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An investigation on the characteristics of self organized criticality (Soc) in ITG mode driven

turbulence is made, with the use of various statistical tools (histograms, power spectra, Hurst

exponents estimated with the rescaled range analysis, and the structure function method). For this

purpose, local non-linear gyrokinetic simulations of the cyclone base case scenario are performed

with the GENE software package. Although most authors concentrate on global simulations, which

seem to be a better choice for such an investigation, we use local simulations in an attempt to study

the locally underlying mechanisms of Soc. We also study the structural properties of radially

extended structures, with several tools (fractal dimension estimate, cluster analysis, and two dimen-

sional autocorrelation function), in order to explore whether they can be characterized as ava-

lanches. We find that, for large enough driving temperature gradients, the local simulations exhibit

most of the features of Soc, with the exception of the probability distribution of observables, which

show a tail, yet they are not of power-law form. The radial structures have the same radial extent at

all temperature gradients examined; radial motion (transport) though appears only at large tempera-

ture gradients, in which case the radial structures can be interpreted as avalanches.

[http://dx.doi.org/10.1063/1.4900767]

I. INTRODUCTION

The mechanisms responsible for anomalous transport in

magnetically confined plasmas are a subject of main interest

in fusion research. The characteristic scale of the transport

when considering the diffusive model proposed, e.g., by

Kadomtsev predicts a gyro-Bohm scaling,1 which is of the

order of the correlation length of turbulence. Experimental

results show that the scale can though extend to Bohm scal-

ing, where the dominant transport scale length is of the order

of the machine size. One of the mechanisms suggested2 to

explain the apparent paradox is based on the ideas of self-

organized criticality3 (Soc).

Self-organized criticality is a possible state of complex,

spatially extended systems that are systematically driven and

that have mechanisms to develop local instabilities and to

relax them. A main characteristic of Soc systems are long-

range spatial and temporal correlations,2–5 indicating scale

invariance and self-similarity. They are manifested in the so

called avalanches, i.e., ballistically propagating structures in

various observables. When Soc is present in dynamical sys-

tems, 1/f noise is generated due to the propagation of local

perturbations over all length and time scales which usually

cause sub critical transport.6 Observables of a system in a

Soc state exhibit power law form of their probability distri-

bution function.

The possible presence of self organized criticality in

magnetically confined plasmas has been studied in many

ways. The creation and simulation of models that have self

organized criticality characteristics and the comparison of

the findings with measurements from experimental devices

is an approach extensively used. One-dimensional transport

models,7 transport models derived from sandpile models,8

cellular automata models as running sandpile models,4 diffu-

sive sandpile cellular automata models,9 cellular automata

models derived from a diffusion equation,10 as well as many

other models have been proposed. There are also studies that

search for the characteristics of self organized criticality in

experimental data. Electrostatic, density or temperature fluc-

tuations are measured by Langmuir probes usually at the

plasma edge of Tokamaks or Stellarators. The analysis of

measurements from the SOL of DIII-D,11–13 TCABR,14 Tore

Supra and Castor,15 TEXTOR,16 KT-5D17 are some of the

examples in this line of work. Summarizing some of the ex-

perimental findings concerning self-organized criticality we

mention that the power spectrum of various observables,

e.g., density or electrostatic potential fluctuations, exhibits a

1/f behavior, and the radial propagation of avalanches is

observed. Also, long-range time correlations (or self-similar-

ity) have been detected.

In this work, we are going to search for the characteris-

tics of Soc in data from numerical simulations with a

gyrokinetic code, which is the main tool of many studies.

We are using the software package GENE (Gyrokinetic

Electromagnetic Numerical Experiment)19–22 for performing

non-linear ITG mode driven, gyrokinetic simulations in local

magnetic flux tube geometry. Although local simulations do

not seem to be the best candidate for the study of self organ-

ized criticality characteristics, since the latter is a global phe-

nomenon, it is proposed in a work by McMillan et al.18 that

a flux tube like 1D model can be used to study the character-

istics of bursts and that the underlying mechanisms of ava-

lanches are local processes. So far, only the appearance of

avalanches has been reported in gyrokinetic simulations by
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many authors in various kinds of simulations, i.e., ava-

lanches are detected in local23 and global24 gyrokinetic simu-

lations. There have also been studies using gyrokinetic

simulations concerning the effect of rotation on avalanches25

and mainly on how avalanches influence transport.26–28

There has not yet been made though a statistical study of the

time series of observables for an examination of all the char-

acteristics of self organized criticality, besides the appear-

ance of avalanches. Our purpose here is to perform such a

statistical examination of gyrokinetic simulations using vari-

ous statistical tools. We also explore the dependence of Soc

characteristics on the different physical parameters and the

set up used in gyrokinetic simulations.

The rest of this paper is organized as follows. In Sec. II,

the numerical set up of our gyrokinetic simulations is given;

in Sec. III, we show the results of the analysis of the time se-

ries of the radially averaged heat flux, applying various sta-

tistical tools, and searching for the characteristics of self

organized criticality. In Sec. IV, we perform a two dimen-

sional analysis of the heat flux in the radius-time (x–t) plane,

focusing our interest on structural properties of avalanches;

in Sec. V, a brief discussion and comments on the results are

given, and we summarize our findings in Sec. VI. A detailed

description of the theoretical framework of the statistical

tools used is given in the Appendix.

