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Abstract
Because of the information they can yield about the equation of state of mat-

ter at extremely high densities and because they are one of the more possible
sources of detectable gravitational waves, rotating relativistic stars have been
receiving significant attention in recent years. We review the latest theoretical
and numerical methods for modeling rotating relativistic stars, including stars
with a strong magnetic field and hot proto-neutron stars. We also review non-
axisymmetric oscillations and instabilities in rotating stars and summarize the
latest developments regarding the gravitational wave-driven (CFS) instability
in both polar and axial quasi-normal modes.
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1 Introduction

Rotating relativistic stars are of fundamental interest in physics. Their bulk
properties restrict the proposed possible equations of state for densities larger
than nuclear density. Their oscillations can become unstable, producing gravi-
tational waves that could be detectable, providing thereby a new way of probing
the interior of neutron stars.

Recent research has considerably advanced our understanding of these ob-
jects. There now exist several independent numerical codes for obtaining accu-
rate models of rotating neutron stars in full general relativity. Three of these
codes have been shown to agree with each other to remarkable accuracy, and
one code is available as public domain for use by other researchers.

The numerically constructed maximum mass models, for different proposed
equations of state, differ by as much as a factor of two in mass, radius and
angular velocity, a factor of five in central density and a factor of eight in the
moment of inertia. These large uncertainties show that our understanding of
the properties of matter at very high densities is currently rather poor.

Despite the different maximum rotation rates, corresponding to different
candidates for the equation of state of neutron-star matter, one can place an
absolute upper limit on the rotation of relativistic stars by imposing causality
as the only requirement on the equation of state. It then follows that gravita-
tionally bound stars cannot rotate faster than 0.28 ms.

Although observed magnetic fields in neutron stars have a negligible effect on
neutron-star structure, a sufficiently strong magnetic field acts as a centrifugal
force on a relativistic star, flattening its shape and increasing the maximum mass
and rotation rate for a given equation of state. The magnetic field strength of a
stationary configuration has been shown to have an upper limit of B ∼ 1017 G.

Rapidly rotating proto-neutron stars are shown to have an extended enve-
lope, due to their high temperature and the presence of trapped neutrinos. If
the equation of state is softened, as the neutron star cools, by a large amplitude
phase transition, then the nascent neutron star may collapse to a black hole. A
surprising result is that a supramassive proto-neutron star, even though it con-
tracts during cooling, evolves to a cold neutron star of smaller angular velocity.

In rotating stars, nonaxisymmetric perturbations have been studied in the
Newtonian and post-Newtonian approximations, in the slow-rotation limit and
in the Cowling approximation; but fully relativistic quasi-normal modes (except
for neutral modes) are yet to be obtained. The effect of rotation on the quasi-
normal modes of oscillation is to couple polar and axial modes and to shift their
frequencies and damping times, causing some modes to become unstable.

Nonaxisymmetric instabilities in rotating stars can be driven by the emis-
sion of gravitational waves (CFS-instability) or by viscosity. The onset of the
CFS-instability has now been computed for fully relativistic, rapidly rotating
stars. Relativity has a strong influence on the onset of the instability, allow-
ing it to occur for less rapidly rotating stars than was suggested by Newtonian
computations.

Contrary to what was previously thought, nascent neutron stars can be
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5 Rotating Stars in Relativity

subject to the l = 2 bar mode CFS-instability, emitting strong gravitational
waves. The frequency of the waves sweeps downward through the optimal LIGO
sensitivity window, and first estimates show that it could be detectable out to
the distance of 140 Mpc by the advanced LIGO detector.

The viscosity-driven instability is not favored by general relativity but, as a
new relativistic computation shows, is absent in rotating neutron stars, unless
the equation of state is unexpectedly stiff.

Axial fluid modes in rotating stars (r-modes) received renewed attention
since it was discovered that they are generically unstable to the emission of
gravitational waves. The r-mode instability can slow down a newly-born rapidly
rotating neutron star to Crab-like rotation rates. First results show that the
gravitational waves from the spin-down (directly, or as a stochastic background)
could be detectable by the advanced LIGO or VIRGO detectors.

The present article aims at presenting a summary of theoretical and numer-
ical methods that are used to describe the equilibrium properties of rotating
relativistic stars and their oscillations. In order to rapidly communicate new
methods and results, the article focuses on the most recently available preprints.
At the end of some sections, the reader is pointed to papers that could not be
presented in detail here. As new developments in the field occur, updated ver-
sions of this article will appear.
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N. Stergioulas 6

2 The Equilibrium Structure of Rotating Rela-
tivistic Stars

2.1 Assumptions

Although a relativistic star has a complicated structure (solid crust, magnetic
field, possible superfluid interior, etc.), its bulk properties can be computed with
reasonable accuracy by making several simplifying assumptions.

The matter is modeled as a perfect fluid because observations of pulsar
glitches have shown that the departures from perfect fluid equilibrium due to
the solid crust are of order 10−5 [43]. The temperature of a cold neutron star
is assumed to be 0 K because its thermal energy (<< 1MeV ∼ 1010 K) is much
smaller than the Fermi energy of the interior (> 60 MeV). One can then use
a zero-temperature (one-parameter) equation of state (EOS) to describe the
matter:

ε = ε(P ), (1)

where ε is the energy density and P is the pressure. At birth, a neutron star is
differentially rotating, but as the neutron star cools, shear viscosity, resulting
from neutrino diffusion, aided by convective and turbulent motions and possibly
by the winding-up of magnetic field lines, enforces uniform rotation. At present,
it is difficult to accurately compute the timescale in which uniform rotation is
enforced, but it is estimated to be of the order of thousands of seconds [56].

Within roughly a year after its formation, the neutron star temperature
becomes less than 109K, and its outer core becomes superfluid (See [109] and
references therein.). Rotation causes the superfluid neutrons to form an array
of quantized vortices, with an intervortex spacing of

dn ∼ 3.4× 10−3Ω−1/2
2 cm, (2)

where Ω2 is the angular velocity of the star in 102s−1. On scales much larger
than the intervortex spacing, e.g. on the order of 1 cm, the fluid motions
can be averaged and the rotation can be considered uniform [137].The error in
computing the metric is of order

(
1cm
R

)2 ∼ 10−11, (3)

where R is a typical neutron star radius [43].
The above arguments show that the bulk properties of a rotating relativis-

tic star can be modeled accurately by a uniformly rotating, zero-temperature
perfect fluid.

2.2 Geometry of Space-Time

In relativity, the space-time geometry of a rotating star in equilibrium is de-
scribed by a stationary and axisymmetric metric of the form

ds2 = −e2νdt2 + e2ψ(dφ− ωdt)2 + e2α(dr2 + r2dθ2), (4)
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7 Rotating Stars in Relativity

where ν, ψ, ω and α are four metric functions which depend on the coordinates
r and θ only (unless otherwise noted, we assume c = G = 1). The perfect fluid
has a stress-energy tensor

T ab = (ε+ P )uaub + Pgab, (5)

a four velocity

ua =
e−ν√
1− v2

(ta + Ωφa), (6)

and a 3-velocity with respect to a zero angular momentum observer of

v = (Ω− ω)eψ−ν , (7)

where ta and φa are the two killing vectors associated with the time and trans-
lational symmetries of the space-time, gab is the metric tensor, and Ω is the
angular velocity. Having specified an equation of state for very dense matter,
the structure of the star is computed by solving four components of Einstein’s
gravitational field equations

Rab = 8π(Tab −
1
2
gabT ), (8)

(where Rab is the Ricci tensor and T = T aa ) and the equation of hydrostationary
equilibrium.

2.3 Equations of State

The simplest equation of state one can use to model relativistic stars is the
relativistic polytropic EOS [148]

P = KρΓ, (9)

ε = ρc2 +
P

Γ− 1
, (10)

where ρ is the rest mass density, K is a constant, and Γ is the polytropic
exponent. Instead of Γ, one often uses the polytropic index N , defined through

Γ = 1 +
1
N
. (11)

For this equation of state, the quantity c(Γ−2)/(Γ−1)
√
K1/(Γ−1)/G has units

of length. In gravitational units (c = G = 1), one can thus use KN/2 as a
fundamental length scale to define dimensionless quantities. Equilibrium models
are then characterized by the polytropic index N and their properties can be
scaled to different values, using an appropriate value for K. For N < 1.0
(N > 1.0), one obtains stiff (soft) models, while for N = 0.5− 1.0, one obtains
models with bulk properties that are comparable to those of observed neutron
stars.
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Note that for the above polytropic EOS, the polytropic index Γ coincides
with the adiabatic index of a relativistic isentropic fluid

Γ =
ε+ P

P

dP

dε
. (12)

This is not the case for the polytropic equation of state, P = KεΓ, that has
been used by other authors, which satisfies (12) only in the Newtonian limit.

The true equation of state that describes the interior of compact stars is
largely unknown. This results from the inability to verify experimentally the
different theories that describe the strong interactions between baryons and the
many-body theories of dense matter at densities larger than about twice the
nuclear density (i.e. at densities larger than about 5× 1014gr/cm3).

To date, many different realistic EOSs have been proposed which produce
neutron stars that satisfy the currently available observational constraints (Cur-
rently, the two main constraints are that the EOS must admit nonrotating
neutron stars with gravitational mass of at least 1.44M� and allow rotational
periods at least as small as 1.56 ms, see [122, 86].). The proposed EOSs are qual-
itatively and quantitatively very different from each other. Some are based on
relativistic many-body theories, while others use nonrelativistic theories with
baryon-baryon interaction potentials. A classic collection of early proposed
EOSs was compiled by Arnett and Bowers [7], while recent EOSs are described
in Salgado et al. [129].

