Sources of Gravitational Waves

2nd part

GW sources in ground-based detectors

BH and NS Binaries

Supernovae, BH/NS formation

Spinning neutron stars in X-ray binaries Young Neutron Stars

AUTH-2004

Sources in LISA

Frequency range of astrophysics sources

Binary systems (NS/NS, NS/BH, BH/BH)

The best candidates and most reliable sources for broad band detectors

Coalescence of Compact Binaries

- During the frequency change from 100-200Hz GWs carry away $5 \times 10^{-3} M_{\odot} c^2$.
- In LIGOs band
 - NS/NS (~16000 cycles)
 - NS/BH(~3500 cycles)
 - BH/BH(~600 cycles)
- The GW amplitude is: $h \approx 7.5 \times 10^{-5}$
- Larger total mass improves detection probability.

events/year	LIGO-I	LIGO-II
NS/NS	~0.5	~60-500
BH/NS	~0.02	~80
BH/BH	~0.8	~2000
Total	0.8	≳2000

$$\frac{M}{2.8M_{\odot}}\right)^{2/3} \left(\frac{\mu}{0.7M_{\odot}}\right) \left(\frac{f}{100Hz}\right)^{2/3} \left(\frac{f}{10Hz}\right)^{2/3} \left(\frac{f}{10$$

•Phase effects are important, if the signal and the template get out of phase their cross correlation will be reduced.

•High accuracy templates are needed for accurate detection.

100*Mpc*

r

Gravitational Waves from Binaries

Generically, there are 3 regimes in which black holes radiate:

- Orbital in-spiral: PNapproximations or point-particle orbits.
- Plunge/merger after the last stable orbit: numerical simulations or pointparticle orbits.
- Ring-down of the disturbed black hole as it settles down to a Kerr hole: perturbation theory of black holes.

 Merger Science: nonlinear dynamics of spacetime curvature

BH/BH coalescence

- The inspiral, merger, and ringdown waves from 50M_o
 BH binaries as observed by initial and advanced LIGO.
- The energy spectra are coming from crude estimates (10% of the total mass energy is radiated in merger waves and 3% in ringdown waves).
- We observe that the inspiral phase is not visible with initial LIGO, for this case Numerical Relativity is important.

Possible First Source: Binary Black Hole Coalescence

- 10M_☉ + 10 M_☉
 BH/BH binary
- Event rates based on population synthesis,
- mostly globular cluster binaries.
- Totally quiet!!

Core-collapse Supernova

The most spectacular astronomical event with exciting physics

Supernovae/gravitational collapse

Supernova core collapse was the primary source of GW detectors. GW amplitude uncertain by factors of 1,000's?

Rate 1/30yr in a typical galaxy

Detection would provide unique insight into SN physics:

- optical signal hours after collapse
- neutrinos after several seconds
- GWs emitted during collapse

Simulations suggest low level of radiation $(<10^{-6} \ M_{\odot}c^{2}?)$, but

- rotational instabilities possible
- observational evidence for asymmetry from speeding final neutron stars (release of $10^{-6} M_{\odot} c^2$ could explain 1000 km/s?)

- convective "boiling" observable to LMC

Core-Collapse Supernovae I

- Stars more massive than ~8M_o end in core collapse (~90% are stars with masses ~8-20M_o).
- Most of the material is ejected
- If M>20M_o more than 10% falls back and pushes the PNS above the maximum NS mass leading to the formation of BHs (type II collapsars).
- If M>40M_o no supernova is launched and the star collapses to form a BH (type I collapsars)
- Formation rate:
 - 1-2 per century in the Galaxy (**Cappellaro & Turatto**)
 - 5-40% of them produce BHs through the fall back material
 - Limited knowledge of the rotation rate! Initial periods probably <20ms.
 - **Chernoff & Cordes** fit the initial spin with a Gaussian distribution peaked at 7ms. This means that 10% of pulsars are born spinning with millisecond periods.

Core-Collapse Supernovae II

30/8-3/9/2004

Core-Collapse Supernovae III

• GW amplitude

$$h^{TT} \simeq 10^{-23} \, \frac{10 Mpc}{d}$$

- Signals from Galactic supernova detectable.
- Frequencies ~1 kHz
- The numerical estimates are not conclusive. A number of effects (GR, secular evolution, non-axisymmetric instabilities) have been neglected! (Axisymmetric collapse, Mathews-Wilson approximation...)
- Kicks suggest that a fraction of newly born NSs (and BHs) may be strongly asymmetric.
- Polarization of the light spectra in SN indication of asymmetry.

