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Abstract
We investigate ion and impurity transport in turbulent, possibly anisotropic,
magnetic fields. The turbulent magnetic field is modeled as a correlated
stochastic field, with Gaussian distribution function and prescribed spatial
auto-correlation function, superimposed onto a strong background field. The
(running) diffusion coefficients of ions are determined in the three-dimensional
environment, using two alternative methods, the semi-analytical decorrelation
trajectory (DCT) method, and test-particle simulations. In a first step, the results
of the test-particle simulations are compared with and used to validate the results
obtained from the DCT method. For this purpose, a drift approximation was
made in slab geometry, and relatively good qualitative agreement between the
DCT method and the test-particle simulations was found. In a second step, the
ion species He, Be, Ne and W, all assumed to be fully ionized, are considered
under ITER-like conditions, and the scaling of their diffusivities is determined
with respect to varying levels of turbulence (varying Kubo number), varying
degrees of anisotropy of the turbulent structures and atomic number. In a third
step, the test-particle simulations are repeated without drift approximation,
directly using the Lorentz force, first in slab geometry, in order to assess the
finite Larmor radius effects, and second in toroidal geometry, to account for the
geometric effects. It is found that both effects are important, most prominently
the effects due to toroidal geometry and the diffusivities are overestimated in
slab geometry by an order of magnitude.

(Some figures in this article are in colour only in the electronic version)

0741-3335/11/085022+25$33.00 © 2011 IOP Publishing Ltd Printed in the UK & the USA 1

http://dx.doi.org/10.1088/0741-3335/53/8/085022
http://stacks.iop.org/PPCF/53/085022


Plasma Phys. Control. Fusion 53 (2011) 085022 M Negrea et al

1. Introduction

One of the central issues for the successful operation of fusion devices is to understand and
ultimately control the behavior of ions in the driven, high-temperature, turbulent plasma.
Turbulence-induced stochastic magnetic fluctuations, even when small, can destroy the
regularly nested magnetic field structures in toroidal confinement devices, such as in tokamaks,
which can cause the particles to undergo larger radial displacements. New channels are then
opened through which particles can potentially be transported, and transport may become
enhanced or even anomalous (see, e.g., [1–3]).

Ions present inside fusion devices include, among others, He-ash (atomic number Z = 2)
as the fusion product that needs to be prevented from accumulating at the center and should
be removed from the device, noble gases such as Ne (Z = 10) that help improve confinement
through reducing the heat load on the walls by radiating off heat, and undesired impurities such
as W (Z = 74) that flow in from the wall, and which can degrade confinement substantially
when accumulated in the plasma core (see, e.g., [4]).

A number of experimental studies of impurity transport exists, addressing the parameter
dependence of ion transport, including the dependence on the atomic number Z and on the
logarithmic density and temperature scale lengths, which depend on the device, the plasma
mode and the radial location inside the device. For example, [5] investigates the Z-dependence
of impurity transport at JET, [6] the anomalous transport of light and heavy impurities in Tore
Supra ohmic, weakly saw-toothing plasmas, and [7] compares the parametric dependences of
impurity transport in the neoclassical theory with those in turbulence models, also presenting
a summary of experimental results and a discussion of the underlying physical mechanisms.

In theoretical studies of impurity transport, several approaches have been used. Test-
particle simulations were done in [8, 9] for impurities, in [10] for alpha particles in burning
plasmas and in [11] for fast particles in a magnetic topology with rotating islands. Gyro-
kinetic simulations of impurity transport were performed in [12], as well as in [13] together
with fluid simulations, considering electromagnetic effects, and in [14] together with a Fokker–
Planck transport model, with transport coefficients taken from the gyro-kinetic simulations.
Fülöp and Nordman [15] performed fluid simulations of impurity transport, addressing the
Z-scaling, the scaling with normalized logarithmic temperature and density gradients, and
applying an ITER scenario. Sánchez Burillo et al [16] studied impurity transport with tracers
in a two-fluid model, and Reiser et al [17] used a Vlasov Fokker–Planck description of impurity
transport.

From the mentioned theoretical and experimental studies, it can be concluded that impurity
transport is mostly anomalous, the convective velocity and the diffusion coefficients are more
than one order of magnitude higher than the neoclassical values (with a few exceptions
though where transport is neoclassical, i.e. collisional in toroidal geometry). The parameter
dependence of impurity transport coefficients is reported to be rather complex, e.g. whether
there is a Z-dependence depends on the concrete device, the plasma mode and the radial
location (through the dependence on the logarithmic density and temperature gradient), high-
and low-Z impurities scale differently with the logarithmic density gradient, and the diffusion
and convection coefficients can become constant at high Z. Also, electron and ion cyclotron
heating can affect impurity peaking, e.g. electron heating can reverse the sign of the convective
velocity. The anomalous impurity transport is considered to be caused by turbulence and
driven by micro-instabilities, most prominently the ion temperature gradient (ITG) and trapped
electron mode (TEM) micro-instabilities (see, e.g., [7, 18]).

In this paper, we consider ion and impurity transport in a turbulent magnetic field, with
the aim to determine the (running) diffusion coefficients [19] of different ion species. The
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turbulent magnetic field is modeled as a correlated stochastic field, with prescribed distribution
and spatial auto-correlation function, superimposed onto a strong background magnetic field.
To study particle transport, we use two alternative methods. (1) We formulate the problem in
terms of the Langevin equations for the guiding centre and apply the semi-analytical method
of decorrelation trajectories (DCT), which is a generalization of the Corrsin approximation
and does not ignore trapping effects (which necessarily exist in relatively strong turbulent
plasmas) [20, 21]. (2) We perform test-particle simulations in numerically generated stochastic
magnetic fields. The stochastic fields are generated on a grid such that they have the same
statistical properties (distribution and auto-correlation function) as those used in the DCT
method.

The particle transport is expected to depend on the level of turbulence and on the spatial,
possibly anisotropic, correlations of the stochastic fluctuations, i.e. the appearance of spatially
coherent structures in the radial or poloidal direction, such as zonal flows or streamers (see,
e.g., [3]). We thus determine the diffusion coefficients for different levels of magnetic
turbulence, whose intensity can be measured by the dimensionless magnetic Kubo number
Km (see, e.g., [19, 20, 22–24]), different plasma temperatures (expressed in terms of the
dimensionless drift Kubo number Kdr) and different degrees of anisotropy in the magnetic
fluctuations (described by the stochastic anisotropy parameter �). The impurities considered
here are He, Be, Ne and W, all assumed to be fully ionized.