II. BASIC PARAMETERS AND SET UP

Our goal is to find the characteristics of a Soc state in

gyrokinetic simulations of ITG mode driven turbulence, and

as already stated, we consider the case of local non-linear

simulations. Since we focus on ITG turbulence, we will use

a variation of the basic paradigm used in the literature, the

well known cyclone base case29 (from now on referred to as

CBC). We use a magnetic equilibrium with circular30

concentric flux-surfaces and with inverse aspect ratio

a/R¼ 0.36. This of course differs from the CBC scenario,

which uses s-alpha geometry but this selection was made

because we need a common basis for planned future global

simulations which can only be done in circular geometry

with the GENE software package. Local simulations are tak-

ing place in a magnetic flux tube and the center of this mag-

netic flux tube is the point where the parameter values are

assumed. Also, electrons are considered to be adiabatic in

order to have only ion driven modes of turbulence. The local

safety factor is selected to have the usual value for the CBC,

q0¼ 1.4 with shear s¼ 0.796 at r¼ 0.5a and the local aspect

ratio is set to �t¼ 0.18. The value for the plasma beta b is

chosen for the case of the electrostatic limit so b¼ 0. The

density gradient is set to the value xn¼ 2.22 and the tempera-

ture gradient varies in the range xT¼ 3.5–6.9 in different

simulations, with all the other parameters kept the same. We

also assume that the plasma is collision-less.

The perpendicular to the magnetic field simulation box

size is chosen to be (Lx, Ly)¼ (125.628, 125.664) in units of

the ion gyroradius qs and 128� 48� 24 grid points are used

in the radial (x), binormal (y), and parallel direction (z),

respectively, complemented by 32� 8 grid points in (vk, l)

space, where vk is the parallel velocity and l the magnetic

moment. Finally, the box size in the vk direction is Lv¼ 3.0

in units of the thermal velocity, and the upper limit in l
direction is Ll¼ 9.0 in units of the equilibrium temperature

of the species and the inverse reference magnetic field. The

minimum ky mode is typically set in the simulations to the

value kymin¼ 0.05. Finally, for time integration, a Runge-

Kutta scheme of the fourth order is used.

For the parametric study, we have chosen the minimum

value of the temperature gradient xT¼ 3.5 just above the

critical temperature gradient threshold of linear local ITG

simulations (xT¼ 3.1) for the most unstable mode which is

close to ky¼ 0.2–0.3, and we then use different values of xT

up to the usual CBC value xT¼ 6.9. The parameters of the

set up are summarized in Table I.

III. RESULTS FROM THE TIME SERIES ANALYSIS

A. Analysis

We analyze the time series of the radially averaged heat

flux. Because of the varying time step used by GENE, we

have interpolated the data using cubic splines and created

time series that are equally spaced in time. We exclude the

initial linear growth phase of the time series and select a part

in it, where we can say that there is saturation and stationar-

ity (an example is presented in Fig. 1). The latter is important

since it is a prerequisite for some of the analysis tools

applied. The number of data points used in the analysis is

65 536, a power of 2, useful for Fourier transforms.

B. Histograms, skewness, and kurtosis

We determine the histogram from each time series (nor-

malized to unity). Some sample histograms for selected cases

of simulations are presented in Fig. 2. Each histogram is not

an exact Gaussian but has an asymmetry, as can be expected

in turbulence. The histograms are shifted and spread in width

as the temperature gradient increases. The latter holds also in

the case of the histograms not shown. The extent of the tail

is too small for a fit to be applied. The shapes of the histo-

grams are not compatible with Soc systems where the proba-

bility distributions of observables have a power law form.

For a quantification of the asymmetry in the distribu-

tions, we measure the skewness and the excess kurtosis, as

explained in the Appendix, using Eqs. (A9) and (A11),

respectively. The variation of the skewness and the excess

kurtosis with the temperature gradients is shown in Fig. 3

and as can been seen, it is not a smooth function of the tem-

perature gradient.

TABLE I. Summary of the parameters used in the non-linear gyrokinetic

simulations preformed with the software package GENE.

Basic parameters Numerical value

Temperature gradient R/LT 3.5–6.9

Density gradient R/Ln 2.22

Magnetic shear ŝ 0.796

Safety factor q0 1.4

Inverse aspect ratio � 0.36

Inverse aspect ratio (local) �t 0.18

102312-2 Mavridis et al. Phys. Plasmas 21, 102312 (2014)
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All histograms are positively skewed and they also pos-

sess positive kurtosis. The positive skew indicates the exis-

tence of relatively large events (events larger than the mean

value of the time series), even for the smallest temperature

gradient values. We can see that the value of the skewness

does not change significantly with the increasing temperature

gradient, which suggests that the appearance of large events

does not change significantly with the increase of the gradi-

ent. The kurtosis seems to increase slightly with the increase

of the temperature gradient. This increase indicates that there

is an increase in the peakedness and tail which could be

related to the increase of the scales of structures created in

more developed turbulence.

C. Power spectrum

A useful tool in the study of Soc systems is the power

spectrum of the time series of observables. The power spec-

trum of such systems, can be divided into several distinct fre-

quency regions where it follows power laws, P(w) / w�a,

with varying exponents. Each region is related to a different

scale of events taking place. At low frequencies a power law

exponent equal to zero is expected corresponding to decorre-

lated scales. The region of intermediate frequencies with

exponent equal to unity has been related to the overlapping

of avalanches, and finally the region of large frequencies

with an exponent much larger than 2, corresponds to small

scale events.32 This behavior has been reported in theoreti-

cal works, e.g., in Refs. 7 and 9, and it has also been seen

in the power spectrum of experimental data, e.g., in Refs.

16 and 17.

We determine the power spectrum of the radially aver-

aged heat flux. In Fig. 4, the power spectrum from three sim-

ulations with different temperature gradients is presented.

The multiple power law feature, characteristic of Soc sys-

tems, is observed, and appears also in the power spectrum of

the simulations not shown here. As the temperature gradient

increases the power spectrum is expanding to higher fre-

quencies, which means that even smaller scales appear in the

system. There is an increase of the highest frequency of

almost a decade, when R/LT increases from R/LT¼ 3.5 to

R/LT¼ 6.9.

FIG. 1. A sample time series of the radially averaged heat flux q for temper-

ature gradient R/LT¼ 5.0. Red dashed lines mark the stationary part of the

time series selected to be analyzed.

