Impurity limits
 Simple 0D and 0.5D approach
 1D ASTRA model
- What Physics Issues Need to be Addressed?

OD-Model - Simple Power Balance

Reiter, NF 1990

A) Power balance:
$$P_{\alpha} = P_{rad} + P_{transp}$$

$$P_{\alpha} = \frac{n_{e}^{2}}{4} \langle \sigma u \rangle E_{\alpha} (1 - 2c_{He} - Z_{i}c_{i})^{2}$$

$$P_{rad} = n_{e}^{2} ((1 - 2c_{He} - Z_{i}c_{i})L_{H} + c_{He}L_{He} + c_{i}L_{i}) \implies n_{e}T\tau_{E} = f(T, c_{He}, c_{i})$$

$$P_{transp} = \frac{3kTn_{e}}{2\tau_{E}} (2 - c_{He} - (Z_{i} - 1)c_{i})$$

B) He balance: production = losses

$$\frac{n_e^2}{4} \langle \sigma u \rangle (1 - 2c_{He} - Z_i c_i)^2 = \frac{n_e c_{He}}{\tau_{He}} \quad \text{define: } \rho^* = \frac{\tau_{He}}{\tau_E}$$

A+B
===>
$$a_3(\rho^*, T, c_i)c_{He}^3 + a_2(\rho^*, T, c_i)c_{He}^2 + a_1(\rho^*, T, c_i)c_{He} + a_0(\rho^*, T, c_i) = 0$$

OD-Model - Simple Power Balance

A) Power balance:
$$P_{\alpha} = P_{rad} + P_{transp}$$

$$P_{\alpha} = \frac{n_{e}^{2}}{4} \langle \sigma u \rangle E_{\alpha}(1 - 2c_{He} - Z_{i}c_{i})^{2}$$

$$P_{rad} = n_{e}^{2}((1 - 2c_{He} - Z_{i}c_{i})L_{H} + c_{He}L_{He} + c_{i}L_{i})$$

$$P_{transp} = \frac{3kTn_{e}}{2\tau_{E}}(2 - c_{He} - (Z_{i} - 1)c_{i})$$

$$P_{transp} = \frac{3kTn_{e}}{2\tau_{E}}(2 - c_{He} - (Z_{i} - 1)c_{i})$$

$$P_{transp} = \frac{n_{e}^{2}}{4} \langle \sigma u \rangle (1 - 2c_{He} - Z_{i}c_{i})^{2} = \frac{n_{e}^{2}}{T_{He}}$$

$$define: \rho^{*} = \frac{\tau_{He}}{\tau_{E}}$$

$$A+B_{==>}$$

$$a_{3}(\rho^{*}, T, c_{i})c_{He}^{3} + a_{2}(\rho^{*}, T, c_{i})c_{He}^{2} + a_{1}(\rho^{*}, T, c_{i})c_{He} + a_{0}(\rho^{*}, T, c_{i}) = 0$$

OD-Model - Simple Power Balance

$$P_{\alpha} = P_{rad} + P_{transp}$$

Pütterich, EPS 2015

Reiter, NF 1990

- For fixed ρ* and variation of c_{Xe}
 => plots with burn curves
- Burn curves become a single dot for maximum impurity level
- low-Z impurities decrease P_{α} via dilution
- high-Z impurities increase P_{rad}

Simple Power Balance

Reiter, NF 1990

- For fixed ρ* and variation of c_{Xe}
 => plots with burn curves
- Burn curves become a single dot for maximum impurity level
- low-Z impurities decrease P_{α} via dilution
- high-Z impurities increase P_{rad}

• W from wall, seeded impurities, He-ash

• W from wall, seeded impurities, He-ash

- W from wall, seeded impurities, He-ash
- Burn window becomes small

- W from wall, seeded impurities, He-ash
- Burn window becomes small

Is the situation changing for more realistic assumptions?