The aim of this work is threefold: (i) In the first step, the results of the test-particle
simulations are compared with and used to validate the results obtained from the DCT
method for the same physical system. For this purpose, we consider a simplifying slab
approximation [25], and we use arbitrary values of Kdr, for the sake of a more extended
parametric study. (ii) In the second step, we determine the running diffusion coefficients
of the impurities mentioned above under ITER-like conditions, with realistic values also for
Kdr, and we perform a parametric study to determine the scaling of the diffusivities with Z,
Km and �. (ii) In the third step, we first assess the appropriateness of the guiding center
approximation, by comparing with test-particle simulations that directly use the Lorentz force.
Second, we explore the importance of geometric effects by comparing with results of test-
particle simulations performed in toroidal geometry, with turbulent fluctuations on top of a
realistic (vacuum) magnetic background field.

The paper is organized as follows. The Langevin equations for the guiding center of ion
drift motion in a stochastic, stationary magnetic field are established in section 2. The results
of the DCT method, decorrelation trajectories and running diffusion coefficients, are presented
in section 3 (details of the DCT method are given in the appendix). Section 4 contains the
test-particle simulations, including the description of how the stochastic fields are constructed,
the comparison with the DCT method (section 4.3.1), the parametric study of the diffusivities
under ITER-like conditions (section 4.3.2), and the comparison with the case of directly using
the Lorentz force, first in slab geometry, and then in toroidal geometry (section 4.3.3). The
summary and conclusions are presented in section 5.

2. Equations of motion for the ions in the slab geometry

We consider a shear-less slab geometry for the stationary confining magnetic field with a strong
component B0 along the Z-axis and fluctuating perpendicular components in the (X, Y )-plane,

B(X; Z) = B0{eZ + βbX(X; Z)eX + βbY (X; Z)eY }, (1)

where X =(X, Y ) and β is the dimensionless amplitude of the magnetic field fluctuations
relative to the background constant magnetic field B0eZ . The magnetic field fluctuations
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are described by the dimensionless functions bi(X; Z), i = (X, Y ), taken to be Gaussian
processes.

The configuration of the magnetic lines was studied in detail in previous papers, e.g. [1, 26].
The particles’ guiding centers move along the field lines with a velocity that is a stochastic
function; here, we will assume that the velocity along the main magnetic field is constant. We
also assume that the unperturbed field is strong enough so that the motion of the particles can
be described in the drift approximation. We consider that the electric field is negligible, so
that the guiding center equations of motion take the form

dX

dt
= βbX(X; Z)V‖ + VdrX, (2)

dY

dt
= βbY (X; Z)V‖ + VdrY , (3)

dZ

dt
= V‖, (4)

where V‖ is the component of the particle velocity parallel to the background magnetic field
and Vdr (VdrX, VdrY ) is the drift velocity which, for our stationary magnetic field, is given as

Vdr � 1

�
n × [µ∇B + V 2

‖ (n · ∇)n]. (5)

In equation (5), � = eB/mc is the gyration frequency, n = B/B is the unit vector along the
field line, µ = V 2

⊥/2B is the magnetic moment and V⊥ is the component of the particle velocity
perpendicular to the background magnetic field. The Z-component of the drift velocity is
neglected, as well as the drift due to the time variation of the magnetic field (which is considered
as stationary here). Two additional approximations can be introduced in equation (5),
although they are not compulsory in developing the model. They considerably simplify DCT
calculations without significantly affecting the results. Firstly, since the amplitude of the
magnetic field fluctuations is very small, we can neglect the terms [bi(X; Z)]k , k > 2, in the
drift velocity and retain only the dominant, first-order, terms [25]:

VdrX � −V 2
‖

�

∂bY [X(Z); Z]

∂Z
≡ −V 2

‖
�

bZY [X(Z); Z], (6)

VdrY � V 2
‖

�

∂bX[X(Z); Z]

∂Z
≡ V 2

‖
�

bZX[X(Z); Z], (7)

where we have defined the vector bZj [j = X, Y ] as

bZj ≡
(

∂bX[X(Z); Z]

∂Z
,
∂bY [X(Z); Z]

∂Z

)
≡ (bZX[X(Z); Z], bZY [X(Z); Z]).

Secondly, the parallel velocity V‖ appearing in equation (4) is the particle velocity along the
magnetic lines and is considered here to be constant and to equal the thermal velocity Vth.
Thus, the drift velocity is a simple stochastic process that fluctuates due only to b and its
derivatives.

Equations (2) and (3) must be completed by specifying the statistical properties of the
random quantities. For the description of the fluctuating magnetic field, we make an assumption
about the statistical properties of the magnetic potential � (i.e. the Z-component of the
stochastic part of the vector potential) and then derive from it the statistical characteristics of
the magnetic field and of its gradients. This procedure ensures the zero divergence condition
for the fluctuating magnetic field to be fulfilled. � is taken as a Gaussian random field,
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spatially homogeneous (in the statistical sense) in the (X, Y )-plane, and stationary (again in
the statistical sense). The Eulerian auto-correlation function is taken as [23]

M(X; Z) = 〈�(0; 0)�(X; Z)〉 = M1(X) M2(Z), (8)

where

M1(X) = β2B2
0λ2

x exp

(
− X2

2λ2
x

)
exp

(
− Y 2

2λ2
y

)
(9)

and

M2(Z) = exp

(
− Z2

2λ2
z

)
, (10)

where three characteristic correlation lengths are defined: the parallel correlation length λz and
the perpendicular correlation lengths λx and λy . Note that we can define the vector potential
with different normalization factors, such as λxλy , λ2

x or λ2
y . We have chosen the second case

in order to keep the analysis close to the one in [33]. The qualitative results are not changed by
the particular choice of the normalization factor. Dimensionless coordinates {x = (x, y), z}
may then be defined by x := X/λx , y := Y/λy and z := Z/λz, and we also define the magnetic
dimensionless potential as ψ = B−1

0 β−1λ−1
x �. Using these dimensionless quantities and the

assumptions made above, the system given in equations (2)–(4) becomes

dx(z)

dz
= �Km

∂ψ(x(z); z)

∂y

∣∣∣∣
x=x(z)

+ Kdr
∂

∂z

[
∂ψ(x(z); z)

∂x

]∣∣∣∣
x=x(z)

≡ vx[x(z); z] = Kmbx(x; z) − Kdrbzy(x; z), (11)

dy(z)

dz
= −�Km

∂ψ(x(z); z)

∂x

∣∣∣∣
x=x(z)

+ �2Kdr
∂

∂z

[
∂ψ(x(z); z)

∂y

]∣∣∣∣
x=x(z)

≡ vy[x(z); z] = �Kmby(x; z) + �Kdrbzx(x; z). (12)

The dimensionless quantities that appear in equations (11) and (12) are the magnetic Kubo
number [23]

