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Abstract. Narrow-band radio spikes have been recorded during a solar flare with unprecedented resolution. This
unique example allows us to study the effect of low resolution in previously published peak-flux distributions
of radio spikes. We give a general, analytical expression for how an actual peak-flux distribution is changed in
shape if the peaks are determined with low temporal and/or frequency resolution. It turns out that, generally,
low resolution tends to cause an exponential behavior at large flux values if the actual distribution is of a power-
law shape. The distribution may be severely altered if the burst-duration depends on the peak-flux. The derived
expression is applicable also to peak-flux distributions derived at other wavelengths (e.g. soft and hard X-rays,
EUV). We show that for the analyzed spike-event the resolution was sufficient for a reliable peak flux distribution.
It can be fitted by generalized power-laws or by an exponential.
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1. Introduction

Statistical flare models envisage the flare process as an
ensemble of sub-processes and do not focus on the sin-
gle constituent processes. The most prominent of these
global models are the so-called Cellular Automaton mod-
els (Lu & Hamilton 1991; Lu et al. 1993; Vlahos et al. 1995;
Georgoulis & Vlahos 1996; Galsgaard 1996; Georgoulis
& Vlahos 1998; MacPherson & MacKinnon 1999; Isliker
et al. 2000, 2001). They assume flares to be fragmented
and stochastic processes, and so the need for a compari-
son through statistical quantities is present. Furthermore,
there is direct evidence that flares are fragmented to
some unknown level (deJager & deJonge 1978; Benz 1985;
Aschwanden et al. 1990), and that flares really are stochas-
tic processes (Isliker & Benz 1994; Isliker 1996; Ryabov
et al. 1997; Veronig et al. 2000).

Observed peak-flux distributions of flares and flare
fragments are used to test statistical flare models. Systems
in a state of self-organized criticality (SOC) lack any char-
acteristic scale and thus show power-law distributions.
Stochastic growth in uncorrelated regions of instability
yield log-normal peak-flux distributions found in inter-
planetary type III bursts (Cairns & Robinson 1997). Open
driven plasmas yield burst-like pulses distributed expo-
nentially at large fluxes (Robinson et al. 1996).
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There exists a number of observational studies of peak-
flux distributions of flare-related (non-thermal) emissions,
in the hard X-ray range as well as in the radio range
(see references in Aschwanden et al. 1998). In this arti-
cle, we will concentrate on narrow-band, millisecond spike
events in the radio range. Robinson et al. (1996) have de-
termined a peak-flux distribution from a single-frequency
spike observation, which they find to be exponential for
high-flux values. Aschwanden et al. (1998) have analyzed
some spike events with poor temporal resolution (typically
one measurement point per spike event), and found expo-
nential distributions. Mészárosová et al. (2000) analyzed
single-frequency measurements of spikes. They found ex-
ponential and power-law distributions, the latter being
very small in extent, however (much less than one decade).
Such analyses raise a question: since every measurement
is only at discrete points in time and frequency, a de-
tected peak in an observation is in general not identi-
cal with the true peak which would be seen if continu-
ous recording were feasible. The detected peak (termed
pseudo-peak in the following) is likely to be further away
from the true peak, the lower the time- and frequency-
resolutions. Therefore the derived peak-flux distribution
must be expected to be biased. Furthermore, peak-fluxes
in the radio-range have mostly been determined at fixed
frequencies, neglecting completely the fact that one may
be far from the true peak in the frequency-direction. The
question therefore is what bias in a peak-flux distribution
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must be expected due to finite and possibly low resolution
in time and/or frequency.

We give an analytical expression of how a given true
peak-flux distribution is changed when determined with
finite time- and frequency-resolution (Sect. 2). The ex-
pression is independent of the wave-length range under
consideration, it can also be applied e.g. to soft and hard
X-rays, or to EUV. We then present the peak-flux distri-
bution of narrow-band radio spikes in an event measured
with unprecedented high time and frequency resolution
(Sect. 3). We will discuss the peak-flux distribution of the
spike event with the introduced statistical theory, as well
as the distributions reported in the literature, which are
subject to poor resolution, or even derived without fre-
quency information. We will address the question of how
good the time and frequency resolution must be (in terms
of duration and bandwidth of the events), in order that the
detected peak-flux distributions are near to the true ones,
and what is to be expected if the frequency information is
not available or not taken into account (Sect. 4).

