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Impurity Sources W

= Erosion from first wall

= Production of He In reactor core
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Impurity Sources W

= Erosion from first wall

= Production of He in reactor core

‘D +°T - iHe + 'n
3.5MeV 14.1MeV

= |ntentionally injected impurities
(e.g. N, Ne, Ar, Kr...)

4/

divertor
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0D-Model - Simple Power Balance W

Reiter, NF 1990

A) Power balance: ng = rad T Ptm-n sp
-
L = f(au)Ea(l — 2¢cHe — Zici)?
Pg = n2((1—2cge — Zici) Ly + eneLme + & Ly) =>| el Tp = f(T CHe, Ci)
3kTn,
Ptfr‘ansp — (2 — CHe — (Z? - l)cz)
2TE

B) He balance: production = losses
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0D-Model - Simple Power Balance W

Reiter, NF 1990

A) Power balance: P&, = rad T Ptmn sp
nQ
L = f(au)Ea(l — 2¢cHe — Zici)?
Py = n2((1—2me — Zic)Ln + el + ciLy) =] el T = (T, Chie, Ci)
3kTn, i
Ptfr‘ansp — QTE (2 — CHe — (Zz - l)cz) ° F|X p*,T and CI

¢ < 2 meaningful
solutions for c,,,

B) He balance: production = losses
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0D-Model - Simple Power Balance

Paf = Lrad + Pt?"ansp

______ob Modell
p*=0 | e¢0

10 Tepe (keV) 100

Putterich, EPS 2015

Reiter, NF 1990

For fixed p* and variation of ¢y,
=> plots with burn curves

Burn curves become a single dot
for maximum impurity level

low-Z impurities decrease P2,
via dilution

high-Z impurities increase P-md
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Simple Power Balance W

Reiter, NF 1990

» For fixed p* and variation of ¢y,
=> plots with burn curves

e Burn curves become a single dot
for maximum impurity level

» low-Z impurities decrease [,
via dilution

* high-Z impurities increase P-md
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0D Model - Mixing Impurities W

= W from wall, seeded impurities, He-ash

He (T HG/TE:5)

— 10%% He+W[3E-5]
an
> He+W[1.9E-4]
—;‘Lu 1024 _
A
10 T00
T [keV]
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0D Model - Mixing Impurities

= W from wall, seeded impurities, He-ash

He (T HG/TE:5)
He+*W[3E-5]

He+W[1.9F-4]

10

T [keV]

100

He (tye/t=5)
He+Ar[5E-3]

He+Ar[5E-3]
+W[4.5E-5]

10

T [keV]

100
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0D Model - Mixing Impurities W

= W from wall, seeded impurities, He-ash
= Burn window becomes small

. He (ty,/Te=5) _ He (tye/te=9) _ He (tpe/Te=9)

105 He+W[3E-5] |} He+Ar[OE-3] He+Kr[9E-4]
an

= He+W/[1.9E-4]
-il_u 102 - He+Ar[5E-3] || He+Kr[oE-4]
= +W|[4.5E-5] +N[1.7%]

10 100 10 100 10 100

T [keV] T [keV] T [keV]
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0D Model - Mixing Impurities

= W from wall, seeded impurities, He-ash

= Burn window becomes small

nT T [keVm'3s]

= |s the situation changing for more realistic assumptions?

1023_

1022_

He (T HG/TE:5)
He+*W[3E-5]

He+W[1.9E-4]

100

He (tye/t=5)
He+Ar[5E-3]

He+Ar[5E-3]
+W[4.5E-5]

100

He (tpe/t=5)
He+Kr[5E-4]

He+Kr[5E-4]
+N[1.7%]

10

100
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Implementation of T- and n-Profiles W
— Model Still Very General

0D Model  0.5D Model (Ry=2.1, R,=1.3, Q=c0)
N pr=> « Profiles of n, T vs. r/a using
e 1077 E circular plasma
=
>  Any Plasma may be mapped
=X, onto a circular one
KLLI
R « Approximation: Linear Profiles,
A 107 Flat Impurity Concentration
\J
« Parametrized via peaking
R=T,/<T>, R,=ny/<n>