Km = β
λz

λx

, (13)

the stochastic anisotropy parameter

� = λx

λy

(14)

and the drift Kubo number

Kdr = β
Vth

�λx

, (15)

which in our case take values as characteristic for ions. β is the dimensionless amplitude of
magnetic field fluctuations (considered here as relatively strong, i.e. β � 10−2, see [27]), Vth

is the thermal velocity of the ions and � their Larmor frequency. In the comparison between
the DCT method and the test-particle simulations, we will assume Vth

�
� 3 × 10−1 m (Larmor

radius for ions), λx � λy � 10−2 m and λz � 1 m, in order that the drift Kubo number is not
very small. In this case, the following ratio holds:

Kdr

Km
= Vth

�λz

� 0.3, (16)

and it follows that the second terms in equations (11) and (12) are not negligibly small (there
is one order of magnitude difference between the two Kubo numbers).
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Figure 1. In (a) and (b) the solutions x(z) and y(z) of equations (11) and (12) are shown, in (c)
and (d) the fluctuating velocities, in (e) the decorrelation trajectory and in (f ) the hodograph, for
the subensemble: ψ0 = 3, b0

x = b0
y = 2, b0

zx = 1, b0
zy = −1, Km = 2 and Kdr = 0.2.

3. Diffusion coefficients—the DCT approach

An extensive explanation of the DCT method can be found in the book of Balescu [2], and
details of the explicit calculations are given in the appendix. Also, in order to apply the semi-
analytical formalism specific to the DCT method, we have developed a code based on [28].

In figure 1, we show the solutions of the system (11)–(12) in the subplots (a) and (b), the
velocities in (c) and (d), the trajectories in (e) and the hodograph in (f ), for the subensemble
S ≡ {ψ0 = 3, b0

x = b0
y = 2, b0

zx = 1, b0
zy = −1}, for a fixed level of magnetic turbulence

Km = 2, for the drift ion Kubo number Kdr = 0.2 and for three values of the anisotropy
parameter � = {0.2, 1, 2} (the superscript 0 is related to the definition of the subensemble
S, see the appendix, equation (A.2)). The solid line corresponds to � = 2, the dotted
line to � = 1 and the dashed one to � = 0.2. From figures 1(a) and (b) it can be seen
that the general shape of the solutions exhibits a few oscillations before stopping practically
for z � 3 for all values of the anisotropy parameter. The number of oscillations increases
with an increase in the anisotropy parameter �. For � = 0.2 there is no real oscillation.
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Figure 2. Running diffusion coefficients and the total velocities (the entire right-hand sides of
equations (11) and (12)) for a fixed value of the drift Kubo number Kdr = 0.2, different values of
the anisotropy parameter �, and Km = 0.5 ((a), (c) and (e)) and Km = 3 ((b), (d) and (f )).

The fluctuating velocities (see figures 1(c) and (d)) have practically the same shape as the
solutions x(z), y(z), with oscillations present for � � 1. These oscillations are equivalent
to decorrelation trajectories that are closed for � � 1 and open for � � 1. Because the
Lagrangian field correlation has been damped out by the factor exp(− z2

2 ) for large values of
z, xS(z) � xS . These remarks are not general concerning the behavior of the particles but are
specific to the particular subensemble. Important to note is that the open trajectories give the
most substantial contribution to the value of diffusion coefficients.

In figure 2, we show the running diagonal diffusion coefficients for different values of the
anisotropy parameter, a fixed value of the drift Kubo number Kdr = 0.2 (for all the subplots),
and two values of the magnetic Kubo number Km = 0.5 (all left subplots) and Km = 3 (all
right subplots). For Km = 0.5, no trapping effect is present for both diffusion coefficients.
The asymptotic values of the diffusion coefficients increase when the anisotropy parameter
� increases, and the asymptotic regime is practically reached for z � 3 for all values of the
anisotropy parameter. The running diffusion coefficients start with a linearly increasing part,
corresponding to a ballistic regime, followed by the asymptotic (constant) regime. The total
velocity decreases in all cases and tends to zero for z � 3. For Km = 3, the behavior of the
radial and poloidal running diffusion coefficients is different, as shown in figures 2(b) and (d).
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Figure 3. Trapping time interval ztr as a function of the anisotropy parameter �, for Km = 3 and
Kdr = 0.2.

The diffusion coefficients reach a maximum followed by a decay, which is a signature of the
trapping effect that is present for both Dxx(z) and Dyy(z). As the trapping effect is only present
for Km = 3, it follows that an increase in the level of magnetic turbulence favors trapping
effects. This is visible for the radial diffusion coefficient (figure 2(b)) for � � 0.5, and it
becomes more pronounced if the stochastic anisotropy parameter � increases.

The maximum values reached by the radial diffusion coefficients are practically the same,
Dmax

xx � 2, for all stochastic anisotropy parameters �, as can be seen from figure 2(b). The
maxima of the poloidal diffusion coefficients vary and are different from Dmax

xx (see figure 2(d)),
where, for different locations zmax of the maxima, different maximum values of the poloidal
diffusion coefficient, Dmax

yy (zmax), are reached), and actually the following scaling holds:

Dmax
yy (zmax) = 0.96(zmax)

−0.94.

A decrease in the values of the maxima is observed if the anisotropy parameter decreases.
The trapping time interval is defined as ztr ≡ zas − zmax, where zas is the starting point of the
asymptotic regime. The difference between the maximum value and the asymptotic one for
the poloidal diffusion coefficients is �yy ≡ Dmax

yy − Das
yy and it depends on ztr as

�yy = 0.0016 exp(2.5352 ztr).

It also follows that the trapping time interval ztr is larger, the larger the anisotropy parameter
is; e.g. for � = 2, ztr � 2.75, and for � = 0.35, ztr � 1.5. The trapping interval ztr is shown
as a function of � for Km = 3 and Kdr = 0.2 in figure 3, and an exponential fit reveals the
following dependence of ztr on �:

ztr(�) = 2.67891 − 6.76281 exp(−�/0.21236).

The trapping time interval increases for � � 1 faster than in the case � � 1, and a kind of
stabilization of the growth of ztr appears for � � 1.5 in the case of the specific Kubo numbers
chosen.

Figure 4 shows the dimensionless running diffusion coefficients for isotropic stochastic
fields and for different values of the drift Kubo number. As before, trapping effects are
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Figure 4. Running diffusion coefficients for a fixed value of the magnetic Kubo number Km = 1.0,
isotropic perturbations (� = 1.0) and for different values of the drift Kubo number Kdr .

basically absent for the relatively low value of Km = 1, and the asymptotic values of the
diffusion coefficients show a relatively weak dependence on the drift Kubo number Kdr.