High density equations of state with pion condensation have been proposed
by Migdal [110] and Sawyer and Scalapino [132]. The possibility of Kaon conden-
sation is discussed by Brown and Bethe [21] and questioned by Pandharipande
et al. [120]. Many authors have examined the possibility of stars composed of
strange quark matter, and a recent review can be found in [154].

The realistic EOSs are supplied in the form of an energy density vs. pressure
table, and intermediate values are interpolated. This results in some loss of accu-
racy because the usual interpolation methods do not preserve thermodynamical
consistency. Recently however, Swesty [143] devised a cubic Hermite interpo-
lation scheme that does preserve thermodynamical consistency; the scheme has
been shown to indeed produce higher accuracy neutron star models in Nozawa
et al. [116].

• Going further. A discussion of hybrid stars, which have a mixed-phase
region of quark and hadronic matter, can be found in [152]. A study of
the relaxation effect in dissipative relativistic fluid theories is presented in
[95].

2.4 Numerical Schemes

Out of the ten components of the field equations that describe the geometry of
a rotating relativistic star, only four are independent; one has the freedom to
choose which four components to use. After choosing four field equations, there
are different methods one can use to solve them. First models were obtained by
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9 Rotating Stars in Relativity

Wilson [155] and Bonazzola and Schneider [20]. Here we will review the following
methods: Hartle’s slow rotation formalism, the Newton-Raphson linearization
scheme due to Butterworth and Ipser [24], a scheme using Green’s functions
by Komatsu et al. [83, 84], a minimal surface scheme due to Neugebauer and
Herold [115], and two spectral methods by Bonazzola et al. [18, 17]. Below we
give a description about each method and its various implementations (codes).

2.4.1 Hartle

To O(Ω2) the structure of a star changes only by quadrupole terms, and the
equilibrium equations become a set of ordinary differential equations. Hartle’s
[59, 62] method computes rotating stars in this slow-rotation approximation;
a review of slowly rotating models has been compiled by Datta [34]. Weber
et al. [150], [153] also implement Hartle’s formalism to explore the rotational
properties of four new EOSs.

Weber and Glendenning [151] attempt to improve on Hartle’s formalism in
order to obtain a more accurate estimate of the angular velocity at the mass-
shedding limit, but their models show large discrepancies compared to corre-
sponding models computed with fully rotating schemes [129]. Thus, Hartle’s
formalism cannot be used to compute models of rapidly rotating relativistic
stars with sufficient accuracy.

2.4.2 Butterworth and Ipser (BI)

The BI-scheme [24] solves the four field equations following a Newton-Raphson
like linearization and iteration procedure. One starts with a nonrotating model
and increases the angular velocity in small steps, treating a new rotating model
as a linear perturbation of the previously computed rotating model. Each lin-
earized field equation is discretized, and the resulting linear system is solved.
The four field equations and the hydrostationary equilibrium equation are solved
separately and iteratively until convergence is achieved.

The space is truncated at a finite distance from the star, and the boundary
conditions there are imposed by expanding the metric potentials in powers of
1/r. Angular derivatives are approximated by high-accuracy formulae, and
models with density discontinuities are treated specially at the surface. An
equilibrium model is specified by fixing its rest mass and angular velocity.

The original BI code was used to construct uniform density models and
polytropic models [24, 23]. Friedman et al. [45, 46] extend the BI code to
obtain a large number of rapidly rotating models based on a variety of realistic
EOSs. Lattimer et al. [94] used a code which was also based on the BI scheme
to construct rotating stars using recent “exotic” and schematic EOSs, including
pion or Kaon condensation and self-bound strange quark matter.

2.4.3 Komatsu, Eriguchi and Hachisu (KEH)

In the KEH scheme [83, 84], the same set of field equations as in BI is used,
but the three elliptic-type field equations are converted into integral equations
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using appropriate Green’s functions. The boundary conditions at large distance
from the star are thus incorporated into the integral equations, but the region
of integration is truncated at a finite distance from the star. The fourth field
equation is an ordinary first-order differential equation. The field equations
and the equation of hydrostationary equilibrium are solved iteratively, fixing
the maximum energy density and the ratio of the polar radius to the equatorial
radius, until convergence is achieved. In [83, 84] and [37] the original KEH
code is used to construct uniformly and differentially rotating stars for both
polytropic and realistic EOSs.

Cook, Shapiro and Teukolsky (CST) improve on the KEH scheme by intro-
ducing a new radial variable which maps the semi-infinite region [0,∞) to the
closed region [0, 1]. In this way, the region of integration is not truncated and
the model converges to a higher accuracy. Details of the code are presented in
[29] and polytropic and realistic models are computed in [30] and [31].

Stergioulas and Friedman (SF) implement their own KEH code following the
CST scheme. They improve on the accuracy of the code by a special treatment
of the second order radial derivative that appears in the source term of the
first-order differential equation for one of the metric functions. This derivative
was introducing a numerical error of 1%−2% in the bulk properties of the most
rapidly rotating stars computed in the original implementation of the KEH
scheme. The SF code is presented in [141] and in [140]. It is available as a
public domain code, named rns, and can be downloaded from [139].

2.4.4 Neugebauer and Herold (NH)

The scheme by Neugebauer and Herold [115] implements the minimal surface
formalism for rotating axisymmetric space-times [114, 112, 113], in which Ein-
stein’s field equations are equivalent to the minimal surface equations in an
abstract Riemannian potential space with a well-defined metric, whose coordi-
nates are the four metric functions of the usual stationary, axisymmetric metric.
A finite element technique is used, and the system of equations is solved by a
Newton-Raphson method. Models based on realistic EOSs are presented in
[115, 156]. The NH scheme has been used to visualize rapidly rotating stars by
embedding diagrams and 4D-ray-tracing pictures (See [64] for a review.).

2.4.5 Bonazzola et al. (BGSM)

In the BGSM scheme [18], the field equations are derived in the 3+1 formulation.
All four equations describing the gravitational field are of elliptic type. This
avoids the problem with the second-order radial derivative in the source term
of the ODE used in BI and KEH. The equations are solved using a spectral
method, i.e. all functions are expanded in terms of trigonometric functions in
both the angular and radial directions, and a Fast Fourier Transform (FFT) is
used to obtain coefficients. Outside the star, a redefined radial variable is used,
which maps infinity to a finite distance.

In [130] the code is used to construct a large number of models based on
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11 Rotating Stars in Relativity

recent EOSs. The accuracy of the computed models is estimated using two
general relativistic Virial identities, valid for general asymptotically flat space-
times, that were discovered by Gourgoulhon and Bonazzola [54, 15].

While the field equations used in the BI and KEH schemes assume a perfect
fluid, isotropic stress-energy tensor, the BGSM formulation makes no assump-
tion about the isotropy of Tab. Thus, the BGSM code can compute stars with
magnetic field, solid crust or solid interior, and it can also be used to construct
rotating boson stars.

Since it is based on the 3 + 1 formalism, the BGSM code is also suitable
for providing high-accuracy, unstable equilibrium models as initial data for an
axisymmetric collapse computation.

2.4.6 Bonazzola et al. (BGM-98)

The BGSM spectral method has been improved by Bonazzola et al. [17] allowing
for several domains of integration. One of the domain boundaries is chosen to
coincide with the surface of the star, and a regularization procedure is introduced
for the infinite derivatives at the surface (that appear in the density field when
stiff equations of state are used). This allows models to be computed that
are free of Gibbs phenomena at the surface. The method is also suitable for
constructing quasi-stationary models of binary neutron stars.

2.4.7 Direct Comparison of Numerical Codes

The accuracy of the above numerical codes can be estimated, if one constructs
exactly the same models with different codes and compares them directly. The
first such comparison of rapidly rotating models constructed with the FIP and
SF codes is presented by Stergioulas and Friedman in [141]. Rapidly rotating
models constructed with several EOS’s agree to 0.1%− 1.2% in the masses and
radii and to better than 2% in any other quantity that was compared (angular
velocity and momentum, central values of metric functions etc.). This is a very
satisfactory agreement, considering that the BI code was using relatively few grid
points, due to limitations of computing power at the time of its implementation.

In [141], it is also shown that a large discrepancy between certain rapidly
rotating models, constructed with the FIP and KEH codes, that was reported
by Eriguchi et al. [37], was only due to the fact that a different version of a
tabulated EOS was used in [37] than by FIP.

Recently, Nozawa et al. [116] have completed an extensive direct comparison
of the BGSM, SF and the original KEH codes, using a large number of models
and equations of state. More than twenty different quantities for each model
are compared, and the relative differences range from 10−3 to 10−4 or better,
for smooth equations of state. The agreement is excellent for soft polytropes,
which shows that all three codes are correct and compute the desired models to
an accuracy that depends on the number of grid-points used to represent the
spacetime.
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If one makes the extreme assumption of uniform density, the agreement is
at the level of 10−2. In the BGSM code this is due to the fact that the spectral
expansion in terms of trigonometric functions cannot accurately represent func-
tions with discontinuous first-order derivatives at the surface of the star. In the
KEH and SF codes, the three-point finite-difference formulae cannot accurately
represent derivatives across the discontinuous surface of the star.