FIG. 2. Probability distribution functions P(q) of sample histograms of the

normalized heat flux q for the gradient values, R/LT¼ 6.0 (red) solid line, R/

LT¼ 6.5 (green) dashed line, and R/LT¼ 6.9 (blue) dashed-dotted line.

FIG. 3. Variation of skewness (red) solid line with crosses (A) and excess

kurtosis (blue) dashed line with circles (B) with the temperature gradient.

FIG. 4. Power spectrum of the heat flux from simulations for the cases with

temperature gradients: (a) solid line (red) R/LT¼ 3.5, (b) dashed line (blue)

R/LT¼ 5.0, and (c) dashed-dotted line (green) R/LT¼ 6.9.

102312-3 Mavridis et al. Phys. Plasmas 21, 102312 (2014)
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We identify in the power spectra the three distinct

regions. The region at low frequencies shows exponents very

close to or almost zero. The region at large frequencies

exhibits exponent values starting from high values at low

temperature gradients (a� 10) and as the temperature gradi-

ent increases the value of the exponent decreases to smaller

values (a� 5–6).

The exponent of the power law at the intermediate fre-

quencies, is of main interest. The variation of the exponent

in this region with the temperature gradient is shown in

Fig. 5. It can be seen that the exponent is varying between

the values 1 and 3. As the temperature gradient increases the

characteristic for Soc systems 1/f dependency, appears and

the extent of the intermediate frequency region increases.

This can be explained by examining the number of ky modes

in Fourier space for various observables but mainly the heat

flux. We find that almost all ky modes included in the set up

of our simulations are non linearly interacting with a signifi-

cant amplitude when the temperature gradient R/LT� 5.0,

while only a small number of modes interacts non linearly

with significant amplitude at lower gradients. Also, by exam-

ining the contribution of each ky mode to the heat flux, we

can see that all of them contribute when R/LT� 5.0, while

for lower gradients only the linearly most unstable modes

are important for the heat flux.

D. Hurst exponent from the rescaled range analysis

A calculation of the Hurst exponent using the rescaled

range analysis33 (see Appendix) method gives three different

scaling regions, as expected from the shape of the power

spectrum. An example of the rescaled range analysis is given

in Fig. 6. There is a region where the exponent is close to

unity (region A), an intermediate region which is of main in-

terest (region B) and finally a region where the values of the

Hurst exponent are approaching 0 (region C).

The variation of the Hurst exponent for each region with

the temperature gradient is presented in Fig. 7. In region A,

all simulations have a Hurst exponent close to unity. This

region corresponds to highly correlated small scales. Region

C corresponds to large decorrelated scales. We can see that

the value of the Hurst exponent is quite high in region C, we

would expect it to be closer to zero and only at the larger val-

ues of the temperature gradient, it starts at least diminishing

towards the anticipated values.

The region we are mainly interested in is the middle

region, the so called mesoscale region. The term mesoscale

and its importance is discussed, e.g., in Ref. 12. In short, the

mesoscale is the intermediate scaling range, and it is of inter-

est since at smaller scales the Hurst exponent is basically

one, due to the strong, yet trivial, correlations at small scales

in deterministic systems, while at larger scales the Hurst

exponent basically equals zero, since the scales have been

reached where the data become uncorrelated. The mesoscale

thus is the scaling range that reveals non-trivial, long range

correlations.

At low value temperature gradients, where turbulence is

not fully developed, we can see that the Hurst exponent in

the mesoscale region is close to unity. This means that the

system is highly correlated and the corresponding fractal

dimension D is close to unity according to Eq. (A3). With

increasing temperature gradient, which, as already stated,

FIG. 5. Variation of the power-law exponent of the power spectrum in the

intermediate range frequencies (red) solid line.

FIG. 6. Rescaled range analysis as a function of the scale s. Three different

regions with power-law scaling are discernible.

FIG. 7. Variation of the Hurst exponent from the rescaled range analysis in

the different scaling regions (see Fig. 6).
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increases the number of the linearly destabilized modes, and

also the number of non-linearly interacting ky modes with

significant amplitude that contribute to the turbulence seen

in the heat flux, we can identify a clear deviation from unity

and also an extension of the scaling region. The Hurst expo-

nent is H¼ 0.85–0.83 for gradients R/LT� 6.0 something

that shows the existence of long range correlations and per-

sistence in the time series. We can also see that as the tem-

perature gradient increases, the Hurst exponent slightly

decreases. These values correspond to a fractal dimension

D¼ 1.15–1.17, according to Eq. (A3).

E. Generalized Hurst exponents

The structure function34 Sq (see Appendix) is another tool

used to investigate long range correlations through generalized

Hurst exponents. Structure functions offer many advantages12

compared to the rescaled range analysis method, among which

are the inference of stationarity of a time series and of multi-

fractality. We calculate the structure functions with the value

of the parameter q varying in the range q¼ 0.5–7 and using

first the raw (original), time series data. We then repeat the

procedure for the cumulative data. From the structure func-

tions of the raw data, we can identify the region where the

slope of logðSqÞ with logðsÞ, where s is the time lag, is equal

to zero for all q, which shows the scale range where the raw

time series is stationary. We then calculate the structure func-

tions of the integrated data and estimate the Hurst exponent

with linear fits in the log-log plots at almost the same r egion

where stationarity was detected in the raw data, for the differ-

ent values of the q parameter. An example is given in Fig. 8.

The analysis with the structure functions gives similar

results as the rescaled range analysis above. Three distinct

scaling regions appear, in agreement with the R/S method.

The first small s region corresponds again to highly corre-

lated small scales. The intermediate mesoscale region, which

is of main interest, concerns self-similar structures. The large

s region, corresponds to the large decorrelated scales.

In all simulations, the first region exhibits a generalized

Hurst exponent equal to unity, for all the values of the q pa-

rameter. The largest s region has values of the Hurst expo-

nent lower than or almost equal to H� 0.5.

