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Introducing remarks

• the pseudo-spectral (PS) methods are methods to solve partial 
differential equations (PDE)

• they originate roughly in 1970 
• the PS methods have successfully been applied to

- fluid dynamics (turbulence modeling, weather
predictions)

- non-linear waves
- seismic modeling
- MHD
- …

• we have applied them to plasma turbulence simulations,
and to the non-linear interaction of grav. waves with plasmas 
(together with I. Sandberg and L. Vlahos … part I of two talks !)



Basic principles of the pseudo-spectral method

• the ‘pseudo-spectral’ in the method refers to the spatial part of 
a PDE

• example: a spatial PDE

Lu(x) = s(x), x ∈ V 
b.c.: f(u(y)) = 0, y ∈ ∂V

L: a spatial differential operator (e.g. L = ∂xx +∂yy, etc.) 

• wanted: numerical solution uN(x) such that the residual R

R(x):= LuN(x) - s(x) 

is small – but how do we define the smallness ?



• general procedure: 

1. choose a finite set of trial functions (expansion 
functions) φj, j = 0,..N-1,   
and expand uN in these functions

2. choose a set of test functions χn, k = 0,1,2, … N-1 and 
demand that

(χn,R) = 0   for n=0,1…N-1 (scalar product)

• ‘spectral methods’ means that the trial functions φn form 
a basis for a certain space of global, smooth functions 
(e.g. Fourier polynomials)
(global: extending over the whole spatial domain of 
interest) 



• there are various spectral methods, classified according 
to the test functions χn :
Galerkin method, tau method, collocation or pseudo-
spectral method

• collocation or pseudo-spectral method:
χn(x) = δ(x-xn),

where the xn (n=0,1,… N-1) are special points, the 
collocation points

• the smallness condition for the residual becomes
0 = (χn, R) = (δ(x-xn), R) = R(xn) = LuN(xn) - s(xn)

N equations to determine the unknown N coefficients 



• remark: the solution at the collocation points is exact, in between them 
we interpolate the solution 

• what trial functions to choose ?

1. periodic b.c.: trigonometric functions 
(Fourier series)

2. non-periodic b.c.: orthogonal polynomials
(main candidate: Chebyshev polynomials)

• in our applications, we assume periodic b.c. and use Fourier series
φj (x) = e-ikj x

(periodic b.c. ok if arbitrary, large enough part of an extended plasma is 
modeled, not bounded by stellar surfaces)

plasma

simulation box



Comparison to analytical Fourier method
• in Lu(x) = s(x), x ∈ V 

b.c.: f(u(y)) = 0, y ∈ ∂V

assume 1-D, and e.g. L = ∂zz,
∂zzu =s(x)

• Fourier transform:

• in principle, we want to do this numerically, but we have 
to make sure about a few points …



pseudo-spectral method, the Fourier case

• The aim is to find the expansion coefficients such that the residual 

or 

vanishes. If L is linear, then Le-ikkxn = h(kk) e-ikkxn

the ‘trick’ is to choose (turning now to 1D for simplicity)
zn = n ∆, n = 0,1,2,… N-1

and
kj = 2πj / (N∆), j = -N/2, …, N/2

(∆: spatial resolution)
• zn and kj are equi-spaced, and the condition on the residual becomes



• we define the discrete Fourier Transform DFT as

• with un = u(xn), and the inverse DFT-1 as

• it can be shown that with the specific choice of kj and zn

[algebraic proof, using ∑n=0
N-1 qn = (1-qN)/(1-q)]

so that
u = DFT-1(DFT(u))

(but just and only at the collocation points, actually 
{un} = DFT-1(DFT({un}))  !!!)