The accuracy of the three codes is also estimated by the use of the two Virial
identities due to Gourgoulhon and Bonazzola [54, 15]. Overall, the BGSM and
SF codes show a better and more consistent agreement than the KEH code
with BGSM or SF. This is largely due to the fact that the KEH code does not
integrate over the whole spacetime but within a finite region around the star,
which introduces some error in the computed models.

• Going further. A review of spectral methods in general relativity can
be found in [13]. A formulation for nonaxisymmetric, uniformly rotating
equilibrium configurations in the second post-Newtonian approximation
is presented in [8].

2.5 Properties of Equilibrium Models

2.5.1 Bulk Properties of Equilibrium Models

Neutron star models constructed with various realistic EOSs have considerably
different bulk properties, due to the large uncertainties in the equation of state
at high densities. Very compressible (soft) EOSs produce models with small
maximum mass, small radius, and large rotation rate. On the other hand, less
compressible (stiff) EOSs produce models with a large maximum mass, large
radius, and low rotation rate.

The gravitational mass, equatorial radius and rotational period of the max-
imum mass model constructed with one of the softest EOSs (EOS B) (1.63M�,
9.3km, 0.4ms) are a factor of two smaller than the mass, radius and period of the
corresponding model constructed by one of the stiffest EOSs (EOS L) (3.27M�,
18.3km, 0.8ms). The two models differ by a factor of 5 in central energy density
and a factor of 8 in the moment of inertia!

Not all properties of the maximum mass models between proposed EOSs
differ considerably. For example, most realistic EOSs predict a maximum mass
model with a ratio of rotational to gravitational energy T/W of 0.11 ± 0.02, a
dimensionless angular momentum cJ/GM2 of 0.64 ± 0.06 and an eccentricity
of 0.66 ± 0.04, [43]. Hence, between the set of realistic EOSs, some properties
are directly related to the stiffness of the EOS while other properties are rather
insensitive to stiffness.

Compared to nonrotating stars, the effect of rotation is to increase the equa-
torial radius of the star and also to increase the mass that can be sustained
at a given central energy density. As a result, the mass of the maximum mass
rotating model is roughly 15% − 20% higher than the mass of the maximum
mass nonrotating model, for typical realistic EOSs. The corresponding increase
in radius is 30%− 40%.
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13 Rotating Stars in Relativity

The deformed shape of a rapidly rotating star creates a distortion, away from
spherical symmetry, in its gravitational field. Far from the star, the distortion
is measured by the quadrupole-moment tensor Qab. For uniformly rotating,
axisymmetric and equatorially symmetric configurations, one can define a scalar
quadrupole moment Q, which can be extracted from the asymptotic expansion,
at large r, of the metric function ν.

Laarakkers and Poisson [87], numerically compute the scalar quadrupole
moment Q for several equations of state, using the rotating neutron star code
rns [139]. They find that, for fixed gravitational mass M , the quadrupole
moment is given as a simple quadratic fit

Q = −a J2

Mc2
, (13)

where J is the angular momentum of the star, and a is a dimensionless quantity
that depends on the equation of state. The above quadratic fit reproduces Q
with a remarkable accuracy. The quantity a varies between a ∼ 2 for very soft
EOSs and a ∼ 8 for very stiff EOSs, for M = 1.4M� neutron stars.

For a given zero-temperature EOS, the uniformly rotating equilibrium mod-
els form a 2-dimensional surface in the 3-dimensional space of central energy
density, gravitational mass and angular momentum [141]. The surface is lim-
ited by the nonrotating models (J = 0) and by the models rotating at the
mass-shedding (Kepler) limit, i.e. at the maximum allowed angular velocity so
that the star does not shed mass at the equator. Cook et al. [29, 30, 31] have
shown that the model with maximum angular velocity does not coincide with
the maximum mass model, but is generally very close to it in central density and
mass. Stergioulas and Friedman [141] show that the maximum angular velocity
and maximum baryon mass equilibrium models are also distinct. The distinc-
tion becomes significant in the case where the EOS has a large phase transition
near the central density of the maximum mass model, otherwise the models of
maximum mass, baryon mass, angular velocity and angular momentum can be
considered to coincide for most purposes.

2.5.2 An Empirical Formula for the Kepler Velocity

In the Newtonian limit, the maximum angular velocity of uniformly rotating
polytropic stars is, Ωmax ' (2/3)3/2(GM/R3)1/2 (see [134]). For relativistic
stars, the empirical formula [58, 46, 41]

Ωmax = 0.67

√
GMmax

R3
max

, (14)

gives the maximum angular velocity in terms of the mass and radius of the max-
imum mass nonrotating model with an accuracy of 5% − 7%, without actually
having to construct rotating models.

The empirical formula results from universal proportionality relations that
exist between the mass and radius of the maximum mass rotating model and
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those of the maximum mass nonrotating model for the same EOS. Lasota et
al. [91] find that, for most EOSs, the coefficient in the empirical formula is an
almost linear function of the parameter

χs =
2GMmax

Rmaxc2
, (15)

When this relation is taken into account in the empirical formula, it reproduces
the exact values with a relative error of only 1.5%.

Weber and Glendenning [150, 151] try to reproduce analytically the empirical
formula in the slow rotation approximation, but the formula they obtain involves
the mass and radius of the maximum mass rotating configuration, which is
different from what is involved in (14).

2.5.3 The Upper Limit on Mass and Rotation

The maximum mass and minimum period of rotating relativistic stars computed
with realistic EOSs from the Arnett and Bowers collection [7] are about 3.3M�
(EOS L) and 0.4ms (EOS B), while 1.4M� neutron stars, rotating at the Ke-
pler limit, have a rotational periods between 0.53ms (EOS B) and 1.7ms (EOS
M) [31]. The maximum, accurately measured, neutron star mass is currently
1.44M�, but there are also indications for 2.0M� neutron stars [74]. The min-
imum observed pulsar period is 1.56ms [86], which is close to the experimental
sensitivity of recent pulsar searches (an ongoing experiment is designed to detect
sub-millisecond pulsars, if they exist [22]).

In principle, neutron stars with maximum mass or minimum period could
exist, if they are born as such in a core collapse, or if they accrete the right
amount of matter and angular momentum during an accretion-induced spin-up
phase. Such a phase could also follow the creation of an 1.4M� neutron star
during the accretion induced collapse of a white dwarf.

In reality, only a very small fraction, if any, of neutron stars will be close
to the maximum mass or minimum period limit. In addition, rapidly rotating
nascent neutron stars are subject to a nonaxisymmetric instability, which lowers
their initial rotation rate and neutron stars with a strong magnetic field have
their rotation rate limited by the Kepler velocity at their Alfven radius, where
the accretion pressure balances the magnetospheric pressure [86].

• Going further. A recent review by J. L. Friedman on the upper limit
on rotation of relativistic stars can be found in [42].

2.5.4 The Upper Limit on Mass and Rotation Set by Causality

Current proposed EOSs are reliable only to about twice nuclear density and
result in very different values for the maximum mass and minimum period of
neutron stars. If one is interested in obtaining upper limits on the mass and
rotation rate, independent of the proposed EOSs, one has to rely on fundamental
physical principles.
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Instead of using realistic EOSs, one constructs a set of artificial EOSs that
satisfy only a minimal set of physical constraints, which represent what we
know about the equation of state of matter with high confidence. One then
searches among all these EOSs to obtain the one that gives the maximum mass
or minimum period. The minimal set of constraints that have been used in such
searches is:

1. the high density EOS matches to the known low density EOS at some
matching energy density εm,

2. the matter at high densities satisfies the causality constraint (the speed of
sound is less than the speed of light).

In relativistic perfect fluids, the speed of sound is the characteristic velocity of
the fluid evolution equations, and the causality constraint translates into the
requirement

dp/dε ≤ 1. (16)

(see e.g. Geroch and Lindblom [50]). It is assumed that the fluid will still
behave as a perfect fluid when it is perturbed from equilibrium.

For nonrotating stars, Rhoades and Ruffini showed that the EOS that satis-
fies the above two constraints and yields the maximum mass consists of a high
density region as stiff as possible (i.e. at the causal limit, dp/dε = 1), that
matches directly to the known low density EOS. For a chosen matching density
εm, they computed a maximum mass of 3.2M�. However, this is not the theo-
retically maximum mass of nonrotating neutron stars, as is often quoted in the
literature. Hartle and Sabbadini [61] point out that Mmax is sensitive to the
matching energy density, and Hartle [60] computes Mmax as a function of εm.

Mmax = 4.8
(2× 1014gr/cm3

εm

)1/2

M�. (17)

In the case of rotating stars, Friedman and Ipser [44] assume that the abso-
lute maximum mass is obtained by the same EOS as in the nonrotating case and
compute Mmax as a function of matching density, assuming the BPS EOS holds
at low densities. Stergioulas and Friedman [141] recompute Mrot

max for rotating
stars using the more recent FPS EOS at low densities, obtaining very nearly
the same result

Mrot
max = 6.1

(2× 1014gr/cm3

εm

)1/2

M�, (18)

where, 2× 1014gr/cm3 is roughly nuclear saturation density for the FPS EOS.
A first estimate of the absolute minimum period of uniformly rotating, grav-

itationally bound stars was computed by Glendenning [52] by constructing non-
rotating models and using the empirical formula (14) to estimate the minimum
period. Koranda, Stergioulas and Friedman [85] improve on Glendenning’s re-
sults by constructing accurate rapidly rotating models and show that Glenden-
ning’s results are accurate to within the accuracy of the empirical formula.
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Furthermore, they show that the EOS satisfying the minimal set of con-
straints and yielding the minimum period star consists of a high density region
at the causal limit, which is matched to the known low density EOS through an
intermediate constant pressure region (that would correspond to a first-order
phase transition). Thus, the EOS yielding absolute minimum period models is
as stiff as possible at the central density of the star (to sustain a large enough
mass) and as soft as possible in the crust, in order to have the smallest possible
radius (and rotational period).

