
Integral Form of Conservation LawsIntegral Form of Conservation Laws
Differential Form:
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= 0

Integral Form I:

d

dt
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Integral Form II:
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More generally, for any domain V in the x-t space, the following relation 
holds for the closed line integral:Z

[~Udx− ~F (~U)dt] = 0



Nonlinear Scalar Conservation LawNonlinear Scalar Conservation Law
Differential form:

∂u

∂t
+

∂f (u)

∂x
= 0

⇒ ∂u

∂t
+ λ(u)

∂u

∂x
= 0

where:
λ(u) =

∂f

∂u

Initial Data: u(x,0) = u0(x)

Convex / Concave flux:
λ0(u) > 0 Convex flux

Concave fluxλ0(u) < 0

λ0(u) = 0if for some u: Non-Convex, Non-Concave flux



Characteristic SolutionCharacteristic Solution
The characteristic problem is:

dx

dt
= λ(u), x(0) = x0

Since both u and x are functions of t:

du

dt
=

∂u

∂t
+ λ(u)

∂u

∂x
= 0

i.e. u is constant along characteristic curves, which must be straight lines. 
The solution is:

u(x, t) = u0(x0)

Example:



Shock WavesShock Waves
Consider the Riemann problem for a convex flux, with compressive initial 
data (uL > uR). Then, the characteristic speeds are

λ(uL) > λ(uR)

The characteristics cross, forming a shock wave.



Shock Wave ConditionsShock Wave Conditions
From the integral form of the conservation law, one can easily show that the 
shock speed is given by the Rankine-Hugoniot condition across the shock: 

S =
∆f

∆u
=
f(u(xR, t)) − f(u(xL, t))

u(xR, t)− u(xL, t)

The shock speed satisfies the entropy condition: 

λ(uL) > S > λ(uR)

e.g. for Burger’s equation ( f=u2/2) :

S =
1

2
(uL+ uR)

The shock solution of the convex, compressive Riemann problem is:

u(x, t) =

(
uL, x − St < 0
uR, x − St > 0



(Unphysical) Rarefaction Shock(Unphysical) Rarefaction Shock
Consider a convex Riemann problem with expansive data. There exists a 
mathematical solution of the same form as the shock solution:

u(x, t) =

(
uL, x − St < 0
uR, x − St > 0

with S given as before. However, 
since now

λL < λR

the entropy condition is not satisfied. 
Therefore, this mathematical solution 
(called a rarefaction shock) is 
unphysical, since it is entropy-
violating.

uL

uR
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uL uR

Rarefaction shock

Moreover, this solution is unstable.



Rarefaction Waves (I)Rarefaction Waves (I)
If a small continuous part is add in-between the discontinuity, then the 
solution changes and becomes

u(x, t) =

⎧⎪⎨⎪⎩
uL, x − xL < λLt
(x − xL)/t, λLt < x− xL < λRt
uR, x − xR ≥ λR

uL

uR
t
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x

HeadTail

This is a non-centered rarefaction wave.



Rarefaction Waves (II)Rarefaction Waves (II)
If we let 

∆x = xR − xL→ 0

This is a centered rarefaction wave.

the solution becomes 

u(x, t) =

⎧⎪⎨⎪⎩
uL, x < λLt
x/t, λLt < x < λRt
uR, x ≥ λR

Thus, the convex Riemann problem with 
expansive initial data has two possible 
solutions, a rarefaction shock and a centered 
rarefaction wave. Of these two solutions, 
only the latter is physical, satisfying the 
entropy condition.