So far, we have considered cases with Kdr varying up to relatively large values, with the
aim to have a parametric study of the DCT method that can be tested and compared with
test-particle simulations (see section 4.3.1). Values of Kdr of the order of 0.3 are realized
under conditions of astrophysical plasmas, e.g. in the Solar corona, whereas in confinement
devices Kdr is much smaller. For instance, in a tokamak such as ITER, a typical impurity
like Be4+ will have Kdr ≈ 0.0022 (see section 4.3.2 for more details). For the latter value of
Kdr, figure 5 shows the dimensionless and the dimensional running diffusion coefficients for
different values of the anisotropy parameter �, as yielded by the DCT method. These results
will be discussed below in section 4.3.2, together with the respective results from the test-
particle simulations. Note that in figure 5 the scaling of the asymptotic diffusion coefficients
with � inverses when going from dimensionless to dimensional units, which will be explained
in section 4.3.1 (equations (20), and (21)).

4. Diffusion coefficients—test-particle simulation

In order to solve the system of equations (11)–(12) numerically, we first generate the stochastic
magnetic field components bX, bY , together with the constant background component bZ , with
prescribed auto-correlation functions on a three-dimensional grid. Test particles are then traced
in this environment by interpolating the stochastic fields in between the grid sites.

4.1. Generation of the stochastic fields

To generate the vector potential AZ ≡ � on a three-dimensional grid, we use numerical
Fourier transform methods and make use of the Wiener–Khinchine theorem. We first Fourier
transform the spatial auto-correlation M(X; Z) of AZ (equations (8), (9) and (10)), which
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Figure 5. Running diffusion coefficients for different values of the anisotropy parameter �, and
for Km = 0.5, Kdr = 0.0022; the two top panels show the dimensionless coefficients and the two
bottom panels show the dimensional ones.

yields M̂(kX, kY , kZ), and the Fourier transform ÂZ of AZ is then given as

ÂZ = |M̂(kX, , kY , kZ)|1/2 exp(iφKX,KY ,KZ
) (17)

with the phases φKX,KY ,KZ
chosen uniformly random in [0, 2π ], and from which AZ is

determined by Fourier back-transformation. The derivatives of AZ are also calculated
via Fourier space transformation, e.g. ∂XAZ is calculated as the Fourier back-transform of
∂̂XAZ = iKXÂZ , and likewise for the other or higher order derivatives.

In this way, the magnetic field components

(bX(m, j, k), bY (m, j, k)) = (∂Y AZ(m, j, k), −∂XAZ(m, j, k))

and their derivatives with respect to Z, as needed in equations (11)–( 12), are determined on a
three-dimensional grid, 1 � m, j, k � N . We use natural dimensional coordinates (X, Y, Z)

in the construction of the grid so that bx(x; z) = bX(λxx, λyy, λzz).
The magnetic field components obey Gaussian distributions, as a consequence of the

central limit theorem, and their standard deviations, σbX
and σbY

, are enforced to be equal
to one. Figure 6 shows different representations of the magnetic field. By construction, the
magnetic field is periodic in all three directions, and particles leaving the simulation box are
re-injected at the plane opposite to the one through which they leave.
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Figure 6. Shown are (a) the fluctuating magnetic field component bx as a function of x and y for
fixed z, (b) field lines in three-dimensional space and (c) field lines projected onto the x–y-plane
for z = const.

4.2. Integration of the equation

The system of equations (11)–(12) is numerically integrated with a fourth-order Runge–Kutta,
adaptive step-size scheme. The values of bX(X, Y, Z) and bY (X, Y, Z) for points (X, Y, Z) in
between the grid sites are calculated by interpolating between the magnetic field components
of the nearest grid sites with third-order splines, following the method in [29].

The grid size in each direction is such that it contains several correlation lengths. The
stochastic magnetic field is generated on a grid with 643 grid points in most cases, and
exceptionally also with 1283 grid points, with a grid spacing such that the number of correlation
lengths λi in each direction is 9–11 per 64 grid points. The latter was found to be an optimum
choice for having (1) good resolution of the basic magnetic field structures (in Fourier as
well as in position space), (2) many correlation lengths in the domain so that the particles do
experience the effect of the correlations and (3) to have a grid size that is still manageable
computationally.
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Figure 7. A typical particle trajectory, projected onto the x–y-plane, for a short (a) and a longer
(b) integration time.

The running diffusion coefficients for the motion of the ions in the magnetic field are
determined as

Dxx(z) = 〈[x(z) − x(0)]2〉
2z

(18)

and

Dyy(z) = 〈[y(z) − y(0)]2〉
2z

(19)

where the averaging is taken over 106 test particles in 103 different realizations of stochastic
magnetic fields.

4.3. Results

4.3.1. Comparison with the DCT method. We consider ion diffusion in the same magneto-
static, perturbed magnetic field environment to which we applied the DCT method in section 3.
The parameter values we use are λx = 10−2 m and λz = 1 m for the correlation lengths (see
text after equation (15)), and Km, � and Kdr are free parameters that are varied, whereby the
strength of the magnetic perturbations is kept to the order of β ∼ 10−2, and the Larmor radius
is varied around Vth

�
∼ 3 × 10−1 m. Figure 7 shows a typical example of a trajectory.

Figures 8(a) and (b) show the dimensionless radial Dxx(z) and poloidal Dyy(z) diffusion
coefficients for different values of the drift Kubo number Kdr and for fixed values of the
magnetic Kubo number (Km = 1) in the isotropic case (� = 1). Diffusion always is of
normal nature (in the sense that the mean square displacement scales linearly with time, and
an asymptotic regime in the diffusivities is reached). The decrease in the diffusivities with
increasing Kdr in figure 8(c) actually holds only in dimensionless units. In physical units, we
have for the diffusion coefficient DXX in the X-direction

DXX = Vthλ
2
x

λz

Dxx, (20)

so that there is an increase in DXX with increasing Kdr, and the same is true for DYY .
The diffusive process thus speeds up with increasing Larmor radius, i.e. with increasing
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Figure 8. Radial (a) and poloidal (b) running diffusion coefficients for Km = 1, stochastic
isotropy (� = 1) and for different values of the drift Kubo number Kdr . (c) Asymptotic values of
the diffusion coefficients as a function of Kdr , for Km = 1 and � = 1.

thermal velocity (temperature) for a given ion species, or with increasing ion mass for a
given temperature.

Regarding the comparison with the DCT method (figure 4), the values of the diffusion
coefficients coincide within 20% with the results yielded by the DCT method, we find though
a different scaling of the diffusion coefficient with the drift Kubo number.