For the mesoscale region, we present the variation of the

generalized Hurst exponent with the temperature gradient for

the value of q¼ 2 in Fig. 9. Estimates of the Hurst exponent

with the structure function with parameter q¼ 2 should theo-

retically give the same results as the estimates of the Hurst

exponent calculated by the rescaled range analysis. At low

temperature gradients, we have values of the generalized

Hurst exponent close to the value Hq� 0.9 and as the tem-

perature gradient increases and turbulence gets fully devel-

oped, the value lowers to Hq� 0.85. These values are indeed

very close to the estimates yielded by the R/S method (see

Fig. 7), and show persistence of the time series, and the exis-

tence of long range correlations.

The structure function method, as already stated, is also a

useful tool for the detection of multifractality. to this end, we

consider the product qHq¼ f(q) as a function of q. If f(q) is a

linear function of q then we infer monofractality, and otherwise

multifractality. An example is given in Fig. 10, for the case

with R/LT¼ 6.9. We can see that f(q) is a linear function, and

the same functional form is observed in all simulated cases,

there is thus no multifractal scaling in all cases.

FIG. 8. (top) Structure function of the original data against the time lag s.

(bottom) Structure function of the cumulative data (red), dots, against the

time lag s, with linear fits (blue), solid lines, in the mesoscale region. The

lowest sequence of dots are for q¼ 0, and q increases in steps of 0.5, up to

the upper most sequence of points which is for q¼ 7.0.

FIG. 9. Variation of the generalized Hurst exponent for the value of q¼ 2

with the temperature gradient R/LT.
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IV. RESULTS FROM THE ANALYSIS IN THE RADIUS
TIME PLANE

A main characteristic of systems in Soc state are ava-

lanches. For their detection and the study of their statistics,

we perform some analysis in the radius time plane. The tools

used are calculation of the fractal dimension of the heat flux

patterns, analysis of the number and extent of radial struc-

tures, and calculation of the two dimensional autocorrelation

function.

A. Fractal dimension of avalanching structures

We consider the heat flux as function of radius (x) and

time (t), as computed by GENE. The analysis was made for

the stationary parts of the heat flux data as determined for

the time series in Sec. III, and we use simulations with vary-

ing temperature gradient R/LT¼ 3.5–6.5 in steps of 0.5,

except for the value R/LT¼ 5.5 where no stationary part was

detected in the time series. As already mentioned, we inter-

polate the computed data using cubic splines, in order to cre-

ate data that are equally spaced in time.

Since the x grid is limited to 128 data-points, we also di-

vided the time direction into sets of 128 steps, and consider

128� 128 sized squares as images. A sample image is pre-

sented in Fig. 11. We set a threshold value for the heat flux,

and each value of heat flux in the computational grid equal

to or above the threshold value is kept, and the values lower

than the threshold are set to zero. In this way we isolate

events of relatively large magnitude, with the threshold a

free parameter. For each image, we calculate the fractal

dimension, using the box-counting method (see, e.g., Ref.

35), and repeat the procedure for each simulation. The

threshold value for the box counting method used is the

mean value of the averaged in the radial direction heat flux,

and also 1.5 times this mean value.

Results of the calculated fractal dimension D are given

in Tables II and III for the two threshold values. We see that

with increasing temperature gradient the mean fractal dimen-

sion of the evolution is almost constant in the simulations.

For threshold value, the mean value of the averaged heat

flux, Table II, we can see that D is in the range

D¼ 1.76–1.84. Results when increasing the threshold to 1.5

times the mean value are given in Table III and give a D in

the range D¼ 1.45–1.56. The maximum values of the dimen-

sion are also almost constant, with values 1.9 and 1.7,

respectively. The minimum values of the dimension are

more diverse in values than the maximum values.

B. Cluster analysis

For the detection of structures mainly in the radial direc-

tion, we perform an analysis that determines the structures

(clusters) and counts their radial extent and number. We

again set a threshold value for the heat flux and retain all val-

ues of the observable above this threshold, all other values

are set to zero. In this way isolated radially extended struc-

tures are made identifiable. Each structure is considered as

separate if there is at least an empty grid point surrounding it

in every direction. We then determine the extent of these

structures in radial direction and calculate the probability

distribution functions of the radial extents.

We use as threshold values 1.5, 1.8, 1.9, and 2.0 times

the mean value of heat flux. A sample image of the structures

is given in Fig. 12 for the simulation with R/LT¼ 6.5 and

FIG. 10. Variation of the product qHq with q for the case with temperature

gradient R/LT¼ 6.9.

FIG. 11. Large events in a 128� 128 sample image of heat flux in the radius

time plane from a simulation with R/LT¼ 6.5.

TABLE II. Values of fractal dimension D for a threshold value equal to the

mean value of the radially averaged heat flux: mean value Dmean of the

128� 128 images, maximum value Dmax, minimum value Dmin.

Temperature gradient Dmin Dmax Dmean

3.5 1.677 1.911 1.84

4.0 1.734 1.934 1.84

4.5 1.426 1.95 1.76

5.0 1.713 1.903 1.80

6.0 1.487 1.939 1.79

6.5 1.669 1.909 1.81
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with threshold value 1.5 times the mean value of the heat

flux. We see that the structures have a quite large radial

extent within the flux tube, and thus they can be considered

as candidates for avalanches, see below.

The histogram of the radial extent of a selected case is

presented in Fig. 13. We can identify a clear power law

shape, with two main regions, a region of low slope � 2 and

bigger extent (region A) and a region with high slope and

smaller extent (region B). The overall extent of the histo-

gram is limited by the relatively small size of the grid in the

radial direction. We calculate the slope of the power laws

with a fit, and the variation of the exponent of the power law

with the temperature gradient in the first region is shown in

Fig. 14. The variation is quite small, with almost constant

values 1.6–1.7 with exception the case R/LT¼ 4. This region

concerns events of small to medium extent and has structures

with power-law shapes whose indexes are also almost unaf-

fected by the threshold set. The exponent of the power law

index of the radially more extended structures in the second

(B) region has higher values and seems to be affected by the

threshold. Yet the values can not much be interpreted due to

the small extent of the power laws.