2. The biasing of peak-flux distributions through
finite resolution

In this section, we will establish the analytical expres-
sion which relates the peak-flux distribution of the true
peaks to the distribution of the observed ones with given
time and frequency resolutions, which we will refer to as
pseudo-peaks. We start by making the following defini-
tions:
Let a be the amplitude of a pulse (e.g. spike), and assume
a pulse-shape of the form

Φ(ν, t, a) = a · Φν(ν g(a)) · Φt(t h(a)) ≡ a · s (1)

with Φν(0) = Φt(0) = 1, and g(a) and h(a) functions of
the amplitude a (for instance g(a) = 1, a, or 1/a), and
where we have introduced the abbreviation s = s(ν, t; a).
Such a pulse-shape is reasonably general, but of course
not completely so: we assume that the profiles in the fre-
quency and in the time direction are independent, and par-
ticularly, it is assumed that the amplitude causes merely
a scaling of the duration and/or bandwidth, and that
there is no dependence on an additional, hidden, possi-
bly stochastic parameter.

In statistical language, we consider the ideal measure-
ment of the true peak-fluxes as the outcome of a random
variable A, with probability density pA(a) (a1 ≤ a ≤ a2)
(which, in other words, is the normalized peak-flux distri-
bution). Analogously, the measurement of pseudo peak-
fluxes (the ones subject to finite temporal and spatial
resolution) is considered as the outcome of a random vari-
able R, with probability density pR(r). The question is
what the relation between pA(a) and pR(r) is, i.e. we need
to find the connection between A and R:

Measuring the pseudo-peaks can be viewed as choos-
ing a random point (N,T ) in the ν-t-plane within a cer-
tain rectangle around the true peak, whose side-length

are τt and τν (the temporal and spatial resolutions, re-
spectively), and reading out the flux-value at this point.
Hence, the uniform probability for choosing a random
point (N,T ) in the rectangle of the ν-t-plane is trans-
formed into a probability distribution on the flux axis: for
a given pulse with amplitude A = a, the random point
(N,T ) transforms into a random point a · S on the flux
axis through the pulse-shape, a · S ≡ a · Φν(N) Φt(T ),
which will give the probability distribution pS(s) of the
random variable S. More generally, we assume the pulse-
shape to depend on the amplitude of the pulse (Eq. (1)),
so that S is given as

S = Φν(N · g(a)) · Φt(T · h(a)). (2)

Its probability distribution is conditionally dependent on
the amplitude, pS(s|a), and its range is s1(a) ≤ S ≤
s2(a) ≡ 1 (pS(s|a) ds denotes the conditional probability,
i.e. the probability for S to assume values in [s, s + ds],
given that A is known to assume the value a). The random
point on the flux-axis a ·S is the pseudo-peak flux, so that
the relation between the true and the pseudo peak-flux is,
in terms of random variables,

R = A · S (3)

and the wanted pseudo-peak flux distribution pR(r) is
given as

pR(r) = pA·S(r). (4)

Of course, it would be of interest to invert the problem, i.e.
to derive from given pR(r) and pS(s) the true distribution
pA(a). However, this is not possible, as will be shown in
Sect. 2.4, since pR(r) and pS(s) do not contain enough
information to uncover pA(a).

Three tasks are to be worked out now:

1. the rectangle in the ν-t-plane, out of which a random
point is chosen, has to be determined (to find the prob-
ability density of the point (N,T ), which is needed to
derive pS through Eq. (2));

2. the probability pS(s|a) has to be derived (through
Eq. (2)), since it is an input to Eq. (4);

3. the probability distribution of the product of the ran-
dom variables A and S has to be found to evaluate
Eq. (4), which yields the wanted pR.

2.1. The rectangle around the true peak in which
the pseudo-peak is located

The probability density pN,T (ν, t) for the random point
(N,T ) in the ν-t-plane, at which the pseudo-peak flux is
measured, is uniform in some region around the true peak
(this follows from the complete absence of correlations be-
tween the measurement and the measured). In order to
specify pN,T (ν, t), the shape and size of this region have
to be determined.
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Without loss of generality, we may assume a true peak
to occur at t0 = 0, ν0 = 0. Since we assume the burst-
profile to factorize (Eq. (1)), we can expect the measure-
ment point (N,T ) to lie in a rectangle,

(N,T ) ∈ [Lν−, Lν+]× [Lt−, Lt+] (5)

around the true peak at (t0, ν0) = (0, 0), and we may de-
rive the time- and the frequency-interval independently.
Note that we explicitly treat the case where the pulse-
shape is asymmetric. If the pulse shape is symmetric,
then the rectangle is simply given as [−τν/2, τν/2] ×
[−τt/2, τt/2], as follows straightforwardly from symmetry
considerations.

