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A brief outline of the talk:

• We present the general relativistic version of the
magnetohydrodynamic(MHD) equations, which
we apply to the investigation of perturbation ef-
fects and hence to the study of the linearizied sta-
bility criteria.

• Using the perturbed MHD equations, we explore
the way in which a homogeneous magnetic field
influence the Jean’s instabilities and examine if
pang cake configurations are possible in a homo-
geneous and anisotropic Universe with homege-
neous magnetic field along the z-axis

• Conclusions

• References
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1. Introduction:

It is known that the formation of large-scale struc-
tures (e.g. galaxies, superclouds in galaxies e.t.c)
in cosmological and astrophysical scales is close re-
lated to the concept of instabilities. The first seri-
ous theory of galaxy formation was proposed by Sir
James Jeans early in the twentieth century(Jeans
1902,1928). Jeans supp7osed the universe to be
filled with non-relativistic fluid, with mass density
ρ,pressure p,velocity ~υ and a gravitational field g, gov-
erned by the equation of continuity, the Euler equation
and the gravitational field equations(Weinberg 1971).
Unfortunately, Jeans’s theory is not applicable to the
formation of galaxies in an expanding universe, be-
cause Jeans assumed a static medium. Neverthe-
less, the conclusion of Jean’s criterion of gravita-
tional instability is that density fluctuations with wave
length λ greater than the critical value λJ , will grow so
that the system becomes unstable. This means that
an isothermal gaseous sphere with the length scale
greater than λJ is gravitational unstable and is going
to contract constantly.
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The first satisfactory theory of the instabilities of an ex-
panding universe was given by Lifshitz (Lifshitz 1946).
Lifshitz showed that the disturbances at wave number
below the Jeans wave number,kJ , grow, not exponen-
tially, by like a power of R(t) where R(t) is the scale
factor of the expanding universe. In the scenarios of
cosmic fluctuations when gravitation and cosmic ex-
pansion are essentially irrelevant, the work by Wein-
berg(Weinberg 1971) is of particular interest since he
had considered the role of dissipation in the survival of
protogalaxies, using Eckart’s (Eckart 1940) formalism
which is different from Landau’s and Lifshitz(1959)
one. He had found that the protogalactic fluctuations
behaving as ordinary sound waves, during the period
where M << MJ , damp in the acoustic phase due to
the viscosity of the considered imperfect fluid.
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Gravitational instabilities in the presence of a mag-
netic field in an expanding universe has been dis-
cussed by Hacyan (Hacyan S (1983)). He found
closed form solutions for the evolution of linear density
and magnetic field fluctuations in some cosmological
models, in the Newtonian limit and verified that the
uniform magnetic field slows down the growth rate of
the unstable perturbations. Fennelly (Fennelly (1980))
has shown that several MHD processes, like pinch ef-
fects, hose instabilities, sausage and kink instabilities
may contribute to the growth of galaxies eventhought
they differ as different harmonics in the eigenfunction
solutions of the wave equation for plasma instabilities
but their separable time development will all be similar.
He found (Fennelly 1980 and references therein) that
those instabilities can drive both velocity and density
perturbations, but they also require energy to support
themselves. In the Newtonian and certain relativistic
cases, he found that they extract more energy than
they contribute and he suggested a method how can
someone to be fed more energy into density and ve-
locity modes than that they extract.
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Recently, Crazyna S. et.al.(astro-ph/0402492) dis-
cussed the amplification of the cosmological magnetic
field associated with forming gravitational structure.
They have computed self similar solutions of the MHD
equations both in linear and non-linear regime.