Implementation of T- and n-Profiles – Model Still Very General

Pütterich, EPS 2015 - now improved model

- Profiles of n,T vs. r/a using circular plasma
- Any Plasma may be mapped onto a circular one
- Approximation: Linear Profiles, Flat Impurity Concentration
- Parametrized via peaking R_T=T₀/<T>, R_n=n₀/<n>
- Results are size independent
- For $\rho^* < 5$ small effect (<20%)

Implementation of finite Q also Possible

Implementation of finite Q also Possible

IPP

Implementation of finite Q also Possible

T. Pütterich, EFTC 2017, Athens - 20

Realistic Boundary Conditions also Define Reactor Design: Dilution, Radiative Fraction

- Strong Dilution of fuel makes a fusion power plant inefficent
- Radiative Fraction must be considerble to provide power exhaust

(Q, sync. rad. and profile peaking match EU DEMO1 2015)

Realistic Boundary Conditions also Define Reactor Design: Dilution, Radiative Fraction

 Strong Dilution of fuel makes a fusion power plant inefficent

=> assume >71% D+T

- Radiative Fraction must be considerble to provide power exhaust
- => assume >50% radiative fraction

(Q, sync. rad. and profile peaking match EU DEMO1 2015)

Realistic Boundary Conditions also Define Reactor Design: Dilution, Radiative Fraction

 Strong Dilution of fuel makes a fusion power plant inefficent

=> assume >71% D+T

- Radiative Fraction must be considerble to provide power exhaust
- => assume >50% radiative fraction

(Q, sync. rad. and profile peaking match EU DEMO1 2015)

Overview

Introduction ⇒Impurities in Fusion Plasmas

Impurity limits

- ⇒ Simple 0D and 0.5D approach
- ⇒ 1D ASTRA model
- What Physics Issues Need to be Addressed?

Overview

Introduction ⇒Impurities in Fusion Plasmas

Impurity limits

- ⇒ Simple 0D and 0.5D approach
- \Rightarrow 1D ASTRA model (fusion+radiation profile, transport, Q < ∞)
- What Physics Issues Need to be Addressed?

Why does radiation in a reactor not degrade confinement?

- Wall protection necessary
- ~500MW of alpha power
 - Threshold in Turbulence Activity
 - ⇒ Stiff gradients for power fluxes above
 - \Rightarrow Power flux may be reduced down to threshold, wo. confinement

Why does radiation in a reactor not degrade confinement?

- Wall protection necessary
- ~500MW of alpha power
- Threshold in Turbulence Activity
 Stiff gradients for power fluxes above threshold
 - Power flux may be reduced down to threshold, wo. confinement degradation

Reactor Core is more Vulnerable to Radiation

- Power flux at mid radius larger than in center
 - ⇒ Volume vs. Surface for flux surface

$$V_{circ.} = 2\pi^2 R r^2$$
$$S_{circ.} = 4\pi^2 R r$$

ΠDD

Reactor Core is more Vulnerable to Radiation

 Power flux at mid radius larger than in center
 Volume vs. Surface for flux surface

$$V_{circ.} = 2\pi^2 R r^2$$
$$S_{circ.} = 4\pi^2 R r$$

 Seeded Impurities should radiate at the plasma edge

Core Radiation May Damage Temperature Profiles

- ASTRA simulations of a DEMO-like reactor
- T-profiles calculated using TGLF (Staebler PoP 2007)
- Localized radiative cooling
 Core cooling damages T-profiles
 Edge cooling with small impact

Core Radiation May Damage Temperature Profiles

- ASTRA simulations of a DEMO-like reactor
- T-profiles calculated using TGLF

Are Xe, Kr and Ar better ,Mantle Radiators' than W?

T. Pütterich, EFTC 2017, Athens - 32

IDD

Are Xe, Kr and Ar better ,Mantle Radiators' than W?

- In Reactor, the radiative mantle is between ~5keV and ~20keV
- What is the best radiator at the mantle for a certain ,damage' in the plasma core?
 Ratio of core vs mantle radiation
 W is slightly better than Xe, Kr and Ar!
 - Differences between radiators

less than factor 2 (~uncertainties)

Are Xe, Kr and Ar better ,Mantle Radiators' than W?