We start with treating the time-direction. Assume a
true peak to be located at t0 = 0. In the measurement
procedure, a grid of time-points ti is put onto the t-axis
(with ti − ti−1 = τt, ∀i, with τt the time resolution),
which is randomly positioned relative to t0 = 0. At one
of these points, say at ti, the measured flux will be high-
est, and a pseudo-peak is detected. This means that (i)
aΦt(ti) ≥ aΦt(ti + τt), and (ii) aΦt(ti) ≥ aΦt(ti − τt) (for
now we assume the burst profile to be independent of the
amplitude a). Obviously, the pseudo-peak occurance-time
ti lies in the interval

ti ∈
{
t′
∣∣∣Φt(t′) ≥ Φ(t′ + τt), and Φt(t′) ≥ Φt(t′ − τt),

and |t′| ≤ τt
}
· (6)

The left boundary Lt− is given by the equation Φt(Lt−) =
Φt(Lt−+τt), with allowed values of Lt− in [−τt, 0], and the
right boundary Lt+ is analogously given by the equation
Φt(Lt+) = Φt(Lt+−τt) in the range Lt+ ∈ [0, τt]. In order
that these solutions are unique, we need to demand that
the pulse-shape is convex (Φ′′t < 0), i.e. strictly increasing
until the peak, and then strictly decreasing with time,
which is reasonable for a pulse-shape. If Lt−+τt is inserted
into the equation for Lt+, then it is seen that it solves this
equation, whence

Lt+ = Lt− + τt (7)

– the size of the interval out of which a random point
is chosen in a measurement is τt, the time-resolution. Of
practical interest in the following will be that

Φt(Lt−) = Φt(Lt+). (8)

So far, we have omitted the scaling factors h(a) and g(a).
Lt−, for instance, would actually have to be determined
by the equation Φt(Lt−h(a)) = Φt((Lt− − τt)h(a)) in-
stead of the one above, and in general one expects the
solution Lt− to depend on a. Under quite general as-
sumptions, however, Lt− is independent of a, e.g. for
Gaussian, exponential, or power-law pulse-shapes. All
these examples are pulse-shapes with the general form
aΦt− = aφ0(c + φ−(t h(a))) for the left branch, and
aΦt+ = aφ0(c+φ+(t h(a))) for the right branch, where φ0

is any invertible function (e.g. an exponential), c a con-
stant, and φ− and φ+ may be different, but homogeneous

of the same degree (i.e. φi(bt) = bκφi(t), for i = −,+,
and κ a constant), e.g. a power-law.

Completely analogously, Lν+ and Lν− are determined,
and again Lν+ = Lν−+τν (τν denotes the frequency reso-
lution) and Φν(Lν−) = Φν(Lν+) hold. With the determi-
nation of the rectangle in which the random point (N,T )
lies, the probability density pN,T follows immediately as

pN,T (ν, t) = pN(ν)pT (t) =
1
τtτν

, (9)

since it is uniform, as explained at the beginning of this
subsection.

2.2. The determination of PS (s|a)

Instead of the probability density pS(s|a), we will de-
rive the cumulative probability distribution PS(s|a) :=∫ s
s1
pS(s′|a) ds′, since in general the density has a singular-

ity at the peak (s = 1) of the pulse. PS(s|a) is given implic-
itly by Eq. (2) as a function of the pulse-shape. Starting
from the definition of PS(s|a) and inserting Eq. (2), we
have

PS(s|a) ≡ prob
[
S ≤ s

∣∣∣ given that A = a
]

= prob
[
Φν(N · g(a)) ·Φt(T · h(a)) ≤ s

∣∣∣ a]
= prob

[
(T,N) ∈{

(t, ν)
∣∣Φν(ν g(a)) · Φt(t h(a)) ≤ s, and

Lν− ≤ ν ≤ Lν+, and Lt− ≤ t ≤ Lt+
} ∣∣∣ a]

