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The Path to GRThe Path to GR--MHDMHD

1. Hydrodynamical Evolution

2. Spacetime Evolution

3. Magnetic Field Evolution



HydrodynamicalHydrodynamical Evolution (I)Evolution (I)
General-Relativistic Hydrodynamics

Energy and momentum conservation

Baryon number conservation

The above system is in a 1st-order flux conservative hyperbolic form:
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Only in this form can one compute shock waves correctly.



HydrodynamicalHydrodynamical Evolution (II)Evolution (II)
3+1 spacetime split:

Choose an Eulerian observer, with unit vector

n , i

orthogonal to a spacelike hypersurface foliation. Then, the metric is written as 
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HydrodynamicalHydrodynamical Evolution (III)Evolution (III)
Then, instead of the primitive variables
one uses the conserved variables

and the 1st-order flux-conservative hyperbolic system becomes
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Numerical SchemeNumerical Scheme
High Resolution Shock Capturing (HRSC) finite-volume schemes

•Relativistic implementations: Marti, Ibanez, Miralles, PRD, 1991

•Oscillation-free at discontinuities + Low numerical dissipation

Main idea: Solution of local Riemann problem in each cell



Typical Implementation HRSC SchemesTypical Implementation HRSC Schemes
1. Cell reconstruction:

1st, 2nd or 3rd order (PPM) interpolation of 
variables from cell centers to cell interfaces.

3. Numerical fluxes:

Approximate Riemann solvers (Roe, 
Marquina). Explicit use of the spectral 
information of the system. Or, e.g. 
HLLE (no need for spectral
information).
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2. Apply slope limiters:

Near discontinuities correct for abrupt 
changes (MC).

4. Time update:

2nd or 3rd order conservative 
Runge-Kutta schemes
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ExampleExample: Evolution of Equilibrium Models: Evolution of Equilibrium Models
Font, N.S. & Kokkotas (2000)

2-D nonlinear evolutions with 3rd order PPM method in Cowling approximation



Conformal-traceless formulation
Kojima – Oohara - Nakamura - Shibata – Baumgarte - Shapiro

Definitions Evolution equations

“1+log” slicing condition
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Alcubierre et al. (2002)

SpacetimeSpacetime EvolutionEvolution



3D Nonlinear Simulations in Full GR3D Nonlinear Simulations in Full GR
(Baiotti, Hawke, Montero, Loeffler, Rezzolla, N.S., Font & Seidel, 2004)

Initial Data

Rapidly rotating relativistic stars in
uniform rotation
(N.S. & Friedman, 1995)

Excision inside Horizon

Hydrodynamics

Approximate Riemann solvers with 
3rd-order Piecewise-Parabolic method
(Font, N.S. & Kokkotas, 2000)

Nonlinear Evolution

Conformal-traceless formulation
(Kojima, Oohara & Nakamura, 1987;
Shibata & Nakamura, 1995;
Baumgarte & Shapiro, 1999)

Cubical excision method
(Hawke, Loeffler & Nerozzi, 2004)



How can we trust our numerical solutions?How can we trust our numerical solutions?
Convergence of Constraints Shock tube

Comparison to linear oscillation modes NS Migration



AxisymmetricAxisymmetric Instability to CollapseInstability to Collapse
Rotating stars are subject to a
secular axisymmetric instability, if:

(Friedman, Ipser & Sorkin, 1988).

A star can collapse to a Kerr BH during:

a) Core collapse of massive star

b) Accretion-induced collapse of a 
compact star

c) Merger of two compact stars in a 
binary system

d) Spin-down of a supramassive
compact star

Dynamical instability soon after 
onset of secular instability.
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Collapse of Slowly Rotating ModelCollapse of Slowly Rotating Model



No Disk FormationNo Disk Formation

The collapse proceeds nearly spherically symmetric until all matter
has enter the horizon.



Collapse of Rapidly Rotating ModelCollapse of Rapidly Rotating Model



Formation of Unstable DiskFormation of Unstable Disk

Due to centrifugal hangup, a thin disk forms outside the horizon.

If the initial star is uniformly rotating, the disk is unstable and
accretes rapidly onto the BH.



Event Horizon MassEvent Horizon Mass
The mass of the event horizon 
for a stationary Kerr BH can be 
computed directly from the 
equatorial circumference

as

The event horizon is a global concept.
It can be found only after the null 
history is known.

An outgoing  null geodesic that starts
infinitesimaly close outside the 
horizon, diverges exponentially away 
from it. Conversely, one can integrate 
null geodesics backwards in time, so 
that they converge exponentially onto
the horizon (Anninos et al. 1995).

Problem: Integrating backwards several 
individual photons is sensitive to 
numerical errors.

Solution: Integrate a whole trial null surface
with level-set method (Diener, 2003).
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Dynamical Formation of Horizons (I)Dynamical Formation of Horizons (I)

Closed spacelike 2-surfaces in a t=const. slice, whose 
future-pointing outgoing null geodesics have zero expansion

Marginally Trapped Surfaces

Apparent Horizon
Is defined as the outermost marginally trapped surface.

• The AH forms within the event horizon

• The AH is a local concept, an elliptic PDE is solved.

To locate the apparent horizon, we are using the fast 3-D solver of Thornburg (2003).
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Dynamical Horizons
Ashtekar & Krishnan (2003) have generalized the 1st law of BH mechanics 
to nonlinear, time-dependent dynamical horizons, defining generalized mass 
and angular-momentum formulae. The Christodoulou relation still holds:
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Dynamical Formation of Horizons (II)Dynamical Formation of Horizons (II)

Slowly rotating model Rapidly rotating model 



Dynamical Formation of Horizons (III)Dynamical Formation of Horizons (III)



Dynamical Formation of Horizons (IV)Dynamical Formation of Horizons (IV)



Differentially Rotating Initial Models Fixed Mesh Refinement
Current DevelopmentsCurrent Developments

N.S., Apostolatos & Font (2004)

Accurate waveforms!

Schnetter, Hawley, Hawke (2004)



Magnetic Field Evolution (I)Magnetic Field Evolution (I)
Electric field 4-vector

Magnetic field 4-vector

1st-order flux-conservative hyperbolic system

Conserved variables (see Miralles, 2004)
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Magnetic Field Evolution (II)Magnetic Field Evolution (II)
Maxwell’s equations
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and
“divergence-free” constraint equation

must be enforced exactly in a numerical scheme! (see Toth, 2000)
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Construction of Initial DataConstruction of Initial Data

Komatsu, Eriguchi & Hachisu
method

Cook, Shapiro & Teukolsky
compactified radial coordinate

RNS code

2 2 2 2 2 2 2 2 2sin ( ) ( )ds e dt e r d dt e dr r dMetric:

Field Equations: integral form

N.S. & J. Friedman, 1995



Comparison of Different CodesComparison of Different Codes
N.S., Living Reviews in Relativity (2003)

AKM: Ansorg et al.

Lorene/rotstar + BGSM: Meudon group

SF: RNS code

KEH: original KEH code (not compactified)



CONCLUSIONSCONCLUSIONS
• GR-Hydro code accurate and stable

• Extend to GR-MHD using MHD equations in conservative form 
and enforcing divergence-free constraint

• Initial data of rotating magnetized stars under construction

ApplicationsApplications

• Nonlinear oscillations of magnetized relativistic stars

• Collapse of magnetized rotating relativistic stars

• Magnetic breaking of differential rotation by MHD turbulence

Future extensionsFuture extensions

• Include viscosity, radiation transport, finite conductivity etc.


