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INTRODUCTION & MOTIVATION 
 
 
 
What are we trying to do? 
 
We look for exact gravitational wave solutions in a 
curved cosmological background! 
 
 
What for? 
 
To investigate the effect of the background 
curvature and the spacetime dynamics on the 
propagation (and the expected characteristics) of a 
RELIC gravitational wave! 
 
 
Give me a good reason why they should have any 
effect. 
 
Due to the non-linearity of the gravitational field 
equations even a weak gravitational wave may 
interact with the background gravitational field (the 
gravity gravitates)! 
 
This interaction could alter the dynamical chara-
cteristics of the wave, resulting in its dispersion, its 
amplification etc. 
 
 
 



 
Why should we bother? 
 
The detection of relic gravitational waves is 
probably the only way to obtain information about 
the very early stages of the Universe evolution! 
 
• In order to detect them, we need to specify what 

do we expect to see, i.e. to determine their 
characteristics! 

 
• The safest way to do so, is to evaluate SOME 

exact solutions! 
 
 
Some exact solutions? 
 
Yes! The extreme physical conditions holding at the 
early stages of the Universe may have resulted in 
many different states of evolution! 
 
A gravitational wave solution should be compatible 
with the spacetime evolution during the time period 
corresponding to each of these states! 
 
 
 
 
 
 
 
 
 



 
COSMOLOGICAL GRAVITATIONAL WAVES 
 
 
 
What are they? 
 
The so-called cosmological gravitational waves 
(hµν ) represent small corrections to the Universal 
metric tensor! 
 
The far-field propagation (away from the source) of 
a weak gravitational wave in a curved and non-
vacuum spacetime, is governed by the differential 
equations: 
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where gαβ  is the background metric. 

 
 
 
 
 
 
 
 
 



 
SETTING THE PROBLEM 
 
 
 
We are interested in studying the evolution of a 
cosmological gravitational wave in the transition of 
the Universe: 
 

(i) From the inflationary epoch to the radiation       
dominated era (at t tGUT= )  

 
 (ii) From the radiation dominated epoch to the 

matter dominated era (at t tREC= ) 
 
Each of these transitions is assumed to be 
instantaneous! (Very restrictive! To be relaxed!) 
 
The changes taking place within these three epochs 
are two-fold: 
 

(i) Each transition modifies the background 
dynamics! 

(ii) In accordance, the wave propagation 
equation changes its differential type!  

  
 
 
 
 
 
 



 
THE BIG PICTURE 
 
 
A gravitational wave is created during the 
inflationary epoch (probably due to true-vacuum 
bubble collisions) and propagates! 
 
 
In the meantime... 
 
 
The Universe experiences a number of phase-
transitions, mostly due to non-gravitational Physics: 
 
 
Inflation era - Radiation era  - Matter era 
 
 
We try to explore how the gravitational wave 
responds to all these modifications of the spacetime 
dynamics. 
 
 
 
To do so, we consider a linearly polarized, plane 
gravitational wave propagating in a spatially flat 
FRW cosmological model! 
 
 
 
 
 



 
THE BACKGROUND DYNAMICS 
 
 
 
The cosmological model: A spatially flat FRW model 
 

 
Is a solution of: The Friedmann equations for k=0 
 

 

 
With matter-content: In the form of a perfect-fluid 
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Obeying: 
 
• The conservation law: 

 
 
• The equation of state: 

 
 
Which is decomposed to: 
  
• Quantum Vacuum:  m = 0 
• Gas of Strings:   m = 2 
• Dust:     m = 3 
• Radiation:    m = 4 
• Stiff Matter:   m = 6 
 
 
Determining the behaviour of the matter content: 
 
The conservation law implies: 

 
and ρ0, R0 are the typical energy density and scale 
factor corresponding to the m-epoch!  
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Determining the spacetime evolution: 
 
The Friedmann equations imply: 
 

 
 
We consider the following cases: 
 
 
(i) Quantum vacuum: m = 0 
 

 
i.e. an inflationary model! 
 
(ii) Gas of strings: m = 2 
 

 
i.e. a Milne model! 

(iii) Other matter-contents: m ≠ 0, 2 
 

   
i.e. the standard model scenario, since, for m = 3 it 
results in the E-DS model and for m = 4 in the 
Friedmann radiation model! 
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RESOLVING THE PROBLEM 
 
 
 
In a FRW background the cosmological wave per-
turbations are defined by the expression: 
 

 
We introduce the conformal-time coordinate 
 

 
in terms of which the scale factor is written in the 
form: 
 

• For m = 0 (at the inflationary era): 
0( )
S
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• For m = 2 (at the string regime): 
( ) 2
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• For m ≠ 0, 2 (at the standard model scenario): 
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Then, the gravitational wave equation of propa-
gation reduces to: 
 

  
To decompose it, we represent the metric cor-
rections in the form: 
 

 
where, h(τ) is the time-dependent part of the modes 
and 
 

 
is a tensor eigenfunction of the wave-number k 
attributed to the Laplace operator of the flat space. 
 
Accordingly, we end up with a differential equation 
for the time-dependent part of the modes: 
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EXACT SOLUTIONS 
 
 
 
For m = 0: At the inflationary phase: 
 

 
For m ≠ 0, 2: Within the standard model scenario: 
 

 
where, the Hankel functions’ order is 
 

 
thus, resulting in: 
 
For m=4 (at the radiation epoch): ν = 1/2 
 
For m=3 (at the matter epoch):  ν = 3/2 (again!) 
 
 
Accordingly, we obtain: 
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At the inflationary era: 
 

 
 

 
At the radiation-dominated epoch: 
 

 
At the matter-dominated epoch: 
 

 
 

 
Notice that:  
 

 
The propagation eqs at the inflationary era and the 
matter-dominated epoch are “dynamically equiva-
lent”, i.e. their spaces of solutions are isomorphic! 
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Furthermore… 
 
In the string regime (m = 2): 
 
 
Around Planck-time, the wave propagation problem 
gets even better! 
 
The corresponding wave equation reduce to 
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admitting formal plane-wave solutions of the form: 
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i.e. a problem dynamically equivalent to the corre-
sponding one of the radiation era. However, now 
the frequency is given by 
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easily recognizable as a dispersion relation which 
implies υph < c for the gravitational wave! 
 
 