In the paper we are intended to discuss the prob-
lem in an homogeneous anisotropic cosmological
model with homogeneous magnetic field along the
z-axis and the considered fluctuation to propagate
across the x-axis. In a recent work Papadopou-
los,Vlahos and Esposito(Papadopoulos,Vlahos and
Esposito (2002);Paper I) have considered the fluctu-
ations propagating in the z- axis and Jean’s criterion
did not give any new result.
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1. Basic equations:

The exact equations governing finite-amplitude wave
propagation in hydromagnetic media in the frame
of general relativity have been discussed in (Pa-
padopoulos D Esposito F P 1982, Papadopoulos D.
et al.2001, Papadopoulos D Vlahos L and Esposito
F P 2001). For completeness we recast the relevant
equations. We start with the Einstein field equations

Rab −
1

2
gabR = −κTab, (1)

with

T ab
;b = 0 (2)

For simplicity we obtain c = 1 and κ = 8πG
c4

= 1.
Taking the covariant divergence of the Bianchi identi-
ties we obtain

(Rab − 1

2
Rgab);ab = 0 (3)

where Rab = Rc
abc is the Ricci tensor and Rabcd is the

curvature tensor
6



For a unit time-like vector we choose uaua = −1 and
our hydromagnetic system will be specified by the fol-
lowing choice for the energy-momentum tensor

T ab = (ε+
H2

2
)uaub+(p+

H2

2
)hab−HaHb(4)

with

hab = gab + uaub, ε = ρ + ρΠ (5)

where ua is the fluid velocity, ρ the mass density,
ρΠ the internal energy density, p the pressure of
the fluid and Ha is the prevailing magnetic field as
measured by an observer co-moving with ua. Fur-
thermore we introduce the expansion θ = ua

;a, the
shear σab = hc

ahd
bu(c;d) − 1

3θhab and the twist ωab =

hc
ahd

bu[c;d], where the round bracket denotes sym-
metrization while the square bracket antisymmetriza-
tion.
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From (1) and (4) we find

Rab = −{1
2
(ε + 3p + H2)uaub

+
1

2
(ε− p + H2)hab −HaHb} (6)

Substituting (6) into (3) we have

ẍ + ¤(p +
H2

2
) + 2ẋθ + x;au̇a

+ x(θ̇ + θ2 + u̇a
;a)− (HaHb);ab = 0 (7)

where ¤ is the covariant d’Alembertian operator,
u̇a = ua

;cu
c and x = ε + p + H2 (Notice,that (7)

can be obtained directly from (2) and (4)).
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Raychaudhuri’s equation in the form

u̇a
;a = θ̇ +

θ2

3
+ 2(σ2

− ω2) +
1

2
(ε + 3p + H2) (8)

where 2σ2 = σabσab, 2ω2 = ωabωab and dot means
covariant derivative along ua allows us to write the (7)
as

ẍ + ¤(p +
H2

2
) + 2ẋθ + 2xθ̇ + x;au̇a

+ 2x(
2θ2

3
+ σ2 − ω2) +

1

2
x(ε + 3p + H2)

− (HaHb);ab = 0 (9)
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In order to make further progress with (9) we must
use the equations of motion for the fluid and Maxwell’s
equations. These equations are

T ab
;b = ẋua + xu̇a + xθua

+ (p +
H2

2
);bg

ab − (HaHb);b = 0 (10)

1.a. Time component:

T ab
;b ua = 0 = −ẋ− xθ + ṗ∗

− ua(H
a
;bH

b + HaHb
;b)

= ε̇ + (ε + p)θ (11)

where p∗ = p+ H2

2 . From the last equation we easily
have

ε̈ + (ε̇ + ṗ) + (ε + p)θ̇ = 0 (12)
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From (9) and (12) and recalling that x = ε + p + H2,
we obtain

(ε− H2

2
);abu

aub = hab(p +
H2

2
);ab

+ 2 ˙(H2θ)− (HaHb);ab + 2x(
2θ2

3
+ σ2 − ω2

− u̇au̇a) +
x

2
(ε + 3p + H2)

+ 2u̇a(H
aHb);b + (H2);au̇a (13)

1.b.The space-component:

hγ
αT

αβ
;β = 0 (14)

or

xu̇γ = hγ
α[HαHβ − gγβp∗];β (15)
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From (13) and (15) we have:

(ε− H2

2
);abu

aub = hab(p +
H2

2
);ab + 2 ˙(H2θ)