C. Two dimensional autocorrelation function

The autocorrelation function is defined as the cross-

correlation of the signal and a lagged version of itself. In our

case, the signal consists of heat flux in the x – t plane, and

we calculate the two dimensional autocorrelation function.

For the calculation we use the method based on the

Wiener-Khinchin theorem, which allows computing the

autocorrelation from the data q(x, t) with two Fast Fourier

transforms (FFT). First, we subtract the mean value from the

data. We then compute the autocorrelation function of the

data by Fourier transforming them into the frequency do-

main, taking the modulus of the spectral coefficients, and

then performing the inverse Fourier transform.

For each one of the simulations and for the purpose of

Fourier transforms, a data grid of heat flux, which consists in

128 points in the radial (x) direction and 4096 points in the

time t direction was selected as the highest values which are

TABLE III. Values of fractal dimension D for a threshold value equal to 1.5

times the mean value of the radially averaged heat flux: mean value Dmean of

the 128� 128 images, maximum value Dmax, minimum value Dmin.

Temperature gradient Dmin Dmax Dmean

3.5 1.043 1.721 1.45

4.0 1.213 1.781 1.54

4.5 0.545 1.874 1.56

5.0 1.276 1.689 1.53

6.0 1.08 1.76 1.51

6.5 1.095 1.714 1.47

FIG. 12. Radially extended structures in a contour plot of the heat flux

with threshold 1.5 times the mean value of heat flux, for simulations with

R/LT¼ 6.5.

FIG. 13. Histogram of the radial extent of structures of heat flux with values

above a threshold of 1.5 times the mean value and for the simulation with R/

LT¼ 6.5. The solid line fits region A, and the dashed line fits region B.

FIG. 14. Variation of the power law index of the histograms of the radial

extent of structures with the temperature gradient in region A. The threshold

is set to 1.5 (red solid line), 1.8 (blue dashed line), 1.9 (black dots), 2.0

(green dashed-dotted line), times the mean value of the radially averaged

time series.
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both powers of two. Also we do not show the redundant neg-

ative time lags.

We calculate the velocity of possibly traveling structures

appearing in the autocorrelation function. At every time lag,

we locate the position of the maximum value of the autocor-

relation function above a minimum value of 0.3, for both

positive and negative spatial lags dx. This produces lines in

the time-lag radial-lag plane and the calculation of the slope

of a linear fit to these lines, wherever this is possible, gives

the velocity of structures in units of the thermal speed.

At low temperature gradients R/LT¼ 3.5, 4, and 4.5, we

observe that there are no traveling structures in the radial

direction, see the example in Fig. 15. As the temperature

gradient increases we find that for the simulations with

R/LT¼ 6.0 and 6.5 there are radially traveling structures. We

make a linear fit for these two cases and calculate the velocity

of these structures. In the case of the temperature gradient R/

LT¼ 6, we find for positive lags, a velocity v¼ 2.79, while

for negative lags v¼�2.57. In the case of the temperature
gradient R/LT¼ 6.5, we find for positive lags, a velocity

v¼ 2.96, while for negative lags v¼�2.75. In both cases, the

values of the velocity at negative and positive spatial lags are

close, with the velocity of the positive spatial lags being

larger. Also, there is an increase of these values with the

increase of the temperature gradient.

Because in our analysis so far, we have seen that the ra-

dial structures have almost the same size distribution and the

fractal dimension of the images in the radius-time plane is

almost constant, the above result is interesting, because we

find that these structures start traveling only at large tempera-

ture gradients. So although these structures exist even with

smaller gradients their radial motion starts above a certain

threshold in the temperature gradient.

In order to investigate this further we calculate accord-

ing to Ref. 18 the tilting parameter P ¼ Im½ðdq=dx
þ ıdq=dtÞ2� where q is the heat flux. This quantity measures

the dominant direction of diagonally aligned structures.

Spatial locations with positive P> 0 correspond to events

propagating to smaller x with increasing time and vice versa

for P< 0. The mean value of P is almost zero for all simula-

tions meaning that we have equally tilted structures in both

directions. The standard deviation r of P though is increas-

ing with the temperature gradient, as can be seen in Fig. 16.

The increase of the tilting of structures is related to the

motion of structures, which we now can consider to be ava-

lanches at the large temperature gradients.

V. DISCUSSION

Since Soc is considered to be linked to systems in a mar-

ginal stability state, we start the simulations from a low tem-

perature gradient very close to the linear threshold, where

the turbulence drive is low, and we then gradually increase

the gradient. We could thus divide the simulations into three

regimes: (a) a regime R/LT� 3.5–4.5 close to the linear

threshold for the fastest growing mode, where the heat flux

transport is very low, (b) the Dimits shift29 regime

R/LT� 5–6, near where the heat flux transport still remains rel-

atively small, and (c) the stiff regime R/LT� 6.0, where the

heat flux strongly depends on and increases as the temperature

gradient increases.

FIG. 15. Autocorrelation function for the simulations with gradients

R/LT¼ 3.5 (top) and R/LT¼ 6.5 (bottom). The black lines show the local maxi-

mum value of the autocorrelation function.

FIG. 16. Variation of the standard deviation r of the tilting parameter P
with the temperature gradient.
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In the first regime, close to the linear threshold, the fluc-

tuation level of the various observables is low, mainly of the

density. Zonal flows appear, which give rise to a finite shear-

ing rate. In Fourier space, we observe that the amplitude of

modes non-linearly interacting is significant for only a lim-

ited number of them, for the observables of density and tem-

perature in the direction perpendicular to the magnetic field.