The absolute minimum period of uniformly rotating stars is an (almost lin-
ear) function of the maximum observed mass of nonrotating neutron stars

Pmin = 0.28ms + 0.2(Mnonrot.
max − 1.44M�), (19)

and is rather insensitive to the matching density εm (the above result was com-
puted for a matching number density of 0.1fm−3).

In [85], it is also shown that an absolute limit on the minimum period exists
even without requiring that the EOS matches to a known low density EOS (This
is not true for the limit on the maximum mass.). Thus, using causality as the
only constraint on the EOS, Pmin is lowered by only 3%, which shows that the
currently known part of the nuclear EOS plays a negligible role in determining
the absolute upper limit on the rotation of uniformly rotating, gravitationally
bound stars.

2.5.5 Spin-Up Prior to Collapse

Since rotation increases the mass that a neutron star of given central density can
support, there exist sequences of neutron stars with constant baryon number
that have no nonrotating member. Such sequences are called supramassive as
opposed to normal sequences that do have a nonrotating member. A nonrotating
star can become supramassive by accreting matter and spinning-up to large
rotation rates; in another scenario, neutron stars could be born supramassive
after a core collapse. A supramassive star evolves along a sequence of constant
baryon mass, slowly loosing angular momentum. Eventually, the star reaches
a point where it becomes unstable to axisymmetric perturbations and collapses
to a black hole. The instability grows on a secular timescale, in the sense that
it is limited by the time required for viscosity to redistribute the star’s angular
momentum. This timescale is comparable with the spin-up time following a
glitch [43].

Cook et al. [29, 30, 31] have discovered that a supramassive star approaching
the axisymmetric instability will actually spin-up before collapse, even though
it loses angular momentum. This, potentially observable, effect is independent
of the equations of state, and it is more pronounced for rapidly rotating massive
stars. In a similar phenomenon, normal stars can spin-up by loss of angular
momentum near the Kepler limit, if the equation of state is extremely stiff or
extremely soft.
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2.5.6 Rotating Magnetized Neutron Stars

The presence of a magnetic field was ignored in the models of rapidly rotating
relativistic stars that were considered in the previous sections. The reason is
that the observed surface dipole magnetic field strength of pulsars ranges be-
tween B = 108 G and B = 2 × 1013 G. These values of B imply a magnetic
field energy density that is too small compared to the energy density of the
fluid to significantly affect the structure of a neutron star. However, one cannot
exclude the existence of neutron stars with higher magnetic field strengths or
the possibility that neutron stars are born with much stronger magnetic fields,
which then decay to the observed values. (Of course there are also many ar-
guments against magnetic field decay in neutron stars [122].) In addition, even
though moderate magnetic field strengths do not alter the bulk properties of
neutron stars, they may have an effect on the damping or growth rate of various
perturbations of an equilibrium star, affecting its stability. For these reasons,
a fully relativistic description of magnetized neutron stars is desirable; and,
in fact, Bocquet et al. [11] achieved the first numerical computation of such
configurations. Here we give a brief summary of their work:

A magnetized relativistic star in equilibrium can be described by the coupled
Einstein-Maxwell field equations for stationary, axisymmetric rotating objects
with internal electric currents. The stress-energy tensor includes the electro-
magnetic energy density and is non-isotropic (in contrast to the isotropic perfect
fluid stress- energy tensor). The equilibrium of the matter is given not only by
the balance between the gravitational force and the pressure gradient, but the
Lorentz force due to the electric currents also enters the balance. For simplicity,
Bocquet et al. consider only poloidal magnetic fields, which preserve the cir-
cularity of the space-time. Also, they only consider stationary configurations,
which excludes magnetic dipole moments non-aligned with the rotation axis,
since in that case the star emits electromagnetic and gravitational waves. The
assumption of stationarity implies that the fluid is necessarily rigidly rotating
(if the matter has infinite conductivity) [18]. Under these assumptions, the elec-
tromagnetic field tensor F ab is derived from a potential 1-form Aa with only two
non-vanishing components, At and Aφ, which are given by a scalar Poisson and
a vector Poisson equation respectively. Thus, the two equations describing the
electromagnetic field are of similar type as the four field equations that describe
the gravitational field.

The construction of magnetized models with B < 1013 G confirms that
magnetic fields of this strength have a negligible effect on the structure of the
star. However, if one increases the strength of the magnetic field above 1014 G,
one observes significant effects, such as a flattening of the star. The magnetic
field cannot be increased indefinitely, but there exists a maximum value of the
magnetic field strength, of the order of 1017 G, for which the magnetic field
pressure at the center of the star equals the fluid pressure. Above this value, the
fluid pressure decreases more rapidly away from the center along the symmetry
axis than the magnetic pressure. Instead of pressure, there is tension along the
symmetry axis and no stationary configuration can exist.
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The shape of a strongly magnetized star is flattened because the Lorentz
forces exerted by the E/M field on the fluid act as centrifugal forces. A star
with a magnetic field near the maximum value for stationary configurations
displays a pinch along the symmetry axis because there, the magnetic pressure
exceeds the fluid pressure. The maximum fluid density inside the star is not
attained at the center, but away from it. The presence of a strong magnetic
field also allows a maximum mass configuration with larger Mmax than for the
same EOS with no magnetic field; this is in analogy with the increase of Mmax

induced by rotation. For nonrotating stars, the increase in Mmax, due to a
strong magnetic field, is 13% − 29%, depending on the EOS. Following the
increase in mass, the maximum allowed angular velocity for a given EOS also
increases in the presence of a magnetic field.

Bocquet et al. are planning to use their code in the study of two types
of possible instabilities in magnetized neutron stars: i) a pure E/M instability
towards another electric current/magnetic field distribution of lower energy, and
ii) a nonaxisymmetric instability for rapidly rotating models, which would be
the analog of a Jacobi-type transition in non-magnetized stars. In perfect fluid
models with a magnetic field, one would also expect a CFS-instability driven by
electromagnetic waves.

2.5.7 Rapidly Rotating Proto-Neutron Stars

Following the gravitational collapse of a massive stellar core, a proto-neutron
star (PNS) is born. Initially it has a large radius of about 100km and a tempera-
ture of 50-100MeV. The PNS may be born with a large rotational kinetic energy,
and initially it will be differentially rotating. Due to the violent nature of the
gravitational collapse, the PNS pulsates heavily, emitting significant amounts of
gravitational radiation. After a few hundred pulsational periods, bulk viscosity
will damp the pulsations significantly. Rapid cooling due to deleptonization
transforms the PNS to a hot neutron star of T ∼ 10MeV shortly after its
formation. In addition, viscosity reduces the differential rotation to a nearly
uniform rotation on a timescale of seconds [56], and the neutron star becomes
quasi-stationary. Since the details of the PNS evolution determine the exact
properties of the resulting cold NSs, proto-neutron stars must be modeled real-
istically in order to understand the structure of cold neutron stars.

Hashimoto et al. [63] and Goussard et al. [55] recently constructed fully
relativistic models of rapidly rotating, hot proto-neutron stars. The authors
use finite-temperature EOSs [118, 93] to model the interior of PNSs. Important
parameters, which determine the local state of matter but are largely unknown,
are the lepton fraction Yl and the temperature profile. Hashimoto et al. consider
only the limiting case of zero lepton fraction Yl = 0 and classical isothermality,
while Goussard et al. consider several non-zero values for Yl and two differ-
ent limiting temperature profiles - a constant entropy profile and a relativistic
isothermal profile. In both [63] and [118], differential rotation is neglected to a
first approximation.

The construction of numerical models with the above assumptions shows
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that, due to the high temperature and the presence of trapped neutrinos, PNSs
have a significantly larger radius than cold NSs. These two effects give the
PNS an extended envelope which, however, contains only roughly 0.1% of the
total mass of the star. This outer layer cools more rapidly than the interior
and becomes transparent to neutrinos, while the core of the star remains hot
and neutrino opaque for a longer time. The two regions are separated by the
“neutrino sphere”.

Compared to the T = 0 case, an isothermal EOS with temperature of 25MeV
has a maximum mass model of only slightly larger mass. In contrast, an isen-
tropic EOS with a nonzero trapped lepton number features a maximum mass
model that has a considerably lower mass than the corresponding model in the
T = 0 case, and a stable PNS transforms to a stable neutron star. If, however,
one considers the hypothetical case of a large amplitude phase transition which
softens the cold EOS (such as a Kaon condensate), then Mmax of cold neutron
stars is lower than Mmax of PNSs, and a stable PNS with maximum mass will
collapse to a black hole after the initial cooling period. This scenario of delayed
collapse of nascent neutron stars has been proposed by Brown and Bethe [21]
and investigated by Baumgarte et al. [10].

An analysis of radial stability of PNSs [53] shows that, for hot PNSs, the
maximum angular velocity star almost coincides with the maximum mass star,
as is also the case for cold EOSs.