=
∫ ∫

Φν(ν · g(a)) Φt(t · h(a)) ≤ s
Lν− ≤ ν ≤ Lν+

Lt− ≤ t ≤ Lt+

pT (t) pN (ν) dt dν (10)

where pT (t)pN (v) is given by Eq. (9).
Because of the possible asymmetry of the pulse-shape,

it is necessary to treat the four quadrants separately. In
each quadrant then, the integration limits in Eq. (10) im-
ply four different cases, depending on the value of s. If
in the four quadrants we denote the respective inverses of
the pulse-shape by Φ−1

t+ , Φ−1
t− , and Φ−1

ν+, Φ−1
ν−, and if we

write Lt where one can insert either Lt+ or Lt− without
changing the numerical values of the respective expres-
sions (due to Eq. (8)), and analogously Lν, then, in the
first quadrant, we have (a substitution t̄ := Φν(ν)Φt(t)
allows to calculate the t-integral in Eq. (10)):

0. for s ≤ Φν(Lν g(a)) Φt(Lt h(a))

PS(s | a) = 0; (11)

I. for Φν(Lν g(a)) ≤ s, and Φt(Lt h(a)) ≤ s, and s ≤ 1

PS(s | a) =
|Lν+Lt+|
τντt

− 1
τντt

× 1
g(a)

1
h(a)

∣∣∣∣∣∣∣
Φ−1
ν+(s)∫
0

dν Φ−1
t+

(
s

Φν(ν)

)∣∣∣∣∣∣∣ ; (12)
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II. for Φν(Lν g(a)) ≤ s ≤ Φt(Lt h(a))

PS(s | a) =
|Lν+Lt+|
τντt

− 1
τντt

× 1
g(a)

1
h(a)

∣∣∣∣∣∣∣∣
Φ−1
ν+(s)∫

Φ−1
ν+

(
s

Φt(Lt h(a))

)dν Φ−1
t+

(
s

Φν(ν)

)∣∣∣∣∣∣∣∣
−
∣∣∣∣Lt+τντt

Φ−1
ν+

(
s

Φt(Lt h(a))

)
1

g(a)

∣∣∣∣ ; (13)

III. for Φt(Lt h(a)) ≤ s ≤ Φν(Lν g(a))

PS(s | a) =
|Lν+Lt+|
τντt

− 1
τντt

× 1
g(a)

1
h(a)

∣∣∣∣∣∣∣
Lν+g(a)∫

0

dν Φ−1
t+

(
s

Φν(ν)

)∣∣∣∣∣∣∣ ; (14)

IV. for Φν(Lν g(a))Φt(Lt h(a)) ≤ s, and s ≤ Φν(Lν g(a)),
and s ≤ Φt(Lt h(a))

PS(s | a) =
|Lν+Lt+|
τντt

− 1
τντt

× 1
g(a)

1
h(a)

∣∣∣∣∣∣∣∣
Lν+g(a)∫

Φ−1
ν+

(
s

Φt(Lt h(a))

)dν Φ−1
t+

(
s

Φν(ν)

)∣∣∣∣∣∣∣∣
−
∣∣∣∣Lt+τντt

Φ−1
ν+

(
s

Φt(Lt h(a))

)
1
g(a)

∣∣∣∣ ; (15)

V. for 1 ≤ s

PS(s | a) =
|Lν+Lt+|
τντt

· (16)

The non-trivial cases are for intermediate ranges of s, i.e.
for Φν(Lνg(a))Φt(Lth(a)) ≤ s ≤ 1. The formulae for the
other three quadrants are gained completely analogously
to the given ones, by just correspondingly interchanging
the indices t+, t−, ν+, ν− (it is for this purpose that we
had to write absolute values for all the appearing terms).
If the pulse-shape is symmetric in ν and t, then the con-
tributions of the four quadrants are equal.

2.3. The probability distribution of the product A · S
In the last step, we determine the probability distribution
pR of the pseudo-peaks, i.e. the probability distribution of
the product A ·S (Eqs. (3) and (4)). The case of multiply-
ing two random variables which are independent and have
infinite range is found in standard textbooks. However,
since both, A and S, have finite range, and since S is con-
ditionally dependent on A, it is worthwhile to give the
respective formulae. Essentially, the probability distribu-
tion of the product A ·S equals pA,S(a, s), integrated over
the subregion of the region [a1, a2] × [s1(a), s2(a)] where
as ≤ r is fulfilled (pA,S(a, s) is the joint probability distri-
bution of A and S). Using that pA,S(a, s) = pA(a)pS(s|a),

we explicitly have

PR(r) ≡ prob[R ≤ r] = prob[A · S ≤ r]