Fragmentation and Fallback

- A significant amount of remnants can fallback, subsequently spinning up and reheating the nascent NS.
- Instabilities can be excited again during such a process.
- BH-QNMs can be excited for as long as the process lasts.
- "Collapsars" accrete initially (for about ~2-3s) at rates ~1-10 M_{\odot} /sec ! Later at a rate ~0.1 M_{\odot} /sec for a few tenths of secs.
- Typical frequencies: ~2kHz.
- Oscillation of matter surrounding the black hole (Zanetti et al 2002)
- If disk mass is :~1M_o self-gravity becomes important and gravitaional instabilities (spiral arms, bars) might develop and radiate GWs (Davies et al 2002, Fryer et al 2002)
- The collapse material might fragments into clumps, which orbit for some circles like a binary system (Fragmentation Instability). Needs density distribution to peaks off the center (maybe in Population III stars).

Black-Hole Ringing I

- The newly formed BH is ringing till settles down to the stationary Kerr state (QNMs).
- The ringing due to the excitation by the fallback material might last for secs
- Typical frequencies: ~1-3kHz

$$f_{m=2} \approx 3.2 \text{kHz} \ M_{10}^{-1} [1 - 0.63(1 - a/M)^{3/10}]$$
$$Q = \pi f \tau \approx 2(1 - a)^{-9/20}$$

- The amplitude of the ringdown waves and their energy depends on the distortion of the BH.
- Energy emitted in GWs by the falling material: $\Delta E > 0.01 \mu c^2 (\mu/M)$

$$h_c \approx 2 \times 10^{-21} \left(\frac{\varepsilon}{0.01}\right) \left(\frac{d}{10Mpc}\right)^{-1} \left(\frac{\mu}{M_{\odot}}\right)$$

Oscillations & Instabilities

The end product of gravitational collapse

AUTH-2004

Neutron Stars

- Suggested:
- **Discovered:**
- Known: 1070 +

1932

1967

- Mass: ~ 1.3-1.8 M_o
- Radius: ~ 8-14 Km
- Density: ~10¹⁵gr/cm³

The Pulsar Lighthouse Effect

Stellar pulsation primer

For spherical stars we can (in the Cowling approximation) write the Euler equations as $\partial^2 \xi^i = (\delta p) p \Gamma_i$

SOLAR OSCILLATIONS

Two main restoring forces, the pressure and the buoyancy associated with internal composition /temperature gradients, lead to:

 $(S_{n} \propto V)$

$$\omega^{2} \approx \frac{l(l+1)c_{s}^{2}}{r^{2}} \qquad \text{p-modes}$$

$$\omega^{2} \approx -gA = \frac{A_{i}\nabla^{i}p}{\rho} \qquad \text{g-modes}$$

NS ringing : Stellar Modes

- P-modes: main restoring force is the pressure
- G-modes: main restoring force is the buoyancy force
- F-mode: has an inter-mediate character of p- and g-mode
- W-modes: pure space-time modes (only in GR) (KK & Schutz)
- Inertial modes (r-modes) :main restoring force is the Coriolis force
- Superfluid modes: Deviation from chemical equilibrium provides the main restoring agent

Each type of mode is sensitive to the physical conditions where the amplitude of the mode is greatest.

f- and w- modes in Interferometers

Stability of Rotating Stars

Non-Axisymmetric Perturbations

A general criterion is:

$$= \frac{T}{W}$$

β

T : rot. kinetic energy W : grav. binding energy

Dynamical Instabilities

- Driven by hydrodynamical forces (bar-mode instability)
- Develop at a time scale of about one rotation period

$$\beta \geq 0.27$$

Secular Instabilities

- Driven by dissipative forces (*viscosity*, *gravitational radiation*)
- Develop at a time scale of several rotation periods.
- Viscosity driven instability causes a Maclaurin spheroid to evolve into a non-axisymmetric Jacobi ellipsoid.
- Gravitational radiation driven instability causes a Maclaurin spheroid to evolve into a stationary but nonaxisymmetric Dedekind ellipsoid.

 ≥ 0.14

The bar-mode instability I

For rapidly (differentially!) rotating stars with:

$$\beta = \frac{T}{|W|} > \beta_{\rm dyn} \approx 0.27$$

the "<u>bar-mode</u>" grows on a dynamical timescale.

$$h \approx 9 \times 10^{-23} \left(\frac{\varepsilon}{0.2}\right) \left(\frac{f}{3 \text{ kHz}}\right)^2 \left(\frac{15 \text{ Mpc}}{\text{d}}\right) M_{1.4} R_{10}^2$$

If the bar persists for many (~10-100) rotation periods, the signal will be easily detectable from at least Virgo cluster.