− (HaHb);ab + 2x(
2θ2

3
+ σ2 − ω2

− u̇au̇a) +
x

2
(ρ + 3p + H2) + 2u̇a(H

aHb);b

+ (H2);au̇a (16)

1.c. The Maxwell equation:

(uαHβ − uβHα);α = 0 ⇒
θHβ + Ḣβ − u

β
;αHα − uβHα

;α = 0 (17)
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Because of the (8) and h
β
αHα = Hβ the equation

(17) becomes:

Ḣa = (σa
b + ωa

b −
2

3
δa
b θ)Hb

+
1

ε + p
p;bH

bua (18)

The last equation (18) may be written in the following
form

˙µH2

8π
=

µ

4π
σijH

iHj − 4θ

3
(
µH2

8π
) (19)

where µ is the permeability.
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Summary: The general relativistic version of the
magnetohydrodynamic(MHD) equations, which will be
applied to the investigation of perturbation effects and
hence to the study of the linearizied stability criteria,
are:

(ε− H2

2
);abu

aub = hab(p +
H2

2
);ab + 2 ˙(H2θ)

− (HaHb);ab + 2x(
2θ2

3
+ σ2 − ω2

− u̇au̇a) +
x

2
(ρ + 3p + H2) + 2u̇a(H

aHb);b

+ (H2);au̇a (20)

ẋua+xu̇a+xθua+(p+
H2

2
);bg

ab−(HaHb);b = 0(21)

Ḣµ = (σµ
ν +ωµ

ν−
2

3
δµ
ν θ)Hν+

1

ε + p
p;νHνuµ(22)

and

u̇a
;a = θ̇+

θ2

3
+2(σ2−ω2)+

1

2
(ε+3p+H2)(23)
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where µ is the permeability, ua is the fluid velocity, ρ

is the mass density, ε = ρ + ρΠ, ρΠ is the internal
energy, u̇a = ua

;cu
c, θ = ua

;a is the expansion velocity,
x = ε + p + H2, H the magnetic field, hab = gab +

uaub and G = c = 1.

We perturb (20),(21), (22) and (23) using the condi-
tion δgab = 0 and keeping only first order terms in
pressure, density, velocity, and magnetic field.

We linearize the above equations and search for the
amplification or damping of small amplitude hydro-
magnetic waves in the early universe described by
the anisotropic cosmological model due to Thorne
(Thorne (1967); Jacobs (1968)),
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The metric:

ds2 = −dt2 + A2(dx2 + dy2) + W2dz2 (24)

Thorne’s model has the following characteristics: (i)
The model contains perfect fluid obeying the equa-
tion of state p = γρ where 1

3 < γ ≤ 1. (ii) The
fluid comoves with the coordinate system and there-
fore uµ = (−1,0,0,0) and (iii) as seen in the rest
frame of the fluid there is a magnetic field of strength
H pointing in the z-direction but no electric field. The
functions A and W which enter into line element are:
A = A(t) = t1/2 and W = W (t) = tl, while

ρ = 3−γ
16πt2(1+γ)2

and H = (1−γ)1/2(3γ−1)1/2

2t(1+γ) and

l = (1 − γ)/(1 + γ). Notice, that for γ = 1/3 or
γ = 1 the strength of the magnetic field vanish.
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For the metric (24) and a comoving observer with a
4-velocity uµ = [1,0,0,0] we have:

u̇µ = 0, , ωµν = 0, ω2 = 0 (25)

θ =
2

(1 + γ)t
(26)

The non-zero components of the σµν are:

σ11 = σ22 =
3γ − 1

6(1 + γ)
, σ33 = −(3γ − 1)tm

3(1 + γ)t
(27)

with m = −2γ−1
γ+1 and

σ2 =
(3γ − 1)2

6(1 + γ)2t2
(28)
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2. The Perpendicular case:

We assume that all the perturbed quantities prop-
agate in the x-axis e.g. they have the form
(δρ, δHµ, δuµ) ∼ expi(nt−kx),and the linearized
perturbed equations, in the metric (24), now read:

δu0 = δu2 = δu3 = 0 (29)