=
∫∫

as ≤ r
a1 ≤ a ≤ a2

s1(a) ≤ s ≤ s2(a)

pA,S(a, s) da ds

=
∫

a1 ≤ a ≤ a2
a ≤ r/s1(a)

pA(a) da
∫

s1(a) ≤ s ≤ s2(a)
s ≤ r/a

pS(s | a) ds (17)

where s1a1 ≤ r ≤ s2a2. (As mentioned in Sect. 2.2, pS(s|a)
might have a singularity at s = 1, and we must therefore
use the cumulative probability distribution PS(s|a), which
is achieved if also for R we use the cumulative probabil-
ity distribution PR(r), as done in Eq. (17), and identify∫ β
α
pS(s′|a) ds′ = PS(β|a) − PS(α|a).)
In the following, we write again Lt if inserting Lt+

or Lt− does not change the respective numerical val-
ues, and correspondingly Lν is used instead of Lν+

or Lν−. For intermediate values of r, i.e. for a1 ·
Φν(Lνg(a1))Φt(Lth(a1)) ≤ r ≤ a2, four non-trivial cases
of integration limits turn out to exist, depending on the
values of r. We have:

0. for r ≤ a1 ·Φν(Lν g(a1)) Φt(Lt h(a1))

PR(r) = 0; (18)

I. for r ≤ a2 ·Φν(Lν g(a2)) Φt(Lt h(a2)), and r ≤ a1

PR(r) =

a≤r/Φν(Lν g(a)) Φt(Lt h(a))∫
a1

da pA(a)PS(r/a | a); (19)

II. for a1 ≤ r ≤ a2 ·Φν(Lν g(a2)) Φt(Lt h(a2))

PR(r) = PA(r) +

a≤r/Φν(Lν g(a)) Φt(Lt h(a))∫
r

da pA(a)PS(r/a | a); (20)

III. for a2 · Φν(Lν g(a2)) Φt(Lt h(a2)) ≤ r ≤ a1

PR(r) =

a2∫
a1

da pA(a)PS(r/a | a); (21)

IV. for a2 · Φν(Lν g(a2)) Φt(Lt h(a2)) ≤ r, and a1 ≤ r,
and r ≤ a2

PR(r) = PA(r) +

a2∫
r

da pA(a)PS(r/a | a); (22)

V. for a2 ≤ r

PR(r) = 1. (23)

Inserting PS(s|a) (Eqs. (11) to (16)) into the formulae for
PR(r) yields the desired pseudo peak-flux distribution.
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Table 1. Fits of different functional forms to the peak-flux
distributions of the event 1982/06/04 (see Sect. 3), where the
four data-sets are distributions derived from a) peaks in 2D
plane, τt = 2 ms, τν = 1 MHz (data-set a); b) peaks at ν =
362 MHz, τt = 2 ms (data-set b); c) peaks in 2D plane, τt =
100 ms, τν = 1 MHz (data-set c); d) peaks at ν = 362 MHz,
τt = 100 ms (data-set d). If the χ2 approved a fit, then the
power-law index or an “o.k.” is stated, else a “—” is noted.

data nr. of axc a(x− b)c a(x− b)c + d aecx

set peaks c = c = c =

a 59 — −15.6± 6.8 −2.7± 7.5 o.k.

b 144 — — −14.9 ± 7.3 o.k.

c 38 −1.2± 0.2 −3.5± 6.9 −0.8± 7.9 o.k.

d 76 — −16.3± 4.8 −15.8 ± 6.8 o.k.

2.4. Inversion is not possible

To derive the true peak flux distribution from a given
pseudo-peak flux distribution (the inverse problem), we
have to proceed as follows: from Eq. (3) we find

A = R/S, (24)

and we can uncover the true distribution from the pseudo
one analogously as we had proceeded in Eq. (17):

PA(a) ≡ prob[A ≤ a] = prob[R/S ≤ a]

=
∫ ∫
r/s≤a

pR,S(r, s) dr ds

=
∫ ∫
r/s≤a

pR(r|s)pS(s) dr ds (25)

so that we need to know the conditional probability
pR(r|s) of R given that S is known. That R is not inde-
pendent of S is evident from the fact that R is equivalent
to A · S, and one explicitly finds, if pA(a) is assumed to
be known, that

PR(r|s) = PA(r/s). (26)

What is measured, however, is

pR(r) =
∫

s1≤s≤s2

pR(r|s)pS(s) ds, (27)

the distribution of R irrespective of the value of S, so that
all the conditional information is lost. In other words, to
uncover PA(a) one has to know PR(r|s), which is essen-
tially equivalent to knowing the true peak-flux distribu-
tion PA(a) (see Eq. (26)), and which would be feasible
only in continuous observations. Whence it follows that
uncovering the true distribution from the measured one is
not possible.