–A considerable number of events per year in Virgo: ≤10⁻² /yr/Galaxy

-Frequencies ~1.5-3.5kHz

 $t_d = 11.7$ $t_d = 13.4$

Remember mini-Grail: f₀~3.2kHz

AUTH-2004

30/8-3/9/2004

23

Bar Modes IV ???

- Bars can be also created during the merging of NS-NS, BH-NS, BH-WD and Collapsars (type II).
- GR enhances the onset of the instability $(\beta_{dyn} \gtrsim 0.24)$ and β decreases with increasing *M/R*.
- Bar-mode instability might happen for much smaller β if centrifugal forces produce a peak in the density off the source's rotational center.
- Highly differentially rotating stars are shown to be dynamically unstable for significantly lower β 1 (even when $\beta \ge 0.01$).

$$h_{eff} \simeq 3 \times 10^{-22} \left(\frac{f}{800 Hz}\right)^{1/2} \left(\frac{R_{eq}}{30 km}\right) \left(\frac{M}{1.4 M_{\odot}}\right)^{1/2} \left(\frac{100 Mp}{d}\right)^{1/2}$$

The CFS instability

<u>Chandrasekhar</u> 1969: Gravitational waves lead to a secular instability <u>Friedman & Schutz</u> 1978: The instability is generic, modes with sufficiently large *m* are unstable.

A neutral mode of oscillation signals the onset of CFS instability.

The r-mode instability I

In a frame rotating with the star, the r-modes have frequency

 $\omega_{\rm rot} = \frac{2m}{l(l+1)} \Omega$

Meanwhile in the inertial frame

$$\frac{\omega_{\text{inertial}}}{m} = -\frac{\omega_{\text{rot}}}{m} + \Omega = \Omega \left(1 - \frac{2}{l(l+1)}\right)$$

The r-modes are unstable to the emission of GWs at all rotation rates!

The l=m=2 r-mode grows on a timescale $t_{gw} \approx 20 - 40 \left(\frac{1.4M_{\odot}}{M}\right) \left(\frac{10 \text{ km}}{R}\right)^4 \left(\frac{P}{1 \text{ ms}}\right)^6 \text{ s}$

R-modes III

- GW amplitude depends on α (the saturation amplitude).
- Mode coupling might not allow the growth of instability to high amplitudes (Arras et al)
- The existense of *crust*, hyperons in the core, magnetic fields, affect the efficiency of the instability.
- For newly born neutron stars might be quite weak ; unless we have the creation of a strange or hyperon star
- Old accreting neutron stars, probably the best source!

Lindblom-Vallisneri-Tohline

$$h(t) \approx 10^{-23} \alpha \left(\frac{\Omega}{1 \ kHz}\right) \left(\frac{10Mpc}{d}\right)$$
$$\alpha \simeq 10^{-2} - 10^{-4}$$

R-mode instability vs EOS

Isolated & Old NS

Isolated NS

 Wobbling or Deformed NS (many interesting features but highly uncertain the degree of deformation)

$$\varepsilon \ge 2 \times 10^{-8} \left(\frac{1kHz}{f}\right)^2 \left(\frac{r}{10kpc}\right)$$

 LMXBs : if accretion spin-up torque on NS is counterbalanced by GW emission then Sco X-1 and a few more might be detectable around 500-700 Hz.

LMXBs might be as robust source of GWs as the binary systems!

The Wagoner mechanism (1984) Papaloizou & Pringle (1978)

Key idea: Emission of GW balances accretion torque. Strength of waves can be inferred from X-ray flux. Requires deformation:

$$\varepsilon = 4.5 \times 10^{-8} \left(\frac{\dot{M}}{10^{-9} M_{\odot} / yr} \right)^{1/2} \left(\frac{300 \text{ Hz}}{v_s} \right)^{5/2}$$

Observational evidence (?): clustering of spin-frequencies in LMXB (250-590 Hz)

Possible GW mechanisms:

- accretion induced asymmetry
- unstable r-modes: strong bulk viscosity may shift instability window to lower temperatures; accreting stars can reach quasi-equilibrium state

Variable accretion rate: coherent integration of signal only meaningful for 20 days or so.

AUTH-2004

Clustering of millisecond pulsar periods Strange & Hyperon Stars

LIGO narrow banding