• the condition on the residual 

can thus, using the DFT, be written as  

and, on applying DFT,

⇒ we can manipulate our equations numerically with the DFT 
analogously as we do treat equations analytically with the Fourier 
transform

Remarks:
• zn and kj are equi-spaced only for trigonometric polynomials,

every set of expansion functions has its own characteristic 
distribution of collocation points – equi-distribution is an exception
(Chebychev, Legendre polynomials etc)

• the sets {un}  and {uj*} are completely equivalent, they contain the 
same information 



Summary so-far
• we have defined a DFT, which has analogous properties 

to the analytic FT, it is though finite and can be 
implemented numerically

• the PS method gives (in principle) exact results at a 
number of special points, the collocation points 

• From the definition of DFT-1, 

it follows immediately that (z corresponds to n, to 
differentiate we assume n continuous)

as “usual”, and the like for other and higher derivatives,
and where we concentrate just on the collocation points 



The pseudo-spectral method and time-
dependent problems

• example: diffusion equation in 1D:

• we consider the equation only at the collocation points 
{zn=n∆, n=0,1, … N-1}, writing symbolically

• apply a spatial DFT

where j=-N/2, …,N/2
⇒we have a set of N ODEs !
⇒ the temporal integration is done in Fourier space



Temporal integration
• The idea is to move the initial condition to Fourier space, and to do 

the temporal integration in Fourier space, since there we have ODEs
• since we have a set of ODEs, in principal every numerical scheme 

for integrating ODEs can be applied
• often good is Runge-Kutta 4th order, adaptive step-size
• 4th order RK: du/dt = F(u,t)                             (u has N components)

un+1 = un + 1/6(r1 + 2r2 + 2r3 + r4)
r1 = ∆t F(un,tn)
r2 = ∆t F(un + 1/2r1, tn + 1/2∆ t)
r3 = ∆t F(un + 1/2r2, tn + 1/2∆ t) 
r4 = ∆t F(un + r3, tn + ∆ t)

• adaptive step-size:
(for efficiency of the code)
advance ∆t, and also ∆t/2 + ∆t/2,
compare the results with prescribed accuracy,
depending on the result make ∆t smaller or larger

t

∆t

∆t/2 ∆t/2



How to treat non-linearities
• assume there is a term ρ(z)u(z) in the original PDE
• we are working in F-space, using DFT, so at a given time we have 

available ρ*j and u*j 

• ρu corresponds to a convolution in F-space, but convolutions are 
expensive (CPU time !) and must be avoided (∼ N2)

• the procedure to calculate (ρu)*j is as follows (∼ N log2 N):

1. given at time t are ρ*j and u*j
2. calculate ρn = DFT-1(ρ*j) and un = DFT-1(u*j)
3. multiply and store wn = ρnun  
4. move wn to F-space, w*k = DFT(wn)
5. use w*j for (ρu)*j

Fourier space direct space
{ρ*j}, {u*j} {ρn}, {un}

{w*j} {wn} = {ρnun} 

DFT-1

DFT



Aliasing
• the Fourier modes used are

• at the grid points zn, e2πinj/N equals

this implies that modes with 

contribute to the DFT as if they had

i.e. high k modes alias/bias the amplitude a lower k modes ! 
• example: for ∆=1, N=8, our wave vectors are

now e.g. to k=π/4 also the modes k=9π/4, 17π/4, …. etc. contribute !
i.e. modes outside the k-range we model bias the modeled k-range 



example: grid of N=8 points, ∆ = 1:

sin(z π/4) and sin(z 9π/4) appear as being the same function when sampled

First consequence of the aliasing effect:
prescribed functions such as initial conditions u(z,t=0) or source functions s(z,t)
are best provided as superpositions of the explicitly available modes,
u(zn,t=0) = ∑j u*0,je2π i jn/N



Aliasing and nonlinearities
• assume we have a non-linear term ρu in our PDE, and

ρ(z) =sin(k1 z), u(z) = sin(k2 z),
with k1, k2 from our set of available wave-vectors kj

• now             
ρu ∼ -cos[(k1+k2) z] + cos[(k2-k1)z],

and k1+k2 may lie outside our range of k’s,
and the available Fourier amplitudes might get aliased !