3. The peak-flux distribution of solar narrow-band
spikes

The solar narrow-band millisecond spike event we ana-
lyzed was observed by the ETH Zurich radio-spectrometer

on 1982/06/04, 13:38:41 UT (the event is published and
described in Güdel & Benz 1990; Csillaghy & Benz 1993).
The resolution is 2 ms in time and 1 MHz in frequency
(from 361 to 364 MHz), whereas the spikes have a typical
duration of 73 ms (FWHM; Güdel & Benz 1990), and a
typical bandwidth of 7 MHz (FWHM; Csillaghy & Benz
1993). Hence the spikes are well resolved in time. Also in
frequency, the spikes are resolved although the observa-
tion range (4 MHz) is smaller than the typical bandwidth,
as only spikes with peaks unambiguously in the range are
taken into account. The peaks were determined by looking
for strong enough local maxima above the noise-level, and
a constant background was subtracted (representing the
quiet Sun). The normalized distribution of the respective
peak-fluxes is shown in Fig. 1 (solid line, with error-bars).

Different curves were fitted to this distribution, and a
χ2-test was performed to check whether the fits are com-
patible with the data or not. The fitted curves are: a sim-
ple power-law (axc), two generalized forms of power-laws
(a(x−b)c, and a(x−b)c+d), and an exponential (aex). The
result is presented in Fig. 2 and summarized in Table 1
(data-set a): the peak-flux distribution of the event can be
fitted by the generalized power-laws as well as by the ex-
ponential, but not by the simple power-law. The indices of
the generalized power-laws are subject to large errors (de-
termined by the bootstrap resampling method) due to the
large error-bars (the number of peaks is relatively small)
and due to the relative flexibility of the generalized power-
laws (three resp. four free parameters and 10 data-points).

4. Discussion of the empirical peak-flux
distributions

To apply the statistical theory introduced in Sect. 2 to
the narrow-band spike event analyzed in Sect. 3, we have
to make an assumption about the pulse-shape of the in-
dividual spikes. According to Güdel & Benz (1990), and
Csillaghy & Benz (1993), it is reasonable to assume a
Gaussian pulse-shape, i.e.

Φν(ν) = e−
1
2( ν

bν
)2

(28)

and

Φt(t) = e−
1
2( t

bt
)2

(29)

with bν = 3.1 MHz, and bt = 31 ms (implying a FWHM
of 7.3 MHz, and 73 ms, respectively, as reported by Güdel
& Benz 1990, and Csillaghy & Benz 1993 for the given
event). Furthermore, we have to assume a distribution of
the true peak-fluxes A: we let pA(a) be a straight power-
law

pA(a) = Ca−α, a1 ≤ a ≤ a2 (30)

with a2 = 1000 (from Fig. 1). Other true distributions can
be expected to produce qualitatively the same effects as
reported below for the case of this power-law.
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Fig. 1. Peak-flux distributions (probability densities) of the
narrow-band spike event 1982/06/04 (see Sect. 3): a) peaks in
2D plane, τt = 2 ms, τν = 1 MHz (solid line, with error- bars);
b) peaks at ν = 362 MHz, τt = 2 ms (dashed line); c) peaks in
2D plane, τt = 100 ms, τν = 1 MHz (dotted line); d) peaks at
ν = 362 MHz, τt = 100 ms (dash-dotted line). (The histograms
are drawn by connecting the midpoints of the bins, and the
bin-widths are such that each contains the same number of
data-points. The amplitude is in SFU.)

The crucial parameters are the time-resolution τt and
the frequency-resolution τν , they determine how near the
pseudo-peaks are to the true-peaks, on average. Whence,
in the following parametric study (Figs. 3 to 7), we always
show the true peak-flux distribution pA(a), together with
the pseudo peak-flux distributions for four cases of time-
and frequency-resolution: (i) good resolution in time and
frequency, (ii) good resolution in time and a bad one in
frequency, (iii) bad resolution in time and a good one in
frequency, and (iv) bad resolution in both time and fre-
quency (by “good” we mean τ << FWHM, and “bad”
means τ = 2 FWHM). The cases (ii) and (iv) represent
also the case of single-frequency observations.