For the other observables, e.g., the electrostatic potential, the

modes corresponding to zonal flows have the largest ampli-

tude. In the time-radius plane, we observe heat flux struc-

tures with a quasi-oscillating behavior, rarely overlapping

between them, and when so, giving rise to larger structures.

When examining the contribution of each ky mode to the

total heat flux, we can see that only a small number of modes

have a significant contribution. These modes are typically

localized next to the largest linear growth rate, while most of

the other modes included in the simulation have a linear

growth rate close or equal to zero. This oscillating behavior

of heat flux structures could be understood as a consequence

of the limited number of modes that are significant in the

non-linear interactions and participate in the transfer of

energy. We could say that heat flux structures have a

streamer-like behavior. This behavior can also be considered

responsible for the value of the Hurst exponent to be close to

unity, since the quasi-oscillating heat flux structures are

highly correlated. Also, it should lead to peaks appearing in

the power-spectrum at specific frequencies, which is

observed in some of the cases simulated (e.g., Fig. 4 for the

case with R/LT¼ 3.5), but radially averaging the time series

of the heat flux, as we did it in our analysis, tends to smear

out clear peak-shaped structures.

The Dimits shift is basically the nonlinear upshift of the

threshold for collisionless, electrostatic ITG turbulence, which

is caused by undamped, self-generated zonal flows. In the re-

gime of the Dimits shift, the number of unstable and non-

linearly interacting modes with significant amplitude of the

density and the temperature in the direction perpendicular to

magnetic field increases both in kx as well as in ky space. The

amplitude of the density fluctuations remains at low values

though, while the amplitude of the temperature fluctuations

increases significantly. Heat flux structures gradually increase

their radial extent, and also their overlapping is increasing but

still limited, and there is no significant degree of radial travel-

ing structures. A gradual increase in their tilting is also

observed, and also the shearing rate produced by zonal flows

increases. The oscillating behavior of heat flux structures,

although present, diminishes, while larger magnitude heat flux

structures appear. These heat flux structures could be

described to have a streamer-like/bursty behavior. This behav-

ior, as already stated, makes the Hurst exponent in the meso-

scale region to remain close to unity. Turbulence is, relatively

to the previous regime, increased and more developed. Also,

the timeseries of the averaged heat flux appear to be more

intermittent in this regime. This could explain the increase of

the power law exponent with the temperature gradient, yet

there is no self-organization. The Dimits shift regime is one

where free energy is transferred to the zonal flows, with rela-

tively little remaining in the drift waves. Thus this regime is

dominated by zonal flows.

In the stiff regime with large temperature gradients R/

LT� 6.0, the level of fluctuations of the electrostatic poten-

tial increase, and the number of modes of the electrostatic

potential in Fourier space that are interacting non-linearly

and have significant amplitude also increases. The latter also

stands for the parallel velocity, while for the density and the

temperature almost all modes taken into account by the sim-

ulation set-up interact non-linearly with large amplitudes in

Fourier space. Strong zonal flows shear turbulent eddies for

all the mentioned observables. In the radius-time plane, radi-

ally traveling heat flux structures appear and overlap. As

described in our analysis, their attributes (tilting, radial trav-

eling, large tail in the two dimensional autocorrelation func-

tion) allows us to characterize such structures as avalanches.

So the non linear interaction between zonal flows and drift

waves seems to lead to self-organization, as the values of the

power spectrum indices, the Hurst exponent in the mesoscale

region, as well as other findings, tend to resemble those pro-

duced by direct Soc models. Also, it has been reported in

many cases31 that this turbulence regime should be consid-

ered as a self-regulating, two-component system consisting

of the usual drift wave spectrum and zonal flows.

An interesting point to comment on is the local mini-

mum in the power-law exponent (Figure 5). This can be

interpreted based on the work of Ref. 32 and the above anal-

ysis. At lower temperature gradients, large non-overlapping

events with significant radial extent appear and are of quasi

periodic nature, having as already mentioned a streamer-like

behavior which results in an exponent in the intermediate

frequency region between 1 and 2. As turbulence begins to

develop with the increase of the temperature gradient to in-

termediate values, this quasi periodic nature diminishes.

Independent, yet still with a tendency not to over-lap, large

scale heat flux events with no radial traveling and with a

streamer-like/bursty behavior lead then to a regime where

the exponent shows its minimum. Further increase of the

temperature gradient increases the number of the large heat

flux events, which become tilted and overlap having a more

avalanche-like behavior. The latter gradually increases the

value of the exponent, which finally, when the gradient

exceeds R/LT� 6.0, leads to 1/f noise.

The skewness and kurtosis show a minimum in the same

range of temperature gradients (4–5) as the power-law expo-

nents. Thus, it seems that the two statistics follow each other:

there is a reduction in the temporal correlations in this region

of gradients that is accompanied by an increased

“Gaussianity” of the heat-flux histograms. We can conclude

that we see a transition from a quasi-periodic, well corre-

lated, slightly non-Gaussian regime at the lowest gradients,

to turbulent, correlated and self-organized, again slightly

non-Gaussian regime, at the highest gradients. The regime of

intermediate gradients is the transient regime, where the

developing turbulence can be described as not yet much self-

organized and correlated noise with close to Gaussian

statistics.

The main goal of this work is to conclude whether ITG

mode driven gyrokinetic turbulence reaches a state of self-

organization. This is quite a difficult task since the definition

of a Soc state is still a field of debate. In brief, one can
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distinguish three definitions of Soc, a phenomenological3

definition, an operational10 definition, and a theoretical3 defi-

nition. The theoretical definition (driven, spatially extended,

non-linear systems that are in a minimally (marginally) sta-

ble state) is vague in the sense that it expresses only a neces-

sary prerequisite for Soc to appear. The operational

definition can be understood as set of guiding rules for the

construction of explicit Soc systems (e.g., the system is spa-

tially extended and driven locally, there are local threshold

dependent instabilities, and there is a local relaxation mecha-

nism that stabilizes the instabilities). Again, the operational

definition enumerates basically necessary conditions for the

appearance of Soc, and in any case, using either the theoreti-

cal or the operational definition, the “proof” that a Soc state

is reached can be made only by using the phenomenological

definition of Soc, which describes a basic set of statistical

properties of the Soc state (the appearance of avalanches,

with power-law shaped distribution functions and power-

spectra, self-similarity and long range correlations, etc.).