• k1+k2 outside range if k1+k2 > π,
and the amplitude appears wrongly in the range of k’s at 
k1+k2–2π (l=-1, j1+j2-N),                    the DFT is aliased 

-π 0                       π
k

k1 k2 k1+k2k1+k2-2π



De-aliasing
• Several methods exist to prevent aliasing:

zero-padding (3/2-rule), truncating (2/3-rule), phase shift
• we apply 2/3-rule:

- simple to apply,
- low cost in computing time

• Basic idea:
set part of the amplitudes to zero always prior to (non-linear) 
multiplications:

0                                       0

full index range of k-vectors: [-N/2,N/2]
→ keep the sub-range [-K,K] free of aliasing
method: set Fourier amplitudes u*j = 0 in [-N/2,-K] and [N/2,K]

• why does this work ? and how to choose K ?

-N/2         -K                   0                    K        N/2



• let j and s be in [0,K]
• if j+s > N/2 (outside range), then the amplitude corresponding to j+s

will be aliased to j+s-N
• we demand that j+s-N < -K (in the not used part of the spectrum),

the largest j, s in the range are j=s=K:     j+s-N <= 2K-N
i.e. we demand 2K-N <-K      or K<N/3

• we set K = N/3 = (2/3) N/2:        ‘2/3-rule’

• for j, s in [K,N/2] and j+s > N/2 the amplitude is aliased to j+s-N,
which may lie in [-K,0], but we do not have to care,
the amplitudes at j and s are set to zero

⇒ the range [-K,K] is free of aliasing

-N/2      -K                         0                            K        N/2

j  s j+sj+s-N

-N/2      -K                         0                            K        N/2

j+sj+s-N j  s



non-linearities, de-aliased
• assume you need to evaluate DFT(ρiui), having given

the Fourier transforms ρj* and uj*:

Fourier-space                  direct space
ρj*, uj*

ρj*, uj* → 0, for j > (2/3) N/2

ρn, un

wn = ρn un
(ρj uj)* = wj*

DFT-1

DFT



Stability and convergence

• … theory on stability on convergence …
• reproduce analytically known cases
• reproduce results of others, or results derived in different 

ways
• test the individual sub-tasks the code performs
• monitor conserved quantities (if there are any)
• apply fantasy and physical intuition to the concrete 

problem you study, try to be as critical as you can 
against your results



Example 1
• Korteweg de Vries equation (KdV)

admits soliton wave solutions:

analytically: numerically:

initial condition:



Numerically, two colliding solitons

initial condition:



Aliasing

de-aliased not de-aliased



Example 2: Two-fluid model for the formation of 
large scales in plasma turbulence

φ: electric potential
n: density
τ, vn, vg, µ, D: constants

initial condition:
random, small amplitude perturbation (noise)

→ large scale structures are formed

(three different ion
temperatures τ)

(Sandberg, Isliker, Vlahos 2004)



Example 3

• relativistic MHD equations, driven by a gravitational wave
• emphasis on the full set of equations, including the non-linearities
→ numerical integration 
→ pseudo-spectral method, de-aliased,

N=256, effective number of k-vectors: (2/3) 128 = 85
• we use ωGW = 5 kHz, so that kGW ≈ 10-6 cm-1,

and the range of modeled k’s is chosen such that

i.e. the 1-D simulation box has length 9 × the wave-length of the 
grav. wave 

• … to be continued at 15:30, by I. Sandberg

(Isliker / Sandberg / Vlahos)

0                           85        128

kGW = 9 kmin



Concluding remarks

Positive properties of the pseudo-spectral (PS )method:
• for analytic functions (solutions), the errors decay 

exponentially with N, i.e. very fast
• non-smoothness or even discontinuities in coefficients

or the solutions seem not to cause problems
• often, less grid points are needed with the PS method 

than with finite difference methods to achieve the same 
accuracy
(computing time and memory !)



Negative properties of the pseudo-spectral method:
• certain boundary conditions may cause difficulties
• irregular domains (simulation boxes) can be difficult or 

impossible to implement
• strong shocks can cause problems
• local grid refinement (for cases where it is needed) 

seems not possible, so-far