δu1[2xΓ1
01−(H3)2Γ0

33+p∗+inx] = ikδp+ikH3δH3(30)

δH1 = δH2 = 0 (31)

δH3
,0 = θδH3 + H3δθ (32)

where p∗ = p + H2

2 ,
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The perturbed Raychaudhuri’s equation gives:

δθ =
1

ε + p
[δε,0 − θ(δε + δp)] (33)

δθ,0 =
8

3
θδθ +

1

3
(δε + δp + 2H3δH3) (34)

and
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For the density fluctuations we have:

δε,00 − δp;abh
ab − 4(ε + p)θδθ

− (
4

3
θ2 + 2σ2)(δε + δp)

− (
ε + 3p

2
)(δε + δp)− 1

2
(ε + p)(δε + 3δp)

= H3(δH3
;abh

ab) + (H3δH3),00 + 4[θ(H3δH3)],0 + 2[H2δθ],0

− 2δH3[H3
,0Γ

0
33 + H3(Γ0

33),0

+ H3Γb
b0Γ

0
33

− H3Γ0
33Γ

3
03]−H3δH3

,0Γ
0
33

+ 4H2θδθ + 4(H3δH3)(
2

3
θ2 + σ2)

+ H2(δε + 2δp) + 2(ε + 2p + H2)(H3δH3) (35)
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Because of the propagation of the perturbation
in the x-axis,the equation (35), with the aid of
(29),(30),(31),(32),(33) and (34) gives:

−n2 +k2c2s + J1 − 4inθ

= [H3
δH3

δε
][−n2 − k2 + R1 − in

θ

2
(3γ − 7)]

+
u2

A

(1 + γ)
[R2 − in

θ

3
(6γ − 28)] (36)

where u2
A = H2

ε ,

J1 = (1+γ)(
8

3
θ2−2σ2)−(1+3c2s)(1+c2s)ε(37)

R1 =
θ2

2
(6γ2 − 15γ + 13) + 4σ2 + 4θ,0

+ 2(1 + 2γ)ε +
10

3
H2 (38)

R2 =
1

3
[(7γ+3)(γ+1)ε+(6γ−28)(γ+1)θ2](39)
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From (32) and (33) we find:

H3
δH3

δε
=

u2
A

(1 + γ)

[θ(γ + 1)− in][θ + in]

θ2 + n2
(40)

Combining the (40) and (36), we find the following dis-
persion relation:

−n4 + n2(k2c2s + J1 − θ2) + θ2(k2c2s + J1)

− 4inθ(n2 + θ2) =
u2

A

(1 + γ)
{−n4

+ n2[−k2 +
1

2
θ2(3γ2 − 9γ − 2) + R1 + R2]

− k2θ2(1 + γ) + θ2[R1(1 + γ) + R2]

+ inθ[(−n2 − k2 + R1)γ −
1

6
θ2(9γ2 − 77)

− 1

6
n2(27γ − 77)]} (41)
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The real part of (41) gives:

−n4[1− u2
A

(1 + γ)
] + n2{k2[c2s +

u2
A

(1 + γ)
]

+ J1 − θ2 − u2
A

(1 + γ)
[
θ2

2
(3γ2 − 9γ − 2)

+ R1 + R2]}+ θ2(k2c2s + J1)−
u2

Aθ2

(1 + γ)

× [−k2(1 + γ) + R1(1 + γ) + R2] = 0 (42)

From the (42) we obtain the solutions:

n2
1,2 =

1

1− u2
A

(1+γ)

{k2[c2s +
u2

A

(1 + γ)
]

+ J1 − θ2 − u2
A

(1 + γ)
[
θ2

2
(3γ2 − 9γ − 2)

+ R1 + R2]} ±
√

∆ (43)
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∆ = {k2[c2s +
u2

A

(1 + γ)
] + J1 − θ2

− u2
A

(1 + γ)
[
θ2

2
(3γ2 − 9γ − 2)

+ R1 + R2]}2 + 4[1− u2
A

(1 + γ)
]{θ2(k2c2s + J1)