- — o
<T> [keV] « Results are size independent

* For p*<5 small effect (<20%)
Putterich, EPS 2015 — now improved model
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Implementation of finite Q also Possible

0.5D Models, R;=2.1, R,=1.3, Q=e0, 40,10

p*=5
| X=4.04E-4
| X=4.68E-4

X=6.54E-4

Putterich, EPS 2015 — now improved model

Q _ Pfus - 5 Pa
I:)aux I:)aux

Q>30 economically viable

Finite Q can be seen as an
artificially increased P,

Q+5
aux = Q PG

Pa,eff = Pa+P

Note: Fixed Synchrotron
radiation can be taken into
account, but depends on B, & R

=> Talk today by E. Fable

T. Pitterich, EFTC 2017, Athens - 18



Implementation of finite Q also Possible

0.5D Models, R;=2.1, R,=1.3, Q=e0, 40,10

- p¥=5
| X=4.04E-4
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10 T, (keV)
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Realistic Boundary Conditions also Define Reactor Design:w
Dilution, Radiative Fraction

He-concentration
bl bt &

D+T-concentration

@ 102|363 M 23| m92.2% 4

= - c 10°°¢

> >

< 9

"L'u 22 |-Lu

> 1077 1 =107

c | p*=5,scan] T |

I _ of W-conc. | | e -

10 T, (keV) 100 10 T, (keV) 100

Radiative Fraction

am 1 007

= Strong Dilution of fuel makes a fusion
power plant inefficent

= Radiative Fraction must be considerble
—— : to provide power exhaust

10 Ty (keV) 100 (Q, sync. rad. and profile peaking match EU DEMO1 2015)
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Realistic Boundary Conditions also Define Reactor Design:w
Dilution, Radiative Fraction
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P*=5H, scan
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.....
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100
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92.2%

il
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-

o
S
N

10 T, (keV) 100
= Strong Dilution of fuel makes a fusion
power plant inefficent

=> assume >71% D+T

= Radiative Fraction must be considerble
to provide power exhaust

=> assume >50% radiative fraction

(Q, sync. rad. and profile peaking match EU DEMO1 2015)
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Realistic Boundary Conditions also Define Reactor Design:w
Dilution, Radiative Fraction

He-concentration

g D+T-concentration
- . T CpOceEntEs
o 23| 2 363 « 23 92.27%
E 10 E 'E 10 e
> S
2 o
a LI
]—l
= 105 =107
g : pP*=3, scan - = ;
., __ofw-conc.] T [ 274% o
10 T, (keV) 100 10 T, (keV) 100
—~ el iy = Strong Dilution of fuel makes a fusion
(7)) . .
© o 1 00% power plant inefficent
- ' -
3 et o =>assume >71% D+T
:‘EJ ' = Radiative Fraction must be considerble
= re—— : to provide power exhaust
'75 » ; => assume >50% radiative fraction

10 T0 (keV) 100 (Q, sync. rad. and profile peaking match EU DEMO1 2015)
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Overview W
= |ntroduction

= Impurities in Fusion Plasmas
= Impurity limits

= Simple OD and 0.5D approach
= 1D ASTRA model (fusion+radiation profile, transport, Q < «)

= \What Physics Issues Need to be Addressed?
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Why does radiation in a reactor not degrade confinement? W

) !

qJ_ = Wall protection necessary
= ~500MW of alpha power

= Threshold in Turbulence Activity

= Stiff gradients for power fluxes above
threshold

= Power flux may be reduced down to
threshold, wo. confinement
degradation

heat flux

>
_ i T
Norm. T-gradient V /T
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Why does radiation in a reactor not degrade confinement? W

q ¢ wo.rad. cooling |
L = Wall protection necessary
Reduce = ~500MW of alpha power
E heat
s flux = Threshold in Turbulence Activity
g = Stiff gradients for power fluxes above
threshold
d, .| With rad. cooling = Power flux may be reduced down to
_ threshold, wo. confinement
degradation

>
_ i T
Norm. T-gradient V /T
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Reactor Core is more Vulnerable to Radiation W

0,5

0,4

0,3

0,2

0,1

= Power flux at mid radius larger
than in center

Pheating [MWM?3]
eating = Volume vs. Surface for flux surface

Veire. = 2m%RT?