First, we investigate the case of an amplitude-
independent pulse-shape, i.e. g(a) = h(a) ≡ 1 (see
Eq. (1)), and we set a1 = 1, α = 2. Figure 3 shows that
for good resolution both in frequency and time the true
and the pseudo peak-flux distributions practically coin-
cide. If one or both resolutions are low, then the pseudo-
peak flux distribution is generally near the true one, with
a faster fall-off at high flux-values, however, i.e. a turn-
ing from power-law to exponential behaviour. At pseudo
peak-flux values smaller than a1, a completely artificial,
relatively flat extension of the distribution appears. Turn-
overs at small fluxes in distributions detected with low
resolution(s) might thus be just the effect of an intrinsic

Fig. 2. Fits to the peak-flux distribution (probability density)
of the narrow-band spike event 1982/06/04 (see Sect. 3, and
also Table 1). The peaks are determined in the 2D plane, with
τt = 2 ms and τν = 1 MHz. Plotted are the original data (solid
line), and the fits axc (dashed), a(x− b)c (dotted), a(x− b)c +
d (dash-dotted), aex (wide dash-dotted). (The histogram is
drawn and generated as described in Fig. 1, and the amplitude
units are again SFU.)

low-amplitude cut-off in the true fluxes. Only high reso-
lution analysis can tell whether or not such a flattening is
real or not. The turning-over effect increases if the resolu-
tion decreases.

We turn now to the case of amplitude dependent pulse-
shapes. If we let g(a) = h(a) = a−1, then we get a devia-
tion from the power-law behavior at small flux values, but
nice coincidence for intermediate and high values (Fig. 4).
For g(a) = h(a) = a1 the slope (and shape at high flux-
values) is drastically changed to a stronger fall-off (Fig. 5),
the observed distribution is different even for good time
and frequency resolution.

The general behavior demonstrated so far is rather
independent of the shape of the original, true peak-flux
distribution: in Fig. 6, we let again g(a) = h(a) ≡ 1,
but now the power-law index α = 3. The corresponding
pseudo peak-flux distributions behave analogously to the
case α = 2 (Fig. 3).

It is worthwhile noting that the parameter a1 may en-
hance the effect of turning to exponential behavior at high
flux values: in Fig. 7, we let g(a) = h(a) ≡ 1 and α = 2,
as in Fig. 3, but a1 = 30 (cf. the lower cut-off in Fig. 1),
and the tendency seen in Fig. 3 is enhanced, now. Thus,
we conclude that the roll-over at large amplitude is more
serious for a small range of amplitudes.
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Fig. 3. Amplitude-independent pulse-shape: (0) true peak-flux
distribution (α = 2, a1 = 1, g(a) = h(a) ≡ 1) (solid), to-
gether with the pseudo peak-flux distributions for (i) τt = 2 ms,
τν = 1 MHz (dashes); (ii) τt = 2 ms, τν = 15 MHz (small
dashes); (iii) τt = 100 ms, τν = 1 MHz (dots); (iv) τt = 100 ms,
τν = 15 MHz (dot-dashed). The cases (0) and (i) practically
coincide.

Fig. 4. Amplitude-dependent pulse-shape I: true peak-flux dis-
tribution (α = 2, a1 = 1, g(a) = h(a) = a−1) (solid), to-
gether with pseudo peak-flux distributions for τt and τν as de-
scribed in the caption to Fig. 3. The cases (0) and (i) practically
coincide.

Fig. 5. Amplitude-dependent pulse-shape II: true peak-flux dis-
tribution (α = 2, a1 = 1, g(a) = h(a) = a1) (solid), together
with pseudo peak-flux distributions for τt and τν as described
in the caption to Fig. 3.

Obviously, it is crucial to know whether the durations
and bandwidths of the pulses depend on the amplitude:
Csillaghy & Benz (1993) report that the bandwidth of
spikes sometimes is correlated with the amplitude, some-
times it is not, and sometimes it is anti-correlated. There
is, however, no generally holding strong tendency, so that
we may assume that the peak-flux distribution reported
in Sect. 3 is near the true one.