Because of their increased radius, PNSs have a different mass-shedding limit
than cold NSs. For an isothermal profile, the mass-shedding limit proves to be
sensitive to the exact location of the neutrino sphere. For the EOSs considered
in [63] and [55] PNSs have a maximum angular velocity that is considerably
less than the maximum angular velocity allowed by the cold EOS. Stars that
have nonrotating counterparts (i.e. that belong to a normal sequence) contract
and speed up while they cool down. The final star with maximum rotation is
thus closer to the mass-shedding limit of cold stars than was the hot PNS with
maximum rotation. Surprisingly, stars belonging to a supramassive sequence
exhibit the opposite behavior. If one assumes that a PNS evolves without loosing
angular momentum or accreting mass, then a cold neutron star produced by the
cooling of a hot PNS has a smaller angular velocity than its progenitor. This
purely relativistic effect was pointed out in [63] and confirmed in [55]. It should
be noted here that a small amount of differential rotation significantly affects
the mass-shedding limit, allowing more massive stars to exist than uniform
rotation allows. Taking differential rotation into account, a more recent study by
Goussard et al. [56] suggests that proto-neutron stars created in a gravitational
collapse cannot spin faster than 1.7 ms.
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3 Oscillations and Stability

The study of oscillations of relativistic stars has the potential of yielding im-
portant information about both the bulk properties and the composition of the
interior of the star, i.e. about the equation of state of matter at very high densi-
ties, in about the same way that helioseismology is providing us with information
about the interior of the Sun. In a neutron star-accretion disk system, the star-
disk interaction can drive oscillations, and one of the possible explanations for
kHz quasi-periodic oscillations recently discovered in several X-ray sources is
neutron star pulsations [149] (For an early proposal that such oscillations may
be observable, see [107].).

Neutron star pulsations may be a detectable source of gravitational radia-
tion. The pulsations can be excited after a core collapse or during the final
stages of a neutron star binary system coalescence. Rapidly rotating neutron
stars are unstable to the emission of detectable gravitational waves for a short
time after their formation. The identification of gravitational waves produced
by a neutron star can lead to the determination of its mass and radius and
several such determinations can help reconstruct the equation of state of matter
at very high energy densities [4].

The oscillations of relativistic stars are actually a non-linear phenomenon;
their numerical computation would require a full 3-D relativistic hydrodynam-
ics code, which is not yet available. However, apart from the initial oscillations
following core collapse, the oscillations of an equilibrium star are of small mag-
nitude compared to its radius; it will suffice to approximate them as linear
perturbations. Such perturbations can be described in two equivalent ways. In
the Lagrangian approach, one studies the changes in a given fluid element as it
oscillates about its equilibrium position. In the Eulerian approach, one studies
the change in fluid variables at a fixed point in space. Both approaches have
their strengths and weaknesses.

In the Newtonian limit, the Lagrangian approach has been used to develop
variational principles [103, 49], but the Eulerian approach proved to be more
suitable for numerical computations of mode frequencies and eigenfunctions
[71, 104, 67, 68, 69]. Clement [28] used the Lagrangian approach to obtain
axisymmetric normal modes of rotating stars, while nonaxisymmetric solutions
were obtained in the Lagrangian approach by Imamura et al. [66] and in the
Eulerian approach by Managan [104] and Ipser and Lindblom [67].

3.1 Quasi-Normal Modes of Oscillation

The spacetime of a nonrotating star is static and spherically symmetric. A
general linear perturbation can be written as a sum of quasi-normal modes that
are characterized by the indices (l,m) of the spherical harmonic Y ml and have
angular and time-dependence of the form

δQ ∼ f(r)Y ml (cosθ)eiωpt, (20)
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where Q is a scalar unperturbed quantity, ωp is the angular frequency of the
mode, as measured by a distant inertial observer and f(r) represents the ra-
dial dependence of the perturbation. Normal modes of nonrotating stars are
degenerate in m, and it suffices to study the axisymmetric (m = 0) case.

The perturbation of the metric, δgab, can be expressed in terms of spherical,
vector and tensor harmonics. These are either of “polar” or “axial” parity. Here,
parity is defined as the change in sign under a combination of reflection in the
equatorial plane and rotation by π. A polar perturbation has parity (−1)l, while
an axial perturbation has parity (−1)l+1. Because of the spherical background,
the polar and axial perturbations of a nonrotating star are completely decoupled.

A normal mode solution satisfies the perturbed gravitational field equations

δ(Gab − 8πT ab) = 0, (21)

and the perturbation of the conservation of the stress-energy tensor

δ(∇aT ab) = 0. (22)

For given (l,m), a solution exists for any value of the eigenfrequency ωp, and
it consists of ingoing- and outgoing-wave parts. Outgoing modes are defined
by the discrete set of eigenfrequencies for which there are no incoming waves
at infinity. These are the modes that will be excited in various astrophysical
situations.

The main modes of pulsation that are known to exist in relativistic stars
have been classified as follows (f0 and τ0 are typical frequencies and damping
times of the most important modes in the nonrotating limit):

1. Polar fluid modes

Are slowly damped modes analogous to the Newtonian fluid pulsations:

• f(undamental)-mode: surface mode due to the interface between the
star and its surroundings (f0 ∼ 2khz, τ0 < 1sec),
• p(ressure)-modes: nearly radial (f0 > 4kHz, τ0 > 1s),
• g(ravity modes): nearly tangential, only exist for finite temperature

stars (f0 < 500Hz, τ0 > 5s).

2. Axial fluid modes

• r(otation) modes: degenerate at zero-frequency for nonrotating stars.
In a rotating star, generically unstable. Frequencies from zero to kHz,
growth times inversely proportional to a high power of the star’s
angular velocity.

3. Polar and axial spacetime modes

• w(ave)-modes: Analogous to the quasi-normal modes of a black hole.
High frequency, strongly damped modes (f0 > 6kHz, τ0 ∼ 0.1msec).

For a more detailed description of various modes see [82, 81, 106, 25, 79].
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3.2 Effect of Rotation on Quasi-Normal Modes

In a continuous sequence of rotating stars, a quasi-normal mode of index l
is defined as the mode which, in the nonrotating limit, reduces to the quasi-
normal mode of the same index l. Rotation has several effects on the modes of
a previously nonrotating star:

1. The degeneracy in the index m is removed and a nonrotating mode of
index l is split into 2l + 1 different (l,m) modes.

2. Prograde (m < 0) modes are now different than retrograde (m > 0) modes.

3. A rotating “polar” l-mode consists of a sum of purely polar and purely
axial terms [140]

P rotl ∼
∞∑
l′=0

(Pl+2l′ +Al+2l′±1), (23)

that is, rotation couples a polar l-term to an axial l±1 term (the coupling
to the l + 1 term is, however, strongly favored over the coupling to the
l − 1 term [27]). Similarly, for a rotating “axial” mode,

Arotl ∼
∞∑
l′=0

(Al+2l′ + Pl+2l′±1), (24)

4. Frequencies and damping times are shifted. In general, frequencies (in
the inertial frame) of prograde modes increase, while those of retrograde
modes decrease with increasing rate of rotation.

In rotating stars, quasi-normal modes of oscillation have only been studied in
the slow-rotation limit, in the post-Newtonian and in the Cowling Approxima-
tions. The solution of the fully-relativistic perturbation equations for a rapidly
rotating star is still a very challenging task, and only recently have they been
solved for zero- frequency (neutral) modes [140, 142].

• Going further. The equations that describe oscillations of the solid crust
of a rapidly rotating relativistic star are derived by Priou in [125]. The
effects of superfluid hydrodynamics on the oscillations of neutron stars are
investigated by Lindblom and Mendell in [100].

3.3 Axisymmetric Perturbation

Along a sequence of nonrotating relativistic stars with increasing central energy
density, there is always a model for which the mass becomes maximum. The
maximum mass turning point marks the onset of a secular instability in the
fundamental axisymmetric pulsation mode of the star.

Applying the turning point theorem provided by Sorkin [138], Friedman Ipser
and Sorkin [47] shows that, in the case of rotating stars, the secular axisymmetric
instability sets in when the mass becomes maximum along a sequence of constant
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angular momentum. An equivalent criterion is provided by Cook et al. [29]: The
secular axisymmetric instability sets in when the angular momentum becomes
minimum along a sequence of constant rest mass.

The instability develops on a timescale that is limited by the time required
for viscosity to redistribute the star’s angular momentum. This timescale is
long compared to the dynamical timescale and comparable to the spin-up time
following a pulsar glitch. When it becomes secularly unstable, a star evolves
in a quasi-stationary fashion until it encounters the dynamical instability and
collapses to a black hole. Thus, the onset of the secular instability to axisym-
metric perturbations separates stable neutron stars from neutron stars that will
collapse to a black hole.

Goussard et al. [55] extend the stability criterion to hot protoneutron stars
with nonzero total entropy. In this case, the loss of stability is marked by
the configuration with minimum angular momentum along a sequence of both
constant rest mass and total entropy.

In the nonrotating limit, Gondek et al. [53] compute frequencies and eigen-
functions of axisymmetric pulsations of hot proto-neutron stars and verify that
the secular instability sets in at the maximum mass turning point, as is the case
for cold neutron stars.

• Going further The stabilization of a relativistic star that is marginally
stable to axisymmetric perturbations by an external gravitational field is
discussed in [144].

3.4 Nonaxisymmetric Perturbations

3.4.1 Nonrotating Limit

For a spherical star, it suffices to study the m = 0 axisymmetric modes of
pulsation, since the m 6= 0 modes can be obtained by a rotation of the coordinate
system.