Scirc. = 4T Rr
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Reactor Core is more Vulnerable to Radiation W

= Power flux at mid radius larger
0,5 - = than in center

e

= Volume vs. Surface for flux surface
0,4 - 2.2
qJ_ [M\Nm_z] Vcirc. = 2m“Rr

Scirc. = 4T Rr

= Seeded Impurities should radiate
at the plasma edge

T. Pitterich, EFTC 2017, Athens - 29



Core Radiation May Damage Temperature Profiles W

45 | | —oes| " ASTRA simulations of a
Gaussian P, 4(r), ) .
40; widthz 01 —0.75  DEMO-like reactor
—0.55
35/ —=0.35]
30 21° = T-profiles calculated using TGLF
> 25 (Staebler PoP 2007)
=
© 20/
15 = Localized radiative cooling
10 = Core cooling damages T-profiles
= Edge cooling with small impact
5_

% 02 04 o056 08 1
normalized radius

E. Fable NF 2017
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Core Radiation May Damage Temperature Profiles W

45 | | — = ASTRA simulations of a
Gaussian P, 4(r), 0.95 .
40 width = 0.1 —0.75 DEMO-like reactor
-—0.55

35/ 0.35/

30 21° = T-profiles calculated using TGLF
E 25"
_© 20

15

10} ;

% 02 04 06 o8 1
normalized radius

E. Fable NF 2017




Are Xe, Kr and Ar better ,Mantle Radiators‘ than W? W

-24

10 [ e
W
m
1_(%6- \/\’\_/-
mE N Ar |
=
:N -28) Iu
= 10
o
2 Be
3 . !
o
= '30_/
o 10
S
O RE—

101 102 103 104 105 Pitterich, EPS 2015 / paper in preparation
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Are Xe, Kr and Ar better ,Mantle Radiators‘ than W? W

154 = |[n Reactor, the radiative mantle is
between ~5keV and ~20keV
— 16°] = What is the best radiator at the
S mantle for a certain ,damage’ in
= the plasma core?
_JN 1'58 => Ratio of core vs mantle radiation
S =W is slightly better than Xe, Kr and Ar!
Hg = Differences between radiators
% 1-(1)30_ less than factor 2 (~uncertainties)
S
T

10" 102 103 10% 10°

e [ev] T. Putterich, EFTC 2017, Athens - 33




Are Xe, Kr and Ar better ,Mantle Radiators‘ than W? W(I)Ei

154 = |In Reactor, the radiative mantle is
between ~5keV and ~20keV
— 16 = What is the best radiator at the
S mantle for a certain ,damage’ in
= the plasma core?
_JN 1'58- => Ratio of core vs mantle radiation
S =W is slightly better than Xe, Kr and Ar!
Hg = Differences between radiators
% 1-30_ less than factor 2 (~uncertainties)
S
= Note: core impurity transport Is
B easily as important

10" 102 103 10% 10°

e [EV] T. Putterich, EFTC 2017, Athens - 34




EU-DEMO1 design 2015 modelled with ASTRA W

e Full 1D ASTRA model ( Wenninger NF 2014 )

EU DEMOI 2015

ﬁ[m] 21 e EU DEMO 2015 design (Wenninger NF 2017 )
B [T] 5.7 . . . -
Ip [MA] 20 e Profiles of 50MW auxiliary heating and radiation
H (rad. cor.) 1.1
B 1% 2.6 o Prusi
f\[%{ ! 35 ® Prusion calculated => fusion yield Q = fusion
o Paux.heating
Psep/RIMW /m| 17
Tourn P 2 _ | _

Prusion IMW] 2037 e Impurity seeding to obtain Ps.,qrqtrix = 160MW
Q 40

e Heat & particle transport may be modelled,
here: fixed density profiles, ad-hoc heat transport