In the frame of these considerations, we apply the phe-

nomenological definition of Soc in our work. Thus, accord-

ing to the phenomenological definition, some important

characteristics of a Soc state include a characteristic form of

the power spectrum having three distinct regions (Ref. 32,

and see also the respective comment therein): A high fre-

quency region where the exponent is approximately �4, the

middle to low frequencies region (the avalanche overlapping

region) where the power law exponent is approximately �1

and the region of low frequencies where the spectrum is flat

and has an exponent approximately 0. Although in our simu-

lations, the power spectrum has a definite multiple power

law form, the exponents are closer to the usual values of a

Soc state as the temperature gradient R/LT� 6.0 in the simu-

lations. Since the simulation with gradient R/LT¼ 5.5 had no

stationary part for the analysis, a precise determination of

the gradient where the usual power spectrum shape of a Soc

system appears cannot be made. The latter gradient value

concerns of course only the simulations performed in this

work.

Long range correlations are another characteristic of a

system in a Soc state. A usual method for their detection is

the calculation of the Hurst exponent, which in this work is

performed with two different methods, the R/S analysis and

the structure function method, and which give similar results.

A usual value of the Hurst exponent for a system in a Soc

state is H� 0.7–0.8 (e.g., Ref. 9). In our case, these values

appear also, as can be seen in Figures 7 and 9, for the same

large values of the temperature gradient R/LT� 6.

The previous point is also related to a third phenomeno-

logical criterion, the existence of an algebraic tail in the

autocorrelation function. This can be detected in the calcula-

tion of the one or two dimensional autocorrelation function,

which falls off quite rapidly for the simulations with low

temperature gradient, while for those simulations preformed

for gradients R/LT� 6.0 the autocorrelation function stays

above the 1/e-limit for larger values of the time lag (see, e.g.,

Fig. 15).

Finally, as mentioned in Ref. 4, in a Soc state, coherent

avalanches can be detected to grow and shrink, some are

seen to propagate “up-hill” while others are seen propagating

“down-hill,” and this dual propagation represents a charac-

teristic feature of the Soc state. In our study, we observe

propagation of avalanches for the already mentioned high

temperature gradient values (see, e.g., Figures 15 and 16).

We must mention though that in local simulations the

mean temperature gradient stays constant during the simula-

tions, so that, applying the theoretical definition of Soc, and

studying the evolution of the temperature profile and whether

it reaches a subcritical state, which also is a characteristic of

Soc, is not feasible in the presented simulations. Having the

latter in mind, we conclude from the above analysis that a

Soc state is probably reached for the simulations that have R/

LT� 6.0, or, more carefully formulated, our findings are

largely compatible with the system being in the state of Soc

for large gradients. A careful formulation also is appropriate

since one basic phenomenological property of Soc is absent,

namely power-law shaped distribution functions of system

variables, such as of the heat flux in our case.

VI. CONCLUSIONS

We have made local non linear gyrokinetic simulations

with varying temperature gradients, starting just above the

linear critical threshold and extending up to the standard

value of the CBC scenario. We made a statistical analysis of

the time series of the averaged heat flux and of the heat flux

as a function of radius and time, applying various statistical

tools.

In the analysis of the radially averaged heat flux we find

some of the characteristics of Soc systems, mainly as the tem-

perature gradient increases. At low gradients only a few

modes non-linearly interact with a significant amplitude and

turbulence is not fully developed. When all modes interact

nonlinearly with almost the same amplitude, we observe the

multiple power law form of the power spectra, as well as the

1/f dependency of the power spectrum in the intermediate fre-

quency region. The Hurst exponent H� 0.8 is estimated with

the R/S method and also by using structure functions. This

value shows the existence of long range correlations, a main

ingredient of Soc systems. Histograms of heat flux do not

have a power law form, which would be expected in a system

exhibiting Soc. Instead, they have an almost Gaussian shape

with only a small tail and with positive skewness and kurtosis.

In the radius-time plane, we find that, although the to-

pology of the heat flux patterns does not change significantly,

when characterized by the fractal dimension or the histo-

grams of the radial extent of the structures, which both show

only slight variations, the motion of structures in the radial

directions appears only at the largest gradient values. Also,

the increasing tilting of these structures as the temperature

gradient increases is closely related to their radial motion.

We thus conclude that there are radially extended structures

for all temperature gradients, only for large gradients though

they are traveling and can be called avalanches.

These results, obtained with a gyrokinetic code, resem-

ble experimental observations, although a direct comparison

can be made only with care since we have restricted our

study to local non linear simulations. Experimental
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measurements made at the plasma edge of Tokamaks show

the multiple power law form, as well as a close to 1/f de-

pendency in the intermediate frequency region of the power

spectra (e.g., see Refs. 11–17), which was also found in this

study for large temperature gradients. The index in the high

frequency region though is usually slightly smaller than the

one found in this work. The Hurst exponent calculated from

experimental data with the use of the same methods as done

here (R/S analysis, structure function), show for the meso-

scale region values ranging usually between 0.7 and 0.8

(e.g., see Refs. 11–13 and 16), similar to our findings.

By applying a phenomenological definition of a Soc

state, we can conclude that a Soc state is probably reached

for the simulations that have R/LT� 6.0, with one character-

istic Soc feature being absent, namely, power-law shaped

distribution functions. Finally, the fact that some characteris-

tics of self organized criticality can be reproduced by a gyro-

kinetic code, shows that these can arise from the physical

content of the gyrokinetic equations and mainly the non line-

arities. In the future, an extension of this kind of work will

be made, including global, flux and gradient driven simula-

tions, for a direct comparison with the experimental data, as

well as with the findings of the local simulations presented in

this study for large temperature gradients.