Thorne, Campolattaro and Price, in a series of papers [147, 123, 146], ini-
tiated the computation of nonradial modes by formulating the problem in the
Regge-Wheeler (RW) gauge [126] and numerically computing nonradial modes
for a number of neutron star models. A variational method for obtaining eigen-
frequencies and eigenfunctions has been constructed by Detweiler and Ipser [35].
Lindblom and Detweiler [97] explicitly reduced the system of equations to four
first-order ordinary differential equations and obtained more accurate eigenfre-
quencies and damping times for a larger set of neutron star models. They later
realized that their system of equations is sometimes singular inside the star and
obtained an improved set of equations which is free of this singularity [36].

Chandrasekhar and Ferrari [27] express the nonradial pulsations in terms of
a fifth-order system in a diagonal gauge, which is independent of fluid variables.
They thus reformulate the problem in a way analogous to the scattering of
gravitational waves off a black hole. Ipser and Price [72] show that, in the RW
gauge, nonradial pulsations can be described by a system of two second-order
equations, which can also be independent of fluid variables. In addition, they
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find that the diagonal gauge of Chandrasekhar and Ferrari has a remaining
gauge freedom which, when removed, also leads to a fourth-order system of
equations [124].

In order to locate purely outgoing-wave modes, one has to be able to dis-
tinguish the outgoing-wave part from the ingoing-wave part at infinity. In the
Thorne et al. and Lindblom and Detweiler schemes, this is achieved using ana-
lytic approximations of the solution at infinity.

W -modes pose a more challenging numerical problem because they are strongly
damped, and the techniques used for f and p modes fail to distinguish the
outgoing-wave part. However, Andersson, Kokkotas and Schutz [6] success-
fully combine a redefinition of variables with a complex-coordinate integration
method, obtaining highly accurate complex frequencies for w modes. In this
method, the ingoing and outgoing solutions are separated by numerically calcu-
lating their analytic continuations to a place in the complex-coordinate place,
where they have comparable amplitudes. Since this approach is purely numeri-
cal, it could prove to be suitable for the computation of quasi-normal modes in
rotating stars, where analytic solutions at infinity are not available.

The non-availability of asymptotic solutions at infinity in the case of ro-
tating stars is one of the major difficulties for computing outgoing modes in
rapidly rotating relativistic stars. A new development that may help to over-
come this problem, at least to an acceptable approximation, is presented in [98]
by Lindblom, Mendell and Ipser.

The authors obtain approximate near-zone boundary conditions for the out-
going modes that replace the outgoing-wave condition at infinity and that enable
one to compute the eigenfrequencies with very satisfactory accuracy. First, the
pulsation equations of polar modes in the Regge-Wheeler gauge are reformulated
as a set of two second-order radial equations for two potentials - one correspond-
ing to fluid perturbations and the other to the perturbations of the spacetime.
The equation for the space-time perturbation reduces to a scalar wave equation
at infinity and to Laplace’s equation for zero-frequency solutions. From these,
an approximate boundary condition for outgoing modes is constructed and im-
posed in the near zone of the star (in fact on its surface) instead of at infinity.
For polytropic models, the near-zone boundary condition yields f -mode eigen-
frequencies with real parts accurate to 0.01%− 0.1% and imaginary parts with
accuracy at the 10%−20% level, for the most relativistic stars. If the near zone
boundary condition can be applied to the oscillations of rapidly rotating stars,
the resulting frequencies and damping times should have comparable accuracy.

3.4.2 Slow Rotation Approximation

The slow rotation approximation has proven to be useful for obtaining a first
estimate of the effect of rotation on the pulsations of relativistic stars. To lowest
order in rotation, a polar l-mode of an initially nonrotating star couples to an
axial l±1 mode in the presence of rotation. Conversely, an axial l-mode couples
to a polar l ± 1 mode [27].

The equations of nonaxisymmetric perturbations in the slow-rotation limit
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and in the Regge-Wheeler gauge are derived by Kojima in [75, 76], where the
complex frequencies σ = σR + iσI for the l = m modes of various polytropes
are computed. For counterrotating modes, both σR and σI decrease, tending
to zero, as the rotation rate increases (when σ passes through zero, the star
becomes unstable to the CFS-instability). Extrapolating σR and σI to higher
rotation rates, Kojima finds a large discrepancy between the points where σR
and σI go through zero. This shows that the slow rotation formalism cannot
accurately determine the onset of the CFS-instability of polar modes in rapidly
rotating neutron stars.

In [77], it is shown that, for slowly rotating stars, the coupling between
polar and axial modes affects the frequency of pulsation only to second order
in rotation, so that, in the slow rotation approximation, to O(Ω), the coupling
can be neglected when computing frequencies.

The slow rotation approximation has also been used recently in the study of
the r-mode instability [1, 78].

3.4.3 Post-Newtonian Approximation

A first step towards the solution of the perturbation equations in full relativity
has been taken by Cutler and Lindblom [32, 33, 96]; they obtain frequencies
for the l = m f -modes in rotating stars in the first post-Newtonian (1-PN)
approximation. The perturbation equations are derived in the post-Newtonian
formalism of Gunnarsen [57], i.e. the equations are separated into equations of
consistent order in 1/c.

Cutler and Lindblom show that, in this scheme, the perturbation of the 1-
PN correction of the four-velocity of the fluid can be obtained analytically in
terms of other variables, similarly to what is done for the perturbation in the
four-velocity in the Newtonian Ipser-Managan scheme. The perturbation in the
1-PN corrections are obtained by solving an eigenvalue problem, which consists
of three second order equations, with the 1-PN correction to the eigenfrequency
of a mode, ∆ω, as the eigenvalue.

Cutler and Lindblom obtain a formula that yields ∆ω if one knows the 1-PN
stationary solution and the solution to the Newtonian perturbation equations.
Thus, the frequency of a mode in the 1-PN approximation can be obtained
without actually solving the 1-PN perturbation equations numerically. The 1-
PN code was checked in the nonrotating limit, and it was found to reproduce
the exact general relativistic frequencies for stars with M/R = 0.2 obeying an
N = 1 polytropic EOS with an accuracy of 3%− 8%.

Along a sequence of rotating stars, the frequency of a mode is commonly
described by the ratio of the frequency of the mode in the comoving frame to
the frequency of the mode in the nonrotating limit. For an N = 1 polytrope
and for M/R = 0.2, this frequency ratio is reduced by as much as 12% in the 1-
PN approximation compared to its Newtonian counterpart (for the fundamental
l = m modes) which is representative of the effect that general relativity has on
the frequency of quasi-normal modes in rotating stars.
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3.4.4 Cowling Approximation

In several situations, the frequency of pulsations in relativistic stars can be
estimated even if one completely neglects the perturbation in the gravitational
field, i.e. if one sets δgab = 0 in the perturbation equations [108]. In this
approximation, the pulsations are described only by the perturbation in the
fluid variables, and the scheme works quite well for f , p and r-modes [102]. A
different version of the Cowling approximation, in which δgtr is kept nonzero in
the perturbation equations, works better for g-modes [38].

Yoshida and Kojima [160] examine the accuracy of the relativistic Cowling
approximation in slowly rotating stars. The first-order correction to the fre-
quency of a mode depends only on the eigenfrequency and eigenfunctions of
the mode in the absence of rotation and on the angular velocity of the star.
The eigenfrequencies of f , p1 and p2 modes for slowly rotating stars with M/R
between 0.05 and 0.2 are computed (assuming polytropic EOSs with N = 1 and
N = 1.5) and compared to their counterparts in the slow- rotation approxima-
tion.

For the l = 2 f -mode, the relative error in the eigenfrequency because of the
Cowling approximation is 30% for less relativistic stars (M/R = 0.05) and about
15% for stars with M/R = 0.2, and the error decreases for higher l-modes. For
the p1 and p2 modes, the relative error is similar in magnitude. However, it is
smaller for less relativistic stars. Also, for p-modes, the Cowling approximation
becomes more accurate for increasing radial mode number.

As an application, Yoshida and Eriguchi [159] use the Cowling approximation
to estimate the onset of the CFS instability in rapidly rotating relativistic stars.

3.5 Nonaxisymmetric Instabilities

3.5.1 Introduction

Rotating cold neutron stars, detected as pulsars, have a remarkably stable ro-
tation period. But, at birth, or during accretion, rapidly rotating neutron stars
can be subject to various nonaxisymmetric instabilities, which will affect the
evolution of their rotation rate

If a protoneutron star has a sufficiently high rotation rate (larger than
T/W ∼ 0.27 for uniformly rotating, constant density Maclaurin spheroids), it
will be subject to a dynamical instability driven by hydrodynamics and gravity.
Through the l = 2 mode, the instability will deform the star into a bar shape.
This highly nonaxisymmetric configuration will emit strong gravitational waves
with frequencies in the kHz regime. The development of the instability and the
resulting waveform have been computed numerically in the context of Newto-
nian gravity and hydrodynamics by Houser et al. [65].

At lower rotation rates, the star can become unstable to secular nonaxisym-
metric instabilities, driven by gravitational radiation or viscosity. Gravitational
radiation drives a nonaxisymmetric instability when a mode that is retrograde
with respect to the star appears as prograde to a distant observer, via the
Chandrasekhar-Friedman-Schutz (CFS) mechanism [26, 49]: A mode that is
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retrograde in the corotating frame has negative angular momentum, because
the perturbed star has less angular momentum than the unperturbed one. If,
to a distant observer, the mode appears prograde, it removes positive angular
momentum from the star, and thus the angular momentum of the mode becomes
increasingly negative.