For fixed drift Kubo number (Kdr = 0.2) and for two different magnetic Kubo numbers,
figures 9(a)–(d) show the radial Dxx(z) and the poloidal Dyy(z) diffusion coefficients for
different degrees of anisotropy � (throughout, we fix the value of λx = 10−2, and we set
λy = λx/�, and Km is changed by changing the intensity of the magnetic perturbation β).
Basically, Dxx decreases and Dyy increases with increasing �, whereby this effect is more
pronounced the larger the Km is, i.e. the stronger the magnetic perturbation is. Again although,
for the diffusion coefficient DYY in physical units

DYY = Vthλ
2
y

λz

Dyy = Vthλ
2
x

�2λz

Dyy, (21)

the opposite is true, DYY decreases with increasing �, as does DXX. The asymptotic values
of radial and poloidal diffusion coefficients are shown as functions of � in figure 9(e)
for Kdr = 0.2.

Comparing again with the results from the DCT method in figure 2, we see that the values
of the diffusion coefficients coincide within 20% for Dyy in the case Km = 0.5 and for Dxx

in the case Km = 3.0, and they also exhibit the same scaling with �. For Dyy in the case
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Figure 9. Radial (a), (c) and poloidal (b), (d) running diffusion coefficients for Kdr = 0.2, Km = 3
(a), (b), Km = 0.5 (c), (d), and for different values of the stochastic isotropy parameter �. (e)
Asymptotic values of the diffusion coefficients as a function of �, for Kdr = 0.2 and two different
values of Km (0.5 and 3).

Km = 3.0 the scaling with � is the same, the differences in values reach though now 50%, as
for Dxx in the case Km = 0.5, where moreover the scaling with � is different. In basically all
cases shown so far, the time needed to reach the asymptotic state in the test-particle simulations
is roughly 5 times larger than in the DCT method.

4.3.2. Impurities in ITER-like conditions. We now turn to impurities in ITER-like conditions,
i.e. we assume an ion temperature Ti = 8.1 keV and a background magnetic field B0 = 5.3 T.
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Figure 10. Be4+ (physical units (m2 s−1)): Radial (a), (c) and poloidal (b), (d) running diffusion
coefficients for Km = 3 (a), (b), Km = 0.5 (c), (d), and for different values of the stochastic
anisotropy parameter �.

The ions we consider are He2+ and the impurities Be4+, Ne10+ and W74+, as they are relevant
for tokamak devices of the ITER type. With the temperature and magnetic field given, the drift
Kubo number is fixed for each ion species and is not a free parameter anymore. We thus vary,
in the following, only Km (i.e. β) and �.

The magnetic field environment is as before, though from now on we show all the results
in physical units. This concerns also the time scale. According to equation (4), in which
V|| = Vth is assumed and which is integrated analytically, we have t = Z/Vth = λzz/Vth, so
that the time scale depends on the ion mass.

Figures 10(a)–(d) show the results for the running diffusion coefficients of Be4+, for
different values of � and Km. In all cases, an asymptotic, normal diffusive regime is
reached. The case Km = 0.5 (figures 10(c) and (d) is also treated with the DCT method,
see figure 5. The two methods agree within a factor of 2 for � small, and coincidence
becomes better with increasing �. The results, together with those for He2+, Ne10+ and
W74+, are summarized in figures 11(a)–(d), where the values of the asymptotic diffusion
coefficients are shown as a function of the atomic number Zi . The diffusion coefficients
(i) decrease with increasing atomic number, as a direct consequence of the increasing mass
and thus decreasing thermal velocity. The drift Kubo numbers are relatively small and of
similar magnitude (KHe2+

dr = 0.0030, KBe4+

dr = 0.0022, KNe10+

dr = 0.0013 and KW74+

dr = 0.0005),
so that from the results in figures 8(a)–(c) we expect very close values of the normalized
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Figure 11. He2+, Be4+, Ne10+ and W74+ (physical units (m2 s−1)): Radial (a), (c) and poloidal
(b), (d) asymptotic diffusion coefficients for Km = 3 (a), (b), Km = 0.5 (c), (d), and for different
values of the stochastic anisotropy parameter �, as a function of the atomic number Z.

perpendicular diffusion coefficients, and it is actually the motion in the Z-direction that leads
to the differences in the dimensional diffusivities, since, as mentioned, t = Z/Vth ∝ √

mZi
.

Moreover, (ii) the diffusion coefficients decrease with increasing �, and (iii) they increase
with increasing Km, i.e. increasing amplitude of the magnetic perturbation. All three findings
are in accordance with section 4.3.1.

4.3.3. Lorentz force and toroidal geometry. The aim of this section is to investigate as to
how far some of the assumptions we made influence the results. We again consider ITER-like
conditions and choose He2+ as test particles, Kdr is thus again fixed, and we concentrate on
the isotropic case (� = 1), with a level of stochastic perturbation β = 10−2.

First, we investigate how accurate the linearized gyro-center approximation of
equations (11) and (12) is. Thereto, we integrate the equations of motions in terms of the
Lorentz force,

dV (t)

dt
= q

m
V × B,

dX(t)

dt
= V (22)

with q the particle charge. The two perpendicular components of initial velocity, VX(0) and
VY (0), are chosen random with Gaussian distribution that corresponds to the temperature
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Figure 12. He2+ (physical units (m2 s−1)): Radial (a) and poloidal (b) running diffusion coefficients
for β = 10−2 and � = 1, in cylindrical and toroidal geometry, and with the gyro-center
approximation compared with the integration of the Lorentz force.

Ti, and the parallel component VZ(0) is either random and Gaussian distributed (again with

temperature Ti), or we let it equal Vth ≡
√

3kBTi
mHe

, as in the gyro-center approximation.

Figures 12(a) and (b) show the corresponding running diffusion coefficients. With
VZ(0) = Vth, the gyro-center approximation overestimates the diffusivity by roughly 50%,
it is though closer to the case with random VZ(0), still overestimating it now by 15%. These
differences must be attributed to the linearity of the gyro-center approximation; finite ion
Larmor radius effects may also be present but must be expected to be less important since the
Larmor radius of He2+ is 1.7×10−3 m, i.e. one-fifth of the perpendicular correlation length λx .