This is also confirmed by the following: we artificially
worsened the time and the frequency resolution in the data
of Sect. 3 and compared the respective histograms: the
dashed line in Fig. 1 is the histogram of the pseudo-peak
fluxes resulting if the frequency information is completely
neglected, i.e. one of the frequencies is selected, and the
peaks are determined as maxima in time-direction only.
The dotted line is the distribution for the resampled ob-
servation, using only every 50th data-point in time, which
yields a spectrogram with 0.1 s time resolution, and keep-
ing full frequency resolution. Finally, the dashed-dotted
line is the distribution for the resampled data, with again
fixing a frequency and neglecting completely the corre-
sponding information. Obviously, the biasing effects are
smaller than the statistical errors in the distributions, all
four distributions coincide within the error-bars, and the
results are fairly independent of the sampling – only the
fits seem to show different kinds of behavior (Table 1),
but, as mentioned, the indices of the generalized power-
laws are subject to large errors. The relative robustness
(within the statistical errors) of the distribution on under-
sampling is in turn a signature for amplitude-independent
pulse-shapes.
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Fig. 6. Steeper true distribution: true peak-flux distribution
(α = 3, a1 = 1, g(a) = h(a) ≡ 1) (solid), together with pseudo
peak-flux distributions for τt and τν as described in the caption
to Fig. 3. The cases (0) and (i) practically coincide.

5. Conclusion

The statistical theory we introduced allows us to predict
the deviation of a pseudo-peak flux distribution from the
true peak-flux distribution if the time and frequency res-
olutions are known. It turns out that in general there is a
tendency towards exponential behavior at large flux val-
ues; the more expressed, the lower the resolutions are, in-
cluding in particular the case of single-frequency observa-
tions. Only with high resolutions in both frequency and
time (compared e.g. to the respective FWHM) are the
detected distributions reliable in the whole range. The de-
pendence of the pulse-shape on the amplitude (peak-flux)
is crucial: if the width of a pulse (duration or bandwidth)
is proportional to the inverse of the amplitude, then a
strong deviation from the true peak flux distribution will
result, the distributions will be steepened and completely
biased in the whole range, even for high resolution in both
frequency and time. If the width of the pulse is directly
proportional to the amplitude, then a bias (flattening) ap-
pears only in the low amplitude range. All the biasing ef-
fects get stronger with a smaller extent of a distribution.

A different possible cause for a strong bias at low am-
plitudes (appearance of a relatively flat part in the de-
tected distribution) is a possible intrinsic lower cut-off of
the true amplitudes. Only high resolution data analysis
can make sure whether a flattening at low amplitudes is
real or an artifact.

The example of a narrow-band spike event we analyzed
is a unique observation with respect to the high tempo-
ral and frequency resolutions; the spikes are completely

Fig. 7. Smaller range of amplitudes: true peak-flux distribu-
tion (α = 2, a1 = 30, g(a) = h(a) ≡ 1) (solid), together with
pseudo peak-flux distributions for τt and τν as described in the
caption to Fig. 3. The cases (0) and (i) practically coincide.

resolved in frequency and time. Since moreover the burst-
width seems to depend at most slightly on the amplitude,
we conclude on the basis of our analytical study that the
peak-flux distribution we get is reliable. It can be fitted
by generalized power-laws or by an exponential, but defi-
nitely not by a simple power-law.

From our analysis, it follows that the peak-flux dis-
tributions of spikes reported by Robinson et al. (1996),
Aschwanden et al. (1998), and Mészárosová et al. (2000),
though observed with poor time-resolution or without any
frequency information, are near the true distributions, ex-
cept for the high-flux part, which must be expected to be
too steep.

The exponential distribution we find supports the open
driven plasma model (Robinson et al. 1996). We did
though not try to fit a log-normal distribution, which in
view of the relatively large statistical error in the empirical
distribution, is likely to be also accepted by the χ2-test,
so that we cannot exclude the stochastic growth theory
(Cairns & Robinson 1997).

Conclusions on whether the distribution we find is
compatible or not with SOC models are more difficult
to draw. SOC models are models for the primary en-
ergy release, so far they do not include a mechanism for
radio- (plasma-) emission. Moreover, the peak-fluxes of
SOC models, which have been analyzed statistically, are
defined as the peak-fluxes of entire flares, whereas here and
in the cited articles on radio observations, the peak-fluxes
of all the flare-fragments are analyzed. For both reasons,
a direct comparison of SOC models to radio data is not
possible without substantial new developments.
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The statistical theory introduced here can be applied
to the peak-flux distributions of all the different kinds of
bursts, independent of the wavelength at which they oc-
cur, as soon as the pulse-shape and the functional depen-
dency of the pulse-shape on the amplitude are (at least
approximately) known: to radio-bursts (recent empirical
studies include Aschwanden et al. (1998; type III, deci-
metric pulsations), Mercier & Trottet (1997; type I)), to
soft X-rays, EUV, hard X-rays, etc. (see e.g. the review of
Crosby et al. 1993; Krucker & Benz 1998).
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