The instability evolves on a secular timescale, during which the star loses
angular momentum via the emitted gravitational waves. When the star rotates
slowly enough, the mode becomes stable, and the instability proceeds on the
longer timescale of the next unstable mode, unless it is suppressed by viscosity.

Neglecting viscosity, the CFS-instability is generic in rotating stars for both
polar and axial modes. For polar modes, the instability occurs only above some
critical angular velocity, where the frequency of the mode goes through zero in
the inertial frame. The critical angular velocity is smaller for increasing mode
number l. Thus, there will always be a high enough mode number l, for which
a slowly rotating star will be unstable. Axial modes are generically unstable in
all rotating stars, since the mode has zero frequency in the inertial frame when
the star is nonrotating [1, 48].

The shear and bulk viscosity of neutron star matter is able to suppress the
growth of the CFS-instability, except when the star passes through a certain
temperature window. In Newtonian gravity, it appears that the polar mode
CFS-instability can occur only in nascent neutron stars that rotate close to the
mass-shedding limit [68, 69, 70, 157, 99], but the determination of neutral f -
modes in full relativity [140, 142] shows that relativity enhances the instability,
allowing it to occur in stars with smaller rotation rates than previously thought.

• Going further. A new numerical method for the analysis of the ergore-
gion instability in relativistic stars, which may also be used for the analysis
of nonaxisymmetric instabilities, is presented by Yoshida and Eriguchi in
[158].

3.5.2 CFS-Instability of Polar Modes

The existence of the CFS-instability in rotating stars was first demonstrated
by Chandrasekhar [26] in the case of the l = 2 mode in uniformly rotating,
constant density Maclaurin spheroids. Friedman and Schutz [49] show that
this instability also appears in compressible stars and that all rotating self-
gravitating perfect fluid configurations are generically unstable to the emission
of gravitational waves. In addition, they find that a nonaxisymmetric mode
becomes unstable when its frequency vanishes in the inertial frame. Thus, zero-
frequency outgoing-modes in rotating stars are neutral (marginally stable).

In the Newtonian limit, neutral modes have been determined for several
polytropic EOSs [66, 104, 67, 157]. The instability first sets in through l =
m modes. Modes with larger l become unstable at lower rotation rates, but
viscosity limits the interesting ones to l ≤ 5. For an N = 1 polytrope, the
critical values of T/W for the l = 3, 4 and 5 modes are 0.079, 0.058 and 0.045
respectively; these values become smaller for softer polytropes.
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The l = m = 2 “bar” mode behaves considerably differently than the other
modes. Its critical T/W ratio is 0.14, and it is almost independent of the
polytropic index. Since soft EOSs cannot produce models with high T/W values,
the bar mode instability appears only for stiff Newtonian polytropes of N ≤
0.808 [73, 136]. In addition, the viscosity driven bar mode appears at the same
critical T/W ratio as the bar mode driven by gravitational radiation (We will
see later that this is no longer true in general relativity.).

The post-Newtonian computation of neutral modes by Cutler and Lind-
blom [33, 96] has shown that general relativity tends to strengthen the CFS-
instability. Compared to their Newtonian counterparts, critical angular velocity
ratios Ωc/Ω0 (where Ω0 = (3M0/4R3

0)1/2 and M0, R0 are the mass and radius
of the nonrotating star in the sequence), are lowered by as much as 10% for
stars obeying the N = 1 polytropic EOS (for which the instability occurs only
for l = m ≥ 3 modes in the post-Newtonian approximation).

In full general relativity, neutral modes have been determined for polytropic
EOSs of N ≥ 1.0 by Stergioulas and Friedman [140, 142], using a new numeri-
cal scheme. The scheme completes the Eulerian formalism developed by Ipser
and Lindblom in the Cowling approximation, (where δgab was neglected) [70],
by finding an appropriate gauge in which the time-independent perturbation
equations can be solved numerically for δgab. Because linear perturbations have
a gauge freedom, four out of ten components of δgab are fixed by the choice of
gauge. In the Ipser and Lindblom scheme, the perturbed Euler equations are
solved analytically. A complete neutral mode solution of the perturbation equa-
tions is then determined by setting the frequency in the inertial frame equal
to zero and solving six perturbed field equations for δgab and the perturbed
equation of energy conservation for a scalar function δU .

The six perturbed field equations in the gauge of Stergioulas and Friedman
are of different types. Three are second order ODEs, two are elliptic, and the
other one is parabolic. Their solutions vanish at the center, at infinity and on
the axis of symmetry, while they are either odd or even under reflection in the
equatorial plane. The six equations, although of different type, are solved simul-
taneously on a two-dimensional grid, which extends to infinity by a redefinition
of the radial variable. Solutions of the perturbed field equations are obtained
for a set of trial functions δUi. In the Newtonian limit, it was found that the
real eigenfunctions can be expanded accurately in terms of these trial functions
[67].

The remaining equation to be satisfied, the perturbed energy conservation
equation, can be represented schematically as a linear operator L on the eigen-
function δU . Defining an inner product < δUj |L|δUi >, for the set of trial
functions, the perturbed energy conservation equation is satisfied, when

det < δUj |L|δUi >= 0. (25)

Using this criterion, one starts with slowly rotating configurations and increases
the angular velocity of the star until (25) is satisfied and a complete neutral
mode solution is obtained.
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The determination of neutral modes for N = 1.0, 1.5 and 2.0 relativistic
polytropes shows that relativity significantly strengthens the instability (which
was already indicated in the post-Newtonian approximation). For the N = 1.0
polytrope, the critical angular velocity ratio Ωc/ΩK , where ΩK is the angular
velocity at the mass-shedding limit at same central energy density, drops by as
much as 15% for the most relativistic configuration. This is a large decrease
compared to the Newtonian values, which significantly moves the onset of the
instability away from the mass-shedding limit and which strengthens it with
respect to the damping effect of viscosity.

A surprising result, which was not detected in the post-Newtonian approx-
imation, is that the l = m = 2 bar mode is unstable for relativistic polytropes
of index N = 1.0. The classical Newtonian result for the onset of the bar mode
instability (Ncrit < 0.808) is replaced by

Ncrit < 1.3, (26)

in general relativity.
Also, in relativistic stars, the onset of the gravitational radiation driven

bar mode is different from the onset of the viscosity driven bar mode. While
in the Newtonian limit the two bar modes occur at the same critical rotation
ratio [71], relativity strengthens the gravitational radiation instability, allowing
softer configurations to become unstable, and suppresses the viscosity driven
instability allowing it to occur only for very stiff EOSs [12].

An independent determination of the onset of the CFS-instability in the
relativistic Cowling approximation by Yoshida and Eriguchi [159] agrees quali-
tatively with the conclusions in [142].

Morsink, Stergioulas and Blattning [111] extend the method presented in
[142] to a wide range of realistic equations of state (which usually have a stiff
high density region, corresponding to polytropes of index N = 0.5−0.7) and find
that the l = m = 2 bar mode becomes unstable for stars with gravitational mass
as low as 1.0−1.2M�. For 1.4M� neutron stars, the mode becomes unstable at
80%−95% of the maximum allowed rotation rate. For a wide range of equations
of state, the l = m = 2 f -mode becomes unstable at a ratio of rotational
to gravitational energies T/W ∼ 0.08 for 1.4M� stars and T/W ∼ 0.06 for
maximum mass stars. This is to be contrasted with the Newtonian value of
T/W ∼ 0.14. The empirical formula

(T/W )2 = 0.115− 0.048
M

M sph
max

, (27)

where M sph
max is the maximum mass for a spherical star allowed by a given equa-

tion of state, gives the critical value of T/W for the bar f−mode instability,
with an accuracy of 4%− 6%, independent of the equation of state.

Conservation of angular momentum and the inferred initial period (assuming
magnetic braking) of 6 − 9ms for the X-ray pulsar in the supernova remnant
N157B [105] suggests that a fraction of neutron stars may be born with very large
rotational energies. The f -mode bar CFS-instability thus appears as a promising

Living Reviews in Relativity (1998-8)
http://www.livingreviews.org

http://www.livingreviews.org


N. Stergioulas 30

source for the planned gravitational wave detectors [90]. It could also play a
major role in the rotational evolution, through the emission of gravitational
waves, of merged binary neutron stars, if their post-merger angular momentum
exceeds the maximum allowed to form a Kerr black hole [9].

3.5.3 CFS-Instability of Axial Modes

In nonrotating stars, axial fluid modes are degenerate at zero-frequency, but
in rotating stars they have nonzero frequency and are called r-modes in the
Newtonian limit [121, 128]. To O(Ω), their frequency in the inertial frame is

ωi = −mΩ
(

1− 2
l(l + 1)

)
, (28)

Modes with different radial eigenfunctions can be computed at order Ω2 [78, 2].
According to (28), r-modes with m > 0 are prograde (ωi < 0) with respect to a
distant observer but retrograde (ωr = ωi+mΩ > 0) in the comoving frame for all
values of the angular velocity. Thus, r-modes in relativistic stars are generically
unstable to the emission of gravitational waves via the CFS-instability, which
was first discovered by Andersson [1], in the case of slowly rotating, relativistic
stars. This result is confirmed analytically by Friedman and Morsink [48], who
show that the canonical energy of the modes is negative.