Second, we address the question of how far the effects of toroidal geometry and shear alter
the results presented so far. Thereto, we use the standard (vacuum) tokamak magnetic field

B = R0B0

R0 + r cos θ

(
êφ +

r

R0q(r)
êθ

)
(23)

(see [30]) with safety factor

q(r) = (ν + 1)ξ

1 − (1 − ξ)ν+1
, ξ = r2/a2 (24)

(see [31]), with major radius R0 = 6.2 m and minor radius a = 2 m, and where q(0) = 1,
q(a)/q(0) = ν + 1, and we arbitrarily choose ν = 2. (r, θ, φ) are toroidal coordinates, r is
the radial coordinate along the minor radius, θ the poloidal angle and ϕ the toroidal angle.
Onto the background field we superpose the stochastic magnetic field (with β = 10−2) that
is numerically generated as before on a 3D Cartesian grid. In order to transform the fields
to toroidal geometry, the Cartesian grid is stretched in the z (=ϕ)-direction, shifted so that
its center coincides with r = 0, and bent to a ring embedded in three-dimensional space by
applying a transformation from Cartesian to polar coordinates in the perpendicular direction,

br = bx cos θ + by sin θ,

bθ = −bx sin θ + by cos θ.

Due to the bending, the correlation lengths at the low- and high-field sides are slightly different,
but this can be expected to be of minor importance for our purpose here.

Figures 12(a) and (b) show two cases of integrating the Lorentz force in toroidal geometry,
one with random V||(0) and one with V||(0) = Vth (with V|| in toroidal geometry corresponding
to VZ in cylindrical geometry), respectively (no drift approximation is applied). They yield
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very similar results; the assumption V‖ = Vth is more appropriate in toroidal than in cylindrical
geometry, the diffusivities are though roughly 7 times smaller than those derived in cylindrical
geometry (see the discussion in section 5.3).

5. Summary and conclusion

5.1. The DCT method

The problem of ion diffusion in a stochastic magnetic field was treated by starting from
the Langevin equations in the linearized guiding center approximation. Since the Corrsin
approximation ignores the trapping effect, which necessarily exists in a relatively strong
turbulent plasma, the method of decorrelation trajectories was applied. In this paper, we
studied the influence of the magnetic Kubo number, the drift Kubo number and stochastic
anisotropy on the diffusion of ions, with intended application of impurity transport in plasma
confinement devices. The model together with the main elements of the decorrelation trajectory
method was established in sections 2 and 3.

We have shown that the stochastic drifts provide a decorrelation mechanism of the particles
from the magnetic field lines. Subdiffusive behavior of the particles is not observed and the
particles diffuse even in the absence of perpendicular collisional diffusion.

In section 3, we have shown deterministic decorrelation trajectories for fixed values of Km

and Kdr and different values of the anisotropy parameter �, in order to investigate the influence
of the latter on the shape of the trajectories. An increased value of � causes oscillations around
the starting point in a given subensemble, and the trapping effect is more pronounced, the larger
� and Km are. This is also obvious from the graphical representation of the running diffusion
coefficients, which provides an interesting insight into the transient behavior of the diffusive
process. The diagonal coefficients start with a linear part, indicating a ballistic regime, which is
followed by a trapping regime, whereafter the saturated asymptotic value is reached (although
there is no distinct feature of the trapping regime in the running diffusion coefficients from
the test-particle simulations, trapping effects are visible only in representations of trajectories,
see figure 7(b)). The stochastic magnetic drift has practically the same influence on the ions’
diffusion as has the magnetic shear on the intrinsic diffusion of magnetic field lines.

Finally we note that the time for reaching the asymptotic regime, typically t � 10−5 s,
is equivalent to z � 3 m for Vth � 105 m s−1, which is close to the correlation length in the
Z-direction, as used in the calculations.

5.2. Test-particle simulations

In section 4, we repeated the calculation of the diffusion coefficients by performing test-particle
simulations, using the same drift approximation as in the DCT method and applying the same
values of Km, Kdr and �. No trapping effect is present in these cases for both diffusion
coefficients. The simulations and the DCT method yield diffusion coefficients that differ by
50% or less, they can thus be considered to be in good qualitative agreement. Another instance
where the results obtained by the DCT method were compared with numerical test-particle
simulation, and where also relatively good agreement was found, is given in [33, 34].

In order to investigate the appropriateness of the linear guiding center approximation, we
let the particles obey the Lorentz force, and it turned out that the linear gyro-center approach
overestimates the diffusivities by 50% (figures 12(a) and (b)), non-linearities and possibly also
finite Larmor radius effects are thus important for a quantitatively correct determination of the
diffusion coefficients.
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In the last step, we investigated the importance of the effects of toroidal geometry and
shear by integrating the Lorentz force in an ITER-like toroidal geometry that was slightly
perturbed, which yields diffusion coefficients that are 7–8 times smaller than those found in
cylindrical geometry (figures 12(a) and (b)), geometric and shear effects are thus important, as
expected. As mentioned, trapping is not present in the linearized gyro-centre approximation,
it appears though in the Lorentz force approach.

5.3. Discussion

The differences between the results of the DCT method and the test-particle simulations
must be attributed to the assumptions made in the semi-analytical DCT method, since in
the test-particle simulations we did not make any further assumptions beyond those made in
the initial equations and field environment, so the latter must be considered to yield more
trustworthy results than the DCT method and it can indeed be used to assess the DCT
method.

Collisions were not taken into account, neither in the DCT approach, nor in the test-particle
simulations. The equations of motions are solved for a time such that an asymptotic regime in
the diffusivities is reached, which is of the order of 3 × 10−5 s. For the four impurity species
we consider, and with the assumed plasma parameters, the collision frequencies are 2 × 102

(He2+), 6 × 102 (Be4+), 2 × 103 (Ne10+), and 4 × 104 (W74+) s−1. This implies that, for the
time interval considered, all the investigated impurities are not affected by collisions, a much
longer integration time would have to be used in order to reach the collisional regime, which,
from the side of the test-particle simulations, would become very demanding on computation
time for the light ions. We also note that it is, in principle, possible to include collisions in the
DCT formalism, as done, e.g., in [32].

The comparison of the DCT method with the test-particle simulations was done in
slab geometry without magnetic shear. In order to validate this set-up in its potential
for being predictive for tokamaks such as ITER, a more realistic toroidal topology was
used in section 4.3.3, which, in contrast to the slab geometry, (1) has a realistic poloidal
background magnetic field and (2) exhibits shear (s = r∂rq/q �= 0) (see equations (23)
and (24)), with a realistic safety factor profile. The magnetic field is again perturbed
with a reasonable level of fluctuating fields that are correlated in space, as expected for
turbulent fields (e.g. zonal flows and streamers). From this set-up, it follows that the toroidal
topology exhibits much better confinement properties than the slab geometry, which is reflected
in the diffusivities being lower than in the case of slab geometry (see section 4.3.3 and
figure 12).

The DCT method has not yet been applied to particles in a toroidal and sheared topology,
in [23, 33] though, the diffusion of magnetic field lines has been studied in sheared topologies
with the DCT method, and it is possible to extend this analysis to particles.

