
EulerianEulerian vs. vs. LagrangianLagrangian DescriptionDescription
The flow of a fluid can be described in two different, but equivalent ways:

All fluid properties are measured with respect to a fixed
coordinate system. Time variations are described by
local derivatives at a given coordinate location, e.g. 

A) Eulerian description:
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B) Lagrangian description: All fluid properties are measured with respect to a moving
control mass of variable volume V(t) occupied by the same 
particles at all times. Time variations are described by
total  derivatives at the location of the control mass, e.g. 
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Reynold’sReynold’s Transport Theorem (I)Transport Theorem (I)
For a scalar field φ along a moving control mass:
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volume of control massV (t)
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surface area of volume V(t)
unit normal vector to surface A(t)

Using Gauss’ theorem:                                           we obtain:
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On the other hand, if Vcv is a fixed control volume (Eulerian description), then one can 
show that: 
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Reynold’sReynold’s Transport Theorem (II)Transport Theorem (II)
For a vector field along a moving control mass:~Φ
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where                 is the tensor product:~Φ⊗ ~v
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Conservation of Mass Conservation of Mass 
The total mass of the fluid is

M =

Z
V
ρdV

and it is conserved, if there is no mass production inside the fluid.

By definition, the mass within the volume V(t) of a moving control mass is conserved:
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Using Reynold’s transport theorem, we find that:
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which is called the continuity equation.



Conservation of Momentum (I)Conservation of Momentum (I)
The total momentum of the fluid is 

~P =
Z
V
ρ~vdV

and it is conserved, if there are no external forces or torques acting on the fluid.

However, the momentum contained within the volume V(t) of a moving control mass 
changes with time, due to volume and surface forces acting on this control mass. 

Volume forces: 
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where e.g.      is the acceleration of gravity. ~g
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where     is the stress tensor: S

S = −pI+Π

Here, p is the isotropic pressure, I=diag[1,1,1] is the unit tensor and Π is the viscous part
of the stress tensor. 



Conservation of Momentum (II)Conservation of Momentum (II)
According to Newton’s 2nd law, the rate of change of the momentum of the moving 
control mass is equal to the sum of all forces acting on it:  
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Conservation of Energy (I)Conservation of Energy (I)
The total energy density is the sum of the kinetic energy density and the internal 
energy density:  

E =
1

2
ρv2 + ρe

The total energy contained within the volume of a moving control mass is 

EV =
Z
V (t)

EdV

During a fluid flow, the total energy of a moving control mass can change due to 
several reasons: 

a) Volume forces: The work done per unit time by the volume forces

is 
WV =
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ρ~v · ~gdV

~fV =
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b) Surface forces: The work done per unit time by the surface forces

is WS =
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~v · S · n̂dS

~fS =
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S · n̂dS



Conservation of Energy (II)Conservation of Energy (II)
c) Energy flow:     If energy is flowing into or out of the volume (e.g. due to heat 

conduction and       is the energy flow vector field (energy per 
unit area, per unit time), then the energy flowing into or out of 
the volume per unit time is  

~Q

WQ = −
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~Q · n̂dS

d) Addition of heat:  If, in addition, heat is also added directly to each particle, 
e.g. using microwaves, at a rate q per unit mass, per unit time, 
then the corresponding energy added per unit time is 
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The rate of change of the total energy of a moving control mass is then 
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and using Reynold’s transport theorem:
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Conservation of Energy (III)Conservation of Energy (III)
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Summary of EquationsSummary of Equations
The system of differential equations governing fluid dynamics is:

∂ρ

∂t
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This system is in first-order hyperbolic form:

∂t ~U + ∂x ~F (~U ) + ∂y ~G(~U) + ∂z ~H(~U) = ~S(~U)

where                                                     is the state vector of unknowns~U = {ρ, ρvx, ρvy, ρvz, E}

are the flux vectors, and ~F , ~G, ~H

~S is the source vector.



Viscous StressesViscous Stresses
In the Newtonian approximation, one assumes that viscous stresses still obey Hooke’s
linear law (deformation is linearly proportional stress). In this approximation, the 
viscous part of the stress tensor is written as:
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D =

1

2

h
~∇⊗ ~v + (~∇ ⊗ ~v)T
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is the deformation tensor, and

coefficient of shear viscosityη

coefficient of bulk viscosityηb

For monatomic gases                 , while for polyatomic gases .ηb 6= 0ηb= 0

The shear viscosity depends strongly on temperature and only slightly on pressure. When 
approximating                    , Sutherland’s formula holds:                η = η(T )
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µ
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T

¶−1√
T



Heat FlowHeat Flow
Heat flow can be the result of:

1) Heat flow due to temperature gradients 

2) Diffusion processes in gas mixtures

3) Radiation

In the case of temperature gradients, it has been found that Fourier’s law holds:

~Q = −k~∇T

where k is the coefficient of thermal conductivity, depending strongly on T and only 
slightly on pressure, just as the shear viscosity coefficient. From molecular theory:

k ∝ η

If cp is constant, then one can define the Prandtl number

Pr ≡
cpη

k
=

4γ

9γ − 5
(Eucken)

Since Pr is of order unity, this means that heat flow and viscosity must both be treated 
consistently. 



Entropy EquationEntropy Equation
An alternative form of the energy equation, in terms of the specific internal energy, is:
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Using the first law of thermodynamics, we can derive an equation for the dynamical 
evolution of the specific entropy:
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Inviscid flow (perfect fluid):

Π = 0

Adiabatic flow of perfect fluid is isentropic:
Ds

Dt
= 0 in smooth flow~Q = 0, q = 0 ⇒

constant along particle paths⇒ s =



Isentropic and Isentropic and HomentropicHomentropic FlowsFlows
Along a particle path in an isentropic flow, 

Exercise 3ap= K(s0)ρ
γ

where K(s0) is a constant, depending on the specific entropy of the particle path at t=0. 
Alternatively, one can show that 

Tρ1−γ = const. Exercise 3b

If the entropy is constant everywhere, at all times, the flow is called homentropic. 

EntropyEntropy
If cv, cp = constant,  then the specific entropy can be expressed as 

s= s0 + cv ln

Ã
p

ργ

!
Exercise 4a

where s0 is a reference value. 



BarotropicBarotropic and Incompressible Flowsand Incompressible Flows
If the temperature or the specific entropy are constant everywhere, e.g. 

constant (isothermal flow)T = T0 =

constant (homentropic flow)s= s0 =

then the pressure depends only on the density 

p = p(ρ)

and the flow is called barotropic. Then:

1

ρ
~∇p = ~∇h

where                            is the specific enthalpy.h =
Z
dp

ρ

Exercise 4b

If the density of the fluid is constant everywhere,  

constant  ρ= ρ0 =

then the flow is called incompressible, and the continuity equation implies:

~∇ · ~v = 0



Flow at JunctionsFlow at Junctions

Two falling blobs of liquid in a pipe. Wall shear stress in an elastic blood vessel.



Flow in ContainersFlow in Containers

Marching cube partially filled with water. Dambreak in sphere. 



Maritime ApplicationsMaritime Applications

Water clashing over a ship’s deck with 
a rectangular obstacle. 

Rectangular block falling into water.



Drops and Drops and DambreakDambreak

A drop falling in a pool of water.

Dambreak with box.



Turbulent Flow Past an ObstacleTurbulent Flow Past an Obstacle



ShocksShocks



Instabilities in FlowsInstabilities in Flows



Industrial ApplicationsIndustrial Applications
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