Two independent computations in the Newtonian Cowling approximation,
by Andersson, Kokkotas and Schutz [5] and Lindblom, Owen and Morsink [101]
show that viscosity is not able to damp the r-mode instability in rotating stars.
In a temperature window of 105 K < T < 1010 K, the growth time of the
l = m = 2 mode becomes shorter than the shear or bulk viscosity damping time
at a critical rotation rate that is roughly one tenth the maximum allowed angular
velocity of uniformly rotating stars. The gravitational radiation is dominated
by the current quadrupole term. These results suggest that a rapidly rotating
proto-neutron star will spin down to Crab-like rotation rates within one year
of its birth, because of the r-mode instability. The current uncertainties in the
viscosity and superfluid mutual friction damping times make this scenario also
consistent with somewhat higher initial spins, like the suggested initial spin of
6−9ms of the X-ray pulsar in the supernova remnant N157B [105]. Millisecond
pulsars with periods less than ∼ 5ms can then only form after the accretion-
induced spin-up of old pulsars and not in the accretion-induced collapse of a
white dwarf.

The precise limit on the angular velocity of newly-born neutron stars will
depend on several factors, such as the strength of the bulk viscosity, the cooling
process, the superfluid mutual friction etc. In the uniform density approxima-
tion, the r-mode instability can be studied analytically to O(Ω2) in the angular
velocity of the star, and the resulting expressions for the timescales, given in
Kokkotas and Stergioulas [80], can be used to study the effect of such factors
on the instability. In [80] it is also shown that the minimum critical angular
velocity for the onset of the r-mode instability is rather insensitive to the choice
of equation of state.
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A first study on the issue of detectability of gravitational waves from the
r-mode instability is presented in [117] (See section 3.5.6.), while Andersson,
Kokkotas and Stergioulas [3] study the relevance of the r-mode instability in
limiting the spin of recycled millisecond pulsars.

3.5.4 Effect of Viscosity on CFS-Instability

In the previous sections, we have discussed the growth of the CFS-instability
driven by gravitational radiation in an otherwise nondissipative star. The effect
of neutron star matter viscosity on the dynamical evolution of nonaxisymmetric
perturbations can be considered separately, when the timescale of the viscosity
is much longer than the oscillation timescale. If τGR is the computed growth
rate of the instability in the absence of viscosity, and τs, τb are the timescales
of shear and bulk viscosity, then the total timescale of the perturbation is

1
τ

=
1
τGR

+
1
τs

+
1
τb
. (29)

Since τGR < 0 and τb, τs > 0, a mode will grow only if τGR is shorter than the
viscous timescales, so that 1/τ < 0.

The shear and bulk viscosity are sensitive to several factors. We give here
a summary of what is known to date from Newtonian and post-Newtonian
computations:

• Shear viscosity

In normal neutron star matter, shear viscosity is dominated by neutron-
neutron scattering with a temperature dependence of T−2 [40]. Computa-
tions in the Newtonian limit and post-Newtonian approximation show that
the CFS-instability is suppressed for T < 106 K - 107 K [68, 69, 157, 96].

If neutrons become a superfluid below a transition temperature Ts, then
mutual friction, which is caused by the scattering of electrons off the cores
of neutron vortices, can completely suppress the instability for T < Ts.
The superfluid transition temperature depends on the theoretical model
for superfluidity and lies in the range 108 K - 6× 109 K [119].

• Bulk Viscosity

In a pulsating fluid that undergoes compression and expansion, the weak
interaction requires a relatively long time to re-establish equilibrium. This
creates a phase lag between density and pressure perturbations, which re-
sults in a large bulk viscosity [131]. The bulk viscosity due to this effect
can suppress the CFS-instability only for temperatures for which matter
has become transparent to neutrinos [90], [19]. It has been proposed that
for T > 5 × 109K, matter will be opaque to neutrinos, and the neutrino
phase space could be blocked ([90] See also [19].). In this case, bulk vis-
cosity will be too weak to suppress the instability, but a more detailed
study is needed.
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In the neutrino transparent regime, the effect of bulk viscosity on the instabil-
ity depends crucially on the proton fraction xp. If xp is lower than a critical
value (∼ 1

9 ), only modified URCA processes are allowed, and bulk viscosity
limits, but does not suppress completely, the instability [68, 69, 157]. For most
modern EOSs, however, the proton fraction is larger than ∼ 1

9 at sufficiently
high densities [92], allowing direct URCA processes to take place. In this case,
depending on the EOS and the central density of the star, the bulk viscosity
could almost completely suppress the CFS-instability in the neutrino trans-
parent regime [161], (but it will probably still not affect it for temperatures
T > 5× 109 K).

In conclusion, the available Newtonian computations indicate that the CFS-
instability in f−modes is effective in nascent neutron stars for temperatures
between 109K and 1010K and possibly also above 1010K, if the star is opaque
to neutrinos and the bulk viscosity is weak. If direct URCA reactions do par-
ticipate in the cooling process, it appears that the instability can grow only
for temperatures for which the star is opaque to neutrinos. Since the neutral
mode computations in fully relativistic stars show that relativity strengthens
the instability, the above conclusion should also hold in relativistic stars.

The uncertainties regarding the effect of viscosity on the CFS-instability
in realistic neutron stars will be greatly reduced by the construction of mode
eigenfunctions for fully relativistic, rotating stars.

3.5.5 Viscosity-Driven Instability

A different type of nonaxisymmetric instability in rotating stars is that driven
by viscosity, which breaks the circulation of the fluid [127, 73]. The instability
is suppressed by gravitational radiation, so it can act only in cold neutron stars
that become rapidly rotating by accretion-induced spin-up. The instability sets
in when the frequency of an l = −m mode goes through zero in the rotating
frame. In contrast to the CFS-instability, the viscosity-driven instability is not
generic in rotating stars. The m = 2 mode becomes unstable at a high rotation
rate for very stiff stars, and higher m-modes become unstable at larger rotation
rates.

In Newtonian polytropes, the instability occurs only for stiff polytropes of in-
dex N < 0.808 [73, 136]. For relativistic models, the situation for the instability
becomes worse, since relativistic effects tend to suppress the viscosity instabil-
ity (while they strengthen the CFS-instability). According to recent results by
Bonazzola et al. [12], for the most relativistic stars, the viscosity driven bar
mode can become unstable only if N < 0.55. For 1.4M� stars, the instability
is present for N < 0.67.

These results are based on an approximate computation of the instability in
which one perturbs an axisymmetric and stationary configuration and studies
its evolution by constructing a series of triaxial quasi-equilibrium configurations.
During the evolution only the dominant nonaxisymmetric terms are taken into
account.

The method presented in [12] is an improvement (taking into account non-
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axisymmetric terms of higher order) on an earlier method by the same authors
[19]. Although the method is approximate, its results indicate that the viscosity-
driven instability is likely to be absent in most relativistic stars, unless the EOS
turns out to be unexpectedly stiff.

An investigation of the viscosity-driven bar mode instability, using incom-
pressible, uniformly rotating triaxial ellipsoids in the post-Newtonian approxi-
mation, by Shapiro and Zane [135], also finds that the relativistic effects weaken
the instability.

3.5.6 Gravitational Radiation from CFS-Instability

The CFS-instability can limit the maximum angular velocity of nascent neu-
tron stars, but it is also a mechanism for the generation of gravitational waves
that could be strong enough to be detected by the planned gravitational wave
detectors.

Lai and Shapiro [90] have studied the development of the f -mode instability
using Newtonian ellipsoidal rotating models [88, 89]. They consider the case
where a rapidly rotating neutron star is created in a core collapse. After a brief
dynamical phase, the protoneutron star becomes axisymmetric but secularly
unstable. The instability deforms the star into a nonaxisymmetric configuration
via the l = 2 bar mode. Since the star loses angular momentum via the emission
of gravitational waves, it spins-down until it becomes secularly stable.

The frequency of the waves sweeps downward from a few hundred Hz to
zero, passing through LIGO’s ideal sensitivity band. A rough estimate of the
wave amplitude shows that, at ∼ 100Hz, the gravitational waves from the CFS-
instability could be detected out to the distance of 140Mpc by the advanced
LIGO detector. This result is very promising, especially since for relativistic
stars the instability will be stronger than the present Newtonian estimate.

The recently discovered CFS-instability in r-modes is also an important
source of gravitational waves. Owen et al. [117] model the development of the
instability and the evolution of the neutron star during its spin-down phase.
The evolution suggests that a neutron star formed in the Virgo cluster could
be detected by the advanced LIGO and VIRGO gravitational wave detectors,
with an amplitude signal-to-noise ratio that could be as large as about 8, if near-
optimal data analysis techniques are developed. Assuming a substantial fraction
of neutron stars are born with spin frequencies near their maximum values, the
stochastic background of gravitational waves produced by the r-mode radiation
from neutron star formation throughout the universe is shown to have an energy
density of about 10−9 of the cosmological closure density, in the range 20 Hz to
1 kHz. This radiation is potentially detectable by the advanced LIGO as well.

In newly born stars or in the post-merger objects in binary neutron star
mergers, rotating close to the Kepler limit, both the f and r modes will be
unstable. Relativistic computations of growth times in rapidly rotating stars or
even nonlinear evolutions, are needed to determine which mode will be strongest.

• Going further. The possible ways for neutron stars to emit gravitational
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waves, and their detectability, are reviewed by Bonazzola, Gourgoulhon,
Flanagan, Thorne and Schutz in [16, 14, 51, 39, 145, 133].
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