After all, our study implies that for the DCT method to yield quantitatively meaningful
results, (1) a higher order, non-linear guiding center approach, (2) a toroidal geometry with (3)
a poloidal field and (4) shear must be used, since only under these conditions we find very good
coincidence of the test-particle simulations with experimental results from current tokamaks,
which we present in section 5.4.

What has not been done in this study and should be addressed in future work is a long-term
study of the system that includes collisions, and the effects of turbulent electric fields. Also,
the turbulent electromagnetic fields would be more realistic if they were taken from MHD
simulations, which is directly feasible with test-particle simulations; for the DCT method it
first would have to be worked out.
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5.4. Conclusion

With the above-mentioned restrictions in mind, our results on impurity transport can be
summarized as follows (see figures 11(a)–(d)):

(i) In the stochastic magneto-static environment considered, diffusion is always of normal
nature;

(ii) the diffusivities increase with increasing level of turbulence;

(iii) the diffusivities of the impurities scale as m
−1/2
Zi

with the ion mass; and
(iv) anisotropy in the turbulent magnetic field alters the diffusivities.

The theoretical, neoclassical values for the diffusion coefficients are smaller than unity,
of the order 0.5 m2 s−1, whereas in experiments much larger, anomalous values are found.
For example, [6] reports a diffusion coefficient D ≈ 4 m2 s−1 from the combined analysis
of supersonic and stationary injections; a maximum value of 4.5 m2 s−1 for the diffusion
coefficient of Ne10+ was found in [5] for the edge region, and similar results are presented
in [18]. These numerical values are in agreement with our results for slab geometry (see
figures 11(c) and (d)), for relatively weak magnetic turbulence (Km = 0.5) and a stochastic
anisotropy parameter � = 2, and they are in good agreement with the values we find in sheared
toroidal geometry when tracking the particles with the Lorentz force (test-particle simulations,
figures 12(a) and (b)) (where we lack though a parametric study). Finally, the decrease in the
diffusion coefficients with increasing atomic number Z for all the impurities (figures 11(c)
and (d)) was also observed in [18] for the core region.

After all, the DCT method and the linear guiding center approximation, together with the
magnetic slab topology used, are able to give useful qualitative information about the diffusion
of impurities, and it can be expected that further development of the DCT model (with the use
of sheared toroidal instead of slab geometry, a non-linear guiding center description, and with
the inclusion of the electric field) would lead to a realistic and fully quantitative model.
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Appendix. Details of the DCT method

In this appendix, we derive the relations that allow us to calculate the diffusion coefficients in
the frame of the DCT method. The main idea of the method is to study the Langevin system
(11)–(12) not in the whole space of the realizations of the possible fluctuations, but to subdivide
the whole space into a set of subensembles S, characterized by given values of the potential
and of the different fluctuating field components at the starting point of the trajectories. The
definition of the approximative DCT method can practically be summarized in the following
two statements:

(i) In each subensemble a deterministic trajectory xS(z) is defined by the following criterion:
the Eulerian average of the potential ψS in the subensemble S, calculated along this
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deterministic trajectory, equals the Lagrangian average of the same potential in the
subensemble S

ψS[xS(z); z] = 〈ψ[x(z); z]〉S. (A.1)

This deterministic trajectory is called decorrelation trajectory.
(ii) The average Lagrangian velocity in the subensemble S is approximated with the average

Eulerian velocity calculated along the deterministic trajectory.

In the DCT method, we can consider the Lagrangian average of the potential as the
corresponding Eulerian average calculated along the deterministic trajectory (i.e. the solutions
of the system (11)–(12)) in the same subensemble. We first need to calculate the average
Eulerian fields in the subensemble S (see equations (A.6) and (A.7)). The next step in the DCT
method is to define a deterministic trajectory in each subensemble as a solution of the system
(11)–(12), in which the right-hand sides are replaced by the average fields in the subensemble.
Inserting these approximations into the exact formula for the Lagrangian field correlation yields
an approximation that is valid, in principle, for arbitrarily large values of the different Kubo
numbers. The main reason for this to hold is that the DCT method takes into account trapping
effects, which are neglected in other approaches that are based on the Corrsin approximation.

The exact expression of the Lagrangian correlation can be written in the form of a
superposition of Lagrangian correlations in various subensembles. We define a set of
subensembles S of the realizations of the stochastic magnetic field by given values of the
potential ψ or the characteristic magnetic field fluctuation b and bz at the point x = 0 at the
‘moment’ z = 0,

ψ(0; 0) = ψ0, b(0; 0) = b0, bz(0; 0) = b0
z . (A.2)

The probability density for b, bz, ψ to assume the values b0, b0
z , ψ0 at x = 0, and at the

‘moment’ z = 0 in a subensemble is defined as

P(ψ0, b0, b0
z) = 〈

δ[ψ0 − ψ(0; 0)]δ[b0 − b(0; 0)]δ[b0
z − bz(0; 0)]

〉
(A.3)

and after short calculations the probability in the subensemble is found to be

P(ψ0, b0, b0
z) = (2π)−5/2�−2

× exp

(
− (ψ0)2 + (�−1b0

x)
2 + (b0

y)
2 + (�−1b0

zx)
2 + (b0

zy)
2

2

)
. (A.4)

The characteristic averages in the subensemble are calculated as

〈bS(x; z)〉 = [P(ψ0, b0, b0
z)]

−1

×〈b(x; z)δ[ψ0 − ψ(0; 0)]δ[b0 − b(0; 0)]δ[b0
z − bz(0; 0)]〉 (A.5)

and

〈bS
z (x; z)〉 = [P(ψ0, b0, b0

z)]
−1

×〈bz(x; z)δ[ψ0 − ψ(0; 0)]δ[b0 − b(0; 0)]δ[b0
z − bz(0; 0)]〉.