ACKNOWLEDGMENTS

This work was supported by the National Programme

for the Controlled Thermonuclear Fusion, Hellenic Republic,

and the European Union’s Horizon 2020 research and

innovation programme under grant agreement No. 633053

(M.M., H.I., and L.V.). The authors gratefully acknowledge

the computing time granted on the supercomputer JUROPA/

HPC-FF at J€ulich Supercomputing Center (JSC). The views

and opinions expressed herein do not necessarily reflect

those of the European Commission.

APPENDIX: STATISTICAL TOOLS

The theoretical framework of the statistical tools used

throughout this work is given below.

1. Hurst exponent

In the R/S analysis, a self-similar scaling

lim
s!1

R

S
sð Þ ¼ ksH (A1)

is sought, where R and S denote the range and the standard

deviation, respectively, of the cumulative (integrated) time

series Wk, s denotes a time lag, k as a constant, and H as the

Hurst exponent. For a time series segment of length n which

is a subset of the total data record of length N
ðn � NÞ; X � fXn : n ¼ 1; 2; 3; 4;…; ng, corresponding to a

stationary process, Wk is given by Wk ¼ X1 þ X2

þ 	 	 	 þ Xk � k �X, where �X is the mean of X. The R/S ratio is

the ratio of the maximal range of the integrated signal nor-

malized to its standard deviation. It is defined for a given

time lag n as

R nð Þ
S nð Þ

¼ max W1;W2;…Wnð Þ � min W1;W2;…Wnð Þffiffiffiffiffiffiffiffiffiffiffi
S2 nð Þ

p : (A2)

We divide the original data set into subsets according to

the lag used, calculate for each subset the R/S ratio and then

calculate the mean value of all the subsets. A possible scal-

ing of R/S in the form of Eq. (A1) is then searched for, which

allows to determine H.

When 1>H> 0.5 there are long-range time correlations

(persistence), for 0.5>H> 0, the time series has long-range

anti-correlations (anti-persistence), if H¼ 1.0 the process is

deterministic and finally for time series with no correlations

(i.e., purely random) H¼ 0, and for Brownian motion

H¼ 0.5. The Hurst exponent is theoretically related to the

fractal dimension D (see, e.g., Ref. 35) as

D ¼ 2� H: (A3)

2. Structure function analysis–Generalized Hurst
exponent

Assuming as before a stationary time series of length N,

X � fXn : n ¼ 1; 2; 3; 4;…;Ng, we can create again the cu-

mulative series Wk, as already described in the previous sec-

tion. For such a time series of length N, written now as

W(ti)(i¼ 1, 2, 3,…N) the structure function of order q is

defined as

Sq ¼ hjWðti þ sÞ �WðtiÞjqi; q > 0; (A4)

where h	i denotes the ensemble average. If the process is

scale invariant and self-similar over some range of time lags

s1� s� s2 then the qth-order structure function is expected

to scale as

SqðsÞ ¼ Cqs
fðqÞ ¼ Cqs

qHðqÞ; (A5)

where Cq can be a function of s which varies more slowly

than any power of s, f(q) is the exponent of the structure

function, and H(q) is the Hurst exponent or self-similarity

exponent of order q. Calculation of the Hurst exponent H(q)

allows the straight-forward identification of persistence or

long time correlation, as in the R/S analysis, as well as to

determine the possibly monofractal or multifractal nature of

the data. The structure function analysis should coincide

with the R/S analysis for the structure function order q¼ 2.

3. Power spectrum

Also the power-spectrum can be used for the detection

of self-similarity. The standard definition of self-similarity is

that a process X ¼ fXðtÞ; t � 0g is self-similar with self-

similarity or Hurst, exponent 0<H< 1 if it satisfies

XðktÞ¼d kHXðtÞ; (A6)

where ¼d means equality in distribution for any k> 0. Also,

the stationary process X is self-similar with self-similarity

exponent H if there exists a real number a� (0,2) such that
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lim
s!1

qðsÞ ¼ cqs
�a; 0 < a ¼ 2� 2H < 2; (A7)

where q(s) is the normalized autocorrelation function. In this

case, then the power spectral density exhibits the power law

scaling

lim
f!1

Sðf Þ ¼ cSf�b; �1 < b ¼ 2H � 1 < 1; (A8)

with cS as a constant, f as the frequency, and b as the abso-

lute value of the power spectrum index (see, e.g., Ref. 35).

4. Skewness and kurtosis

Skewness is a measure of symmetry of a distribution,

and kurtosis is a measure of whether the data are peaked or

flat relative to a normal distribution. For data X1, X2,…, XN,

the skewness g1 is given as

g1 ¼
1

N

XN

i¼1
Xi � �Xð Þ3

1

N

XN

i¼1
Xi � �Xð Þ2

� �3=2
; (A9)

where �X is the mean value and N is the number of data

points. The skewness for a normal distribution is zero, as for

any symmetric distribution. Negative values of the skewness

indicate data that are skewed left and positive values indicate

data that are skewed right.

The kurtosis is given as

kurtosis ¼
1

N

XN

i¼1
Xi � �Xð Þ4

1

N

XN

i¼1
Xi � �Xð Þ2

� �2
: (A10)

The kurtosis for a standard normal distribution is 3 and

for this reason, we use the following definition of kurtosis

(often referred to as “excess kurtosis”):

g2 ¼
1

N

XN

i¼1
Xi � �Xð Þ4

1

N

XN

i¼1
Xi � �Xð Þ2

� �2
� 3: (A11)

In this way, the standard normal distribution has a kurtosis of

zero, positive kurtosis indicates a “peaked” distribution and

negative kurtosis indicates a “flat” distribution.
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