− u2
Aθ2

(1 + γ)
[−k2(1 + γ) + R1(1 + γ) + R2]}(44)

From the (43) we take the k2
⊥ of the following form:

k2
⊥[c2s + u2

A] = (1 + 3c2s)(1 + c2s)ε

− (1 + γ)(
8

3
θ2 − 2σ2) +

u2
A

(1 + γ)
[R1(1 + γ)

+ R2] (45)

It is easy to verify that if γ = 1
3, H2 = 0, σ = 0

and (45) reduce to a dispersion relation corresponding
to the FRW space time with a scale factor S(t) =
t(1/2).
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3. The parallel case:

In this case, we assume that the perturbations
propagate along the z-axis e.g. (δε, δuµ, δHµ) ∼
exp i(nt− kz). The obtained perturbed MHD equa-
tions are very complicate. However, they simplify con-
siderably at certain limits(e.g at very large(small) val-
ues of t). Thus at very large values of t, we end up
with a dispersion relation of the following form:

−n2 [1− u2
A

(1 + γ)
] + k2[c2s +

u2
A

(1 + γ)
]

= −J1 +
u2

A

(1 + γ)
[R1 + R2 +

1

2
γ(3γ − 7)θ2], as t →∞(46)

and

k2
‖ [c2s +

u2
A

(1 + γ)
] = −J1 +

u2
A

(1 + γ)
[R1 + R2

+
1

2
γ(3γ − 7)θ2], as t →∞ (47)
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For small values of t, real part of the dispersion rela-
tion gives:

−n2[1− u2
A

(1 + γ)
] + k2[c2s + u2

A]

= u2
A[R1 +

R2

(1 + γ)
] (48)

and

k2
‖ [c

2
s + u2

A] = −J1 +
u2

A

(1 + γ)
[R1(1 + γ)

+ R2], as t → 0 (49)

The ratio of the (45),(47) reveals that k2
⊥ < k2

‖ , which
means that in this case, pang cakes configurations
are possible.

However, as t → 0,the (45) is the same as (49), in-
dicating that, in a universe described by (24), at early
times,pang-cake configurations are not possible.
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Results:

• The right hand sides of the (45),(47) and (49) are
functions of t and γ. In those equations, the coef-
ficients of t−2 are functions of γ, which take val-
ues in the interval (1/3,1]

• It is easy to verify that if γ = 1/3, then H2 =

0, u2
A = 0, σ2 = 0 and the equations (45),(47)

and (49),take the known simple form:

k2
⊥c2s = k2

‖c2s = ε(1+c2s)(1+3c2s)−
32

9
θ2(50)

• If γ = 1 then H2 = u2
A = 0,but σ2 6= 0 and the

equations (45),(47) are equal e.g:

k2
⊥c2s = k2

‖c2s = ε(1 + c2s)(1 + 3c2s)

− 4

3
(
8

3
θ2 − 2σ2) (51)
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• In the case where k<k‖, the λ‖ < λ⊥,indicating
the existence of a possible pang cage configura-
tion.

• Nevertheless, if the universe is static, θ = 0 →
k⊥ = k‖ and we end up with one equation for
the wave number known from the past(Jacson
(1972))

• For any value of γ, from the above mentioned in-
terval,at very late times of the universe,the right-
hand sides of the (45),(47) are different, indicat-
ing the existence of a possible pang cage config-
uration. The results, forces us to think that only
at late times, e.g. as t approaches to very large
values and for any value of γ belonging in the in-
terval (1/3,1), pang cakes configurations are pos-
sible.