Using expressions (8) and (A.17)–(A.21) (see below), the explicit forms of these averages are

〈bS
i (x; z)〉 = ψ0Mψi(x; z) + b0

jMji(x; z) + b0
zjMzj |i (x; z), i, j = x, y, (A.6)

〈bS
zi(x; z)〉 = ψ0Mψ |zi(x; z) + b0

jMj |zi(x; z) + b0
zjMzj |zi(x; z), i, j = x, y. (A.7)

The global Lagrangian correlations are given as

Lij (z) =
∫

dψ0 db0 db0
zP (ψ0, b0, b0

z)〈vi(0; 0)vj [x(z); z]〉S (A.8)
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with the components of v[x(z); z] in the form

vx(x; z) = Kmbx(x; z) − Kdrbzy(x; z),

vy(x; z) = �Kmby(x; z) + �Kdrbzx(x; z). (A.9)

The components of the Lagrangian correlation tensor LS
ij (ψ

0, b0, b0
z, z) ≡ 〈vi(0; 0)×

vj [x(z); z]〉S in a subensemble are

LS
xx(ψ

0, b0, b0
z, z) = (K2

mb0
x − KdrKmb0

zy)〈bS
x (x; z)〉

+ (K2
drb

0
zy − KmKdrb

0
x)〈bS

zy(x; z)〉, (A.10)

LS
xy(ψ

0, b0, b0
z, z) = (K2

mb0
x − KdrKmb0

zy)〈bS
y (x; z)〉

−(K2
drb

0
zy − KmKdrb

0
x)〈bS

zx(x; z)〉, (A.11)

LS
yy(ψ

0, b0, b0
z, z) = (K2

mb0
y + KdrKmb0

zx)〈bS
y (x; z)〉

+ (K2
drb

0
zx + KmKdrb

0
y)〈bS

zx(x; z)〉, (A.12)

LS
yx(ψ

0, b0, b0
z, z) = (K2

mb0
y + KdrKmb0

zx)〈bS
x (x; z)〉

−(K2
drb

0
zx + KmKdrb

0
y)〈bS

zy(x; z)〉. (A.13)

The running diffusion coefficients are calculated as usual:

Dij (z) =
∫ z

0
dζLij (ζ ) (A.14)

while the asymptotic value is given as

Das
ij = lim

z→∞ Dij (z). (A.15)

In section 3, we showed and discussed decorrelation trajectories in different subensembles,
and the running diagonal diffusion coefficients presented there are determined according to
equation (A.14).

Using equation (8) in a dimensionless form and the antisymmetric tensor εnm [ε11 =
ε22 = 0 and ε12 = −ε21 = 1], the Eulerian correlations can be written in terms of the magnetic
potential and its derivatives [23, 35],

M(x; z) = exp

(
− x2 + z2

2

)
, (A.16)

Mψn(x; z) = 〈ψ(0; 0)bn(x; z)〉 = εnm

∂M(x; z)

∂xm

= −Mnψ(x; z), n, m = x, y, (A.17)

Mij (x; z) = 〈bi(0; 0)bj (x; z)〉 = −εimεjn

∂2M(x; z)

∂xm∂xn

, n, m = x, y, (A.18)

Mψ |zi(x; z) = 〈ψ(0; 0)bzi(x; z)〉 = εim

∂

∂z

(
∂M(x; z)

∂xm

)
= Mzi|ψ(x; z), i, m = x, y, (A.19)

Mi|zj (x; z) = 〈bi(0; 0)bzj (x; z)〉 = −εimεjn

∂

∂z

(
∂2M(x; z)

∂xm∂xn

)
= −Mzj |i (x; z), n, m, i, j = x, y, (A.20)
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Mzi|zj (x; z) = 〈bzi(0; 0)bzj (x; z)〉 = −εimεjn

∂2

∂z2

(
∂2M(x; z)

∂xm∂xn

)
= Mzj |zi(x; z), n, m, i, j = x, y. (A.21)

The explicit expressions for the correlations used in this work are easily obtained from
equations (8)–(10) and (A.17)–(A.21), and they are the following:

Mψx(x; z) = −Mxψ(x; z) = �
∂M(x; z)

∂y
= −y�M(x; z), (A.22)

Mψy(x; z) = −Myψ(x; z) = −∂M(x; z)

∂x
= xM(x; z), (A.23)

Mxx(x; z) = −�2 ∂2M(x; z)

∂y2
= (1 − y2)�2M(x; z), (A.24)

Myy(x; z) = −∂2M(x; z)

∂x2
= (1 − x2)M(x; z), (A.25)

Mxy(x; z) = Myx(x; z) = �
∂2M(x; z)

∂x∂y
= xy�M(x; z), (A.26)

Mzx|ψ(x; z) = Mψ |zx(x; z) = ∂

∂z

(
∂M(x; z)

∂y

)
= zy�M(x; z), (A.27)

Mzy|ψ(x; z) = Mψ |zy(x; z) = ∂

∂z

(
−∂M(x; z)

∂x

)
= −zxM(x; z), (A.28)

Mx|zx(x; z) = �2 ∂

∂z

(
−∂2M(x; z)

∂y2

)
= −z(1 − y2)�2M(x; z) = −Mzx|x(x; z), (A.29)

My|zx(x; z) = Mx|zy(x; z) = �
∂

∂z

(
∂2M(x; z)

∂x∂y

)
= −xyz�M(x; z)

= −Mzy|x(x; z) = −Mzx|y(x; z), (A.30)

My|zy(x; z) = ∂

∂z

(
−∂2M(x; z)

∂x2

)
= −z(1 − x2)M(x; z) = −Mzy|y(x; z), (A.31)

Mzx|zx(x; z) = �2 ∂2

∂z2

(
∂2M(x; z)

∂y2

)
= (1 − z2)(1 − y2)�2M(x; z), (A.32)

Mzy|zx(x; z) = Mzx|zy(x; z) = �
∂2

∂z2

(
∂2M(x; z)

∂x∂y

)
= (1 − z2)xy�M(x; z), (A.33)

Mzy|zy(x; z) = ∂2

∂z2

(
∂2M(x; z)

∂x2

)
= (1 − z2)(1 − x2)M(x; z), (A.34)

Mxy(x; z) = Myx(x; z), Mψ |zi(x; z) = Mzi|ψ(x; z),

Mzy|zx(x; z) = Mzx|zy(x; z),

My|zx(x; z) = Mx|zy(x; z) = −Mzy|x(x; z) = −Mzx|y(x; z). (A.35)
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In the applications, we numerically evaluate the Lagrangian correlation tensor, the running
diffusion tensor and also the asymptotic diffusion tensor, using an optimized numerical code
based on the Runge–Kutta–Fehlberg 45 (RKF45) method, as in [28, 36]. For each Lagrangian
correlation tensor a large enough number of decorrelation trajectories are considered, between
313 and 353. For each trajectory, a non-uniform grid in time direction, with up to 200 grid
points, is used. The final time was chosen between 10 and 15, so that the particles have
reached the asymptotic regime. From the numerical point of view, the problem is equivalent to
the calculation of an integral of the generic form

∫∫∫
dx dy dz (e− 1

2 (x2+y2+z2) · f (x, y, z)). We
evaluate the integral as a sum that contains a number of maximum 31 terms, and because of
the integrand’s form, we can consider the integration limits to be ±4 instead of ±∞. After the
calculation of the integral, an additional integral over ‘time’ must be done in order to obtain
the components of the running diffusion tensor.

Euraton © 2011.
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