T. Putterich, EFTC 2017, Athens - 35



1D ASTRA: Operational Space Larger at Cost of Q W
. IDASTRAEUDEMOT 2015 . Fing Condition;
| N | Reduce power flux to

| 1.2*P,, at pedestal-top
1.0E-02 3 3

= Steady-State operation
possible for large

1.0E-03 |
i THe

pr = —

TE

1.0E-04 |

ty-concentration at burn paramters

= But: Sacrifices in Q
= Efficiency of power plant

EMN0B00L e = Cost of electricity
0 2 4 6 8 10 12

Impuri

TE T. Piitterich, EFTC 2017, Athens - 36



ty-concentration at burn paramters

impuri

1D ASTRA: Operational Space Larger at Cost of Q W

1.0E-02

1.0E-03

1.0E-04 ¢

- Q=26

1.0E-05 . . |

24

N

23 21

1D ASTRA JEU DEMO1 2015

1.0E-01

20

= Find Condition:

Reduce power flux to
1.2*P 4, at pedestal-top

= Steady-State operation
possible for large

= But: Sacrifices in Q
= Efficiency of power plant
= Cost of electricity
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ty-concentration at burn paramters

impuri

1D ASTRA: Operational Space Larger at Cost of Q W

1.0E-02

1.0E-03},

1.0E-04 -

1.0E-05_. . |

1D ASTRA ,EU DEMO1 2015

1.0E-01F

i [ ' I

5 8 10 12

= Find Condition:

Reduce power flux to
1.2*P 4, at pedestal-top

= Steady-State operation
possible for large

* THe

pr=

= But: Sacrifices in Q
= Efficiency of power plant
= Cost of electricity

= Small difference to 0.5D!
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iImpurity-concentration at burn paramters

0.5D and 1D ASTRA Give Similar Answers

1.0E-01

1.0E-02

1.0E-03

1.0E-04

1.0E-05

i He
5 5.2%
| oD Cpie=4.9% ]
I 0.5D (match TO & nTrt) Q=42 |
1D ASTRA Cpyo=5.1%
0 100
Nuclear Charge Z

Putterich, EPS 2015 - now improved model

*a
Ql
.
.
*a
.

b
.0
*

THe/TE =5

0D
0.5D (match T, & nTr)
1D ASTRA

0 Nuclear Charge Z100

T. Putterich, EFTC 2017, Athens -
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What Physics Issues Need to be Addressed? W

= Core radiation from Xe, Kr and Ar is as good/bad as from W
= Impurity profiles should be preferably hollow (high-2)

= How do the plasma profiles look in a reactor?
= Realistic plasma transport

= Combine reactor performance (Q) with radiative cooling
= Impurity profiles should be preferably hollow (low-2Z)

= Avoid divertor radiator in main plasma
= divertor compression of N, Ne, Ar...
= High-Z radiation (if tolerable) is preferable to low-Z dilution

= Pump He well (divertor compression of He)

T. Putterich, EFTC 2017, Athens - 40



What Physics Issues Need to be Addressed? W

= Core radiation from Xe, Kr and Ar is as good/bad as from W
= Impurity profiles should be preferably hollow (high-2)

true if turbulent transport dominant (Angioni NF 2017)

= How do the plasma profiles look in a reactor?

= Realistic plasma transport (Impurity) Transport
Influenced also by Rotation

= Combine reactor performance (Q) with radiative cooling
= Impurity profiles should be preferably hollow (low-2Z)

true if turbulent transport dominant (Angioni NF 2017)

= Avoid divertor radiator in main plasma
= divertor compression of N, Ne, Ar...
= High-Z radiation (if tolerable) is preferable to low-Z dilution

| | Pedestal
= Pump He well (divertor compression of He) SOL/Divertor Physics

T. Pitterich, EFTC 2017, Athens - 41




Divertor Compression Crucial W

ASTRA + SOL model

Xe as core radiator
Psep fixed,
Piarget fixed

Ne Ar Fé Kr
M. Siccinio, PPCF 2016

= |f low-Z radiatiors leak into main
plasma, fusion losses may be
arge

= Surprising solution may be mid-Z
radiator for divertor radiation

= Too few divertor compression of
He-ash is a danger independently
of solution for radiative cooling

Core radiator (here Xe) may have to be complemented by edge radiator

T. Pitterich, EFTC 2017, Athens - 42