4. The MHD Equations with conductivity:

The equations governing the hydrodynamics of a con-
ductive magnetofluid with energy density ε, pressure
p, 4-velocity uµ, resistivity η = 1

4πσ(Here σ is the con-
ductivity) and magnetic field Hµ = (0,0,0, H3) are
as follows :

ẋua+xu̇a+xθua+(p+
H2

2
);bg

ab−(HaHb);b = 0(52)

(ε− H2

2
);abu

aub = hab(p +
H2

2
);ab

+ 2 ˙(H2θ)− (HaHb);ab + 2x(
2θ2

3
+ σ2

− ω2 − u̇au̇a) +
x

2
(ρ + 3p + H2)

+ 2u̇a(H
aHb);b + (H2);au̇a (53)

Ḣα = (σα
β+ωα

β)Hβ−2

3
θHα+uαH

γ
;γ+

1

4πσ
hγβHα

;γβ(54)
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The equations (52),(53) and (54) are perturbed. The
obtained equations are complicate again. We exam-
ine them at certain limits. Thus, in the case that
the perturbations propagate in the x-direction, e.g.
(δε, δuµ, δHµ) ∼ ei(ωt−kx), we have the dispersion
relation:

a4ω4 − a2ω2 − a0 = 0 (55)

where

a4 = [1− u2
A

(1 + γ)
− 4ηθ − ηθu2

A

2(1 + γ)
] (56)
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a2 = {k2c2s + J1 − θ2 +
u2

A

(1 + γ)
[k2

− (R1 + R2)−
θ2

2
(3γ2 − 9γ − 2)]

− 2ηθ[k2 + 2(k2c2s + J1)

− θ2

4
(γ2 − 1)] + ηθ

u2
A

(1 + γ)
[−k2(3γ − 9)

− 1

4
θ2(γ2 − 1)(γ + 1) + R1(2 + γ) + 4R2

− θ2

8
(3γ − 7)(γ2 − 4γ − 5)]} (57)
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a0 = θ2(k2c2s + J1) +
θ2u2

A

(1 + γ)
+ 2ηθ(k2c2s

+ J1)[−k2 +
θ2

4
(γ2 − 1)]− ηθ

u2
A

× (1 + γ)[k4(1 + γ)− k2

4
θ2(γ2 − 1)(γ + 1)

− k2R1(γ + 1)− 2k2R2 +
1

4
R1θ2(γ2 − 1)

× (γ + 1) +
1

2
R2θ2(γ2 − 1)} (58)
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Thus,neglecting terms of the order η2,in (55) we ob-
tain a fourth order algebraic equation in terms of k:

2ηθk4
⊥(c2s +

u2
A

2
) + k2

⊥[θ2(c2s + u2
A)

+ ηθB] + {θ2J1 − θ2 u2
A

(1 + γ)
× [R1(γ + 1) + R2] + ηθΓ} = 0 (59)

where B = 2J1 − θ2γ(γ2 − 1) − u2
A

(1+γ)[
θ2

4 (γ2 −
1)(γ+1)+R1(γ+1)+2R2] and Γ = −1

2θ2(γ2−
1)J1 + u2

A[θ
2

4 (γ2 − 1)R1 + 1
2θ2R2]
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From (59), we obtain two exact solutions:

k2
⊥(1) =

1

(c2s + u2
A)
{−J1

+
u2

A

(1 + γ)
[R1(γ + 1) + R2]} (60)

and

k2
⊥(2) = − θ2(c2s + u2

A)

2ηθ(c2s +
u2

A
2 )

− B

2(c2s +
u2

A
2 )

+
M

c2s + u2
A

(61)

where M = J1 − u2
A

(1+γ)[R1(γ + 1) + R2]. The
equation (60) is exactly the same as equation (45).
The Eq.(61) exhibits an 1

η , dependence which means
that at the late stages of the discussed model of the
universe, the value of k2

⊥ is very small, since, by that
time, η is very small.
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Now, assuming that the perturbations are propagat-
ing in the z-axis,for large values of t, we obtain the
dispersion relation :

− ω2{[1− u2
A

(1 + γ)
]− ηθ

u2
A

(1 + γ)

× (3γ − 7)

2
}+ k2{[c2s +

u2
A

(1 + γ)
]

− ηθ
u2

A

(1 + γ)

(3γ − 7)

2
}

= −J1 +
u2

A

(1 + γ)
[R1 + R2], t →∞ (62)
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and

k2
‖{[c2s +

u2
A

(1 + γ)
]− ηθ

u2
A

(1 + γ)

