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Problem: why is the sawtooth crash so “fast” 
at large Lundquist number S=tR/tA? 

tR = a2/h   Resistive time 

tA  = a/VAlfven  Alfven time 



The m=1 mode and the sawtooth crash 

  The sawtooth crash time in JET is shorter than the collision 

 time. [Edwards et al., (1986)] 
 This process is too fast to be explained by resistive MHD 

 

  The m=1 mode: an essential element of the sawtooth cycle  
      [Von Goeler et al.(1974), Kadomtsev(1975)] 
 Process mediated by the restivity h. Becomes slow at large S, small h. 

  Non-collisional physics (electron inertia and other effects) gives 
 the right time scale (100 microseconds) for JET: 
 γ

 
τ

A  
~ (d

e 
/L) both in the linear and in the nonlinear phase. 

 (d
e 
 = skin depth, L ~a~R = machine scale length.  τ

A 
= Alfven time). 

 Typically d
e 
/L~10-3 

 [Ottaviani and Porcelli, (1993)]. 
 
  Probably not sufficient to explain fast crashes in medium size 

 tokamaks and in some simulations at moderate Lundquist number 



Look for a new explanation 



What about the stability of m=1 islands?   
 

 Current sheets of large aspect ratio are developed during 

the nonlinear stage of primary internal-kink modes. How does 

their instability to secondary reconnecting modes relate to 

fast sawtooth crashes? 
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( Figures  taken from [Q.Yu et al., Nucl. Fusion 54, 072005 (2014)] )  
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( Figures  taken from [M. Ottaviani et al., Phys. Plasmas  2, 4104 (1995)] )  

Large Δ' regime in slab geometry 



( Figures  taken from [M. Ottaviani et al., Phys. Plasmas  2, 4104 (1995)] )  

Large Δ' regime in slab geometry 

Current sheet 



Slab approximation for the current sheet 

B
0 

 Due to the current sheet's large aspect ratio  L/δI >> 1   a quasi-continuum 
spectrum of unstable wavenumbers can be assumed. 
The maximum growth rate occurs at short wavelength. This justifies the local 
assumption about the geometry 

L
  

 a ~ δI  



Key assumptions   

1) In the current sheet, the current density is comparable to the equilibrium 
current density which is what one gets at the end of the linear phase of 
the m=1 mode:    

                                                            Jcs ~  J0   

2) The above is reasonable if the instability of the current sheet (what we call 
the secondary instability) is fast enough that its growth rate exceeds the 
evolution rate of the “equilibrium” (i.e. the primary  reconnecting mode): 

 
                                                         γII  > τcs 

-1 ~ γI 

 

This is verified a posteriori. The m=1 island can be considered as static. 

3) The width of the current sheet is assumed to be of the order of  the m=1 layer 
    width. 
 
This is justified at the end of the linear phase/beginning of the nonlinear phase of the 
m=1 primary island  

4)  We perform an asymptotic analysis  (i.e. Lundquist number S → ∞ , etc. ) 



a 

B
0 

L
 
~ L0 

width ~ L ~ L
0 

Example  of   Harris-pinch   equilibrium,   typical    
                  for   a / L  ≤  ka << 1   
(thus valid for the tearing at small ka and for the  
dominant mode at Δ'δ ~ 1) 
 

Size of the transverse magnetic field in the current sheet 

In a tokamak  L0 ~ R and   L ~ R ~ L
0
.   

And the end of the internal-kink linear phase  a ~ δI = S-1/3 L 

Note: in several papers BCS ~ B0 and JCS >> J0  
NOT JUSTIFIED 



Scaling of the  reconnection rates  

(n/m=1/1 case of a tokamak in cylindrical approximation) 

Primary internal-kink :      Δ'δ
I
 = ∞ 

A broad range of unstable secondary modes with a broad range of 
wavenumbers k and a varying Δ'  and layer width δ

II
 

 
The fastest growing mode always occurs  at   Δ'δ

II
 ~ 1 

Estimation :   

Tokamak geometry :   



Results : secondary collisionless reconnection, possibly 

at near Alfvenic rate, in tokamak devices with resistive 

primary reconnection 
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Numerical simulations (ongoing work) 
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Numerical simulations (ongoing work) 
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Pseudo-spectral simulations 
 

• Box aspect ratio A=2 
• Lundquist number S=103 

 
Still work to do… 



Summary and conclusions 

  A current sheet generated by a primary instability with Δ'= ∞, such as the resistive internal 
kink mode, becomes unstable at an early stage in its nonlinear development because of sub-
Alfvenic modes.  

  In the case of sawtooth phenomenon  in a purely resistive framework the current sheet 
becomes unstable to a secondary mode with growth rate   γτ

A
 ~ S -1/6 , apparently in agreement 

with the numerical results of  [Yu et al., Nucl. Fusion 54, 072005 (2014)].  

  When finite electron inertia is included in the analysis, for (L/d
e
)12/5 < S < (L/d

e
)3, regime 

relevant to most medium size tokamak devices, the secondary instability develops in the inertia-
driven collisionless regime with a  growth rate  γ

II 
τ

A  
~ (d

e 
/a)2 ~ (d

e 
/L)2 S 2/3  which can become 

near-Alfvenic.  

Paper: D. Del Sarto, M. Ottaviani “Secondary fast instability in the sawtooth crash”,  
Physics of Plasmas 24, 012102 (2017) 

  The overall reconnection rate is at least of order γ
 
τ

A 
~(d

e 
/L)2/5, always larger than the internal 

kink growth rate. 



THANK YOU FOR YOUR ATTENTION 



On the plasmoid scaling 

  A «plasmoid» scaling of superfast (faster than Alfvenic) reconnection rate of current sheets 
has been proposed in the literature (Loureiro et al., 2005, and subsequent studies) 
 
          γ

plasmoid 
τ

A  
~ S 1/4  

  This scaling requires two conditions (Tajima and Shibata, Space Astrophysics, 2002) 
 

1. An intense current sheet such that BCS ~ B0 and JCS / J0 ~ L/dsheet >> 1 
 

       AND 
2. A sheet size such that dsheet/L ~ S-1/2 

 

  As we have seen, this is not justified in the sawtooth case 

  Current sheets such as dsheet/L ~ S-1/3 and JCS / J0 ~ L/dsheet produce Alfvenic rate 
reconnection such that 

 
         γ

 
τ

A  
~ 1 

 
which is a situation of likely interest in astrophysics where sheets can be produced by Alfvenic 
motion (Pucci and Velli, 2014) 

 
        

 