- In Reactor, the radiative mantle is between ~5keV and ~20keV
- What is the best radiator at the mantle for a certain ,damage' in the plasma core?
 Ratio of core vs mantle radiation
 - ⇒ W is slightly better than Xe, Kr and Ar!
 ⇒ Differences between radiators
 less than factor 2 (~uncertainties)
- Note: core impurity transport is easily as important

No

EU-DEMO1 design 2015 modelled with ASTRA

2015

	EU DEMO1
R[m]	9.1
A	3.1
B_T [T]	5.7
I_P [MA]	20
H (rad. cor.)	1.1
$\beta_{N,tot}$ [%]	2.6
$f_{bs}[\%]$	35
$P_{sep}/R[MW/m]$	17
$ au_{burn}[h]$	2
P _{fusion} [MW]	2037
Q	40

- Full 1D ASTRA model (Wenninger NF 2014)
- EU DEMO 2015 design (Wenninger NF 2017)
- Profiles of 50MW auxiliary heating and radiation

•
$$P_{fusion}$$
 calculated => fusion yield $Q = \frac{P_{fusion}}{P_{aux.heating}}$

• Impurity seeding to obtain $P_{separatrix} = 160MW$

• Heat & particle transport may be modelled, here: fixed density profiles, ad-hoc heat transport

1D ASTRA: Operational Space Larger at Cost of Q

- Find Condition:
 Reduce power flux to
- 1.2*P_{LH} at pedestal-top
- Steady-State operation possible for large

$$\boldsymbol{\rho}^* = rac{ au_{He}}{ au_E}$$

- But: Sacrifices in Q
 - ⇒ Efficiency of power plant
 - ⇒Cost of electricity

1D ASTRA: Operational Space Larger at Cost of Q

- Find Condition:
 Reduce power flux to
- 1.2*P_{LH} at pedestal-top
- Steady-State operation possible for large

$$\boldsymbol{\rho}^* = rac{ au_{He}}{ au_E}$$

- But: Sacrifices in Q
 - ⇒ Efficiency of power plant
 - ⇒Cost of electricity

1D ASTRA: Operational Space Larger at Cost of Q

- Find Condition:
 Reduce power flux to
 1.2*P_{IH} at pedestal-top
 - Steady-State operation possible for large

$$\boldsymbol{\rho}^* = rac{ au_{He}}{ au_E}$$

- But: Sacrifices in Q
 - ⇒ Efficiency of power plant
 - ⇒Cost of electricity
- ⇒ Small difference to 0.5D!

0.5D and 1D ASTRA Give Similar Answers

Pütterich, EPS 2015 - now improved model

What Physics Issues Need to be Addressed?

- Core radiation from Xe, Kr and Ar is as good/bad as from W
 Impurity profiles should be preferably hollow (high-Z)
- How do the plasma profiles look in a reactor?
 Realistic plasma transport
- Combine reactor performance (Q) with radiative cooling
 Impurity profiles should be preferably hollow (low-Z)
 - ⇒ Avoid divertor radiator in main plasma
 - ⇒ divertor compression of N, Ne, Ar…
 - ➡ High-Z radiation (if tolerable) is preferable to low-Z dilution
 - ⇒ Pump He well (divertor compression of He)

What Physics Issues Need to be Addressed?

- IPP
- Core radiation from Xe, Kr and Ar is as good/bad as from W
 Impurity profiles should be preferably hollow (high-Z) true if turbulent transport dominant (Angioni NF 2017)
- How do the plasma profiles look in a reactor?
 ⇒ Realistic plasma transport

(Impurity) Transport Influenced also by Rotation

Combine reactor performance (Q) with radiative cooling

Impurity profiles should be preferably hollow (low-Z)

true if turbulent transport dominant (Angioni NF 2017)

⇒ Avoid divertor radiator in main plasma

⇒ divertor compression of N, Ne, Ar…

⇒ High-Z radiation (if tolerable) is preferable to low-Z dilution

⇒ Pump He well (divertor compression of He)

Pedestal SOL/Divertor Physics

T. Pütterich, EFTC 2017, Athens - 41

Divertor Compression Crucial

- If low-Z radiatiors leak into main plasma, fusion losses may be large
- Surprising solution may be mid-Z radiator for divertor radiation
- Too few divertor compression of He-ash is a danger independently of solution for radiative cooling

Core radiator (here Xe) may have to be complemented by edge radiator