× (3γ − 7)

2
} = −J1

+
u2

A

(1 + γ)
[R1 + R2], t →∞ (63)
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However, as t approaches to small values, the real
part of the dispersion relation reads:

−ω2[1− u2
A − η

θ

4
(γ2 − 1)u2

A]

+ k2[c2s + u2
A + η

θ

4
(γ2 − 1)u2

A] + J1

=
u2

A

1 + γ
[R1(1 + γ) + R2

+ ηR1(γ
2 − 1)(1 + γ)

θ

4
], as t → 0 (64)

and

k2
‖{[c2s + u2

A + η
θ

4
(γ2 − 1)u2

A]

= −J1 +
u2

A

(1 + γ)
[R1(1 + γ)

+ R2 + η
θ

4
(γ2 − 1)(γ + 1)R1], t → 0 (65)
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Results:

• In Eqs.(59),(60) and (63), if σ = 0, we end up
with the Eq.(45) and (47),respectively.

• If the resistivity η 6= 0, but γ = 1/3, then
Eqs.(61) and (63) exhibit an interesting depen-
dence from η, presented below:

k2
⊥ ∼ − θ

2η
(66)

k2
‖c2s = −J1 (67)
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Summary: We summarize the obtained equations for
the k2 in the cases we do not have conductivity and
we do have conductivity:

I. Without conductivity

a.Perpendicular case.

k2
⊥[c2s + u2

A] = (1 + 3c2s)(1 + c2s)ε

− (1 + γ)(
8

3
θ2 − 2σ2) +

u2
A

(1 + γ)
[R1(1 + γ)

+ R2] (68)

b. parallel case:

k2
‖ [c2s +

u2
A

(1 + γ)
] = −J1 +

u2
A

(1 + γ)
[R1 + R2

+
1

2
γ(3γ − 7)θ2], as t →∞ (69)

38



k2
‖ [c

2
s + u2

A] = −J1 +
u2

A

(1 + γ)
[R1(1 + γ)

+ R2], as t → 0 (70)



II.With conductivity:

a. Perpendicular case.

k2
⊥(1) =

1

(c2s + u2
A)
{−J1

+
u2

A

(1 + γ)
[R1(γ + 1) + R2]} (71)

and

k2
⊥(2) = − θ2(c2s + u2

A)

2ηθ(c2s +
u2

A
2 )

− B

2(c2s +
u2

A
2 )

+
M

c2s + u2
A

(72)

b.Parallel case.

k2
‖{[c2s +

u2
A

(1 + γ)
]− ηθ

u2
A

(1 + γ)

× (3γ − 7)

2
} = −J1
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+
u2

A

(1 + γ)
[R1 + R2], t →∞ (73)

k2
‖{[c2s + u2

A + η
θ

4
(γ2 − 1)u2

A]

= −J1 +
u2

A

(1 + γ)
[R1(1 + γ)

+ R2 + η
θ

4
(γ2 − 1)(γ + 1)R1], t → 0 (74)



5. Conclusions:

In the paper we have used the MHD equa-
tions(Papadopoulos and Esposito (1982); Pa-
padopoulos,Vlahos and Esposito (2001)) in an
homogeneous and anisotropic expanding uni-
verse (Thorne (1967);Jacobs (1968)) to derive a
Magneto-Jeans formula. We verified the following:

• In the case where the perturbations propagate
perpendicularly to the magnetic field e.g. in the x-
axis, the wave number k⊥ is given by the Eq.(45)
.

• In the case that the perturbations propagate par-
allel to the magnetic field which is oriented to the
z-axis the wave number k‖ is given by the Eq.(47)
for very large values of t, indicating a possible ex-
istence of a pang-cake configuration,since the ra-

tio of
k2
⊥

k‖
< 1. For very small values of t we have

Eq.(49) which is identical to Eq.(45).
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• Upon the consideration of a conductive mag-
netofluid the Eqs.(61), (63) and (65) exhibit the
influence of the fluid conductivity in the so called
Magneto-Jeans wave numbers in the parallel and
perpendicular cases.
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