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Spacetime Splitting

Introduce a timelike 4-velocity field, ua, with

uaua = −1 . (1)

This defines the family of the fundamental ob-
servers and is usually identified with the motion
of the fluid.

In cosmological studies, ua is taken as the 4-
velocity that sets the CMB dipole to zero.

The spacetime splitting is completed by means of
the projection tensor

hab = gab + uaub , (2)

where gab is the spacetime metric. The above
projects orthogonal to ua into the observer’s in-
stantaneous 3-D rest space.

The projector has the standard properties

habu
b = 0 , ha

chcb = hab and ha
a = 3 , (3)

and it is also the metric of the 3-space (when
there is no rotation).

On using ua and hab one obtains a unique 1 + 3
spacetime splitting into “time” and “space”.



Timelike and Spacelike Derivatives

We define two derivative operators:

one along the fundamental timelike direction

Ṫabc··· = ud∇dTabc··· , (4)

which is the covariant time derivative;

and one operating on the observer’s rest space

DdTabc··· = hd
mha

ehb
fhc

l · · · ∇mTefl··· . (5)

Note that all the tensor indices are projected or-

thogonal to ua.



Kinematics

The covariant derivative of ua splits as

∇bua = Dbua + u̇aub

= 1
3Θ + σab + ωab + u̇aub , (6)

where

Θ = ∇aua , σab = D〈bub〉 ,

ωab = D[bua] and u̇a = ub∇bua . (7)

are respectively, the expansion scalar, the shear,
the vorticity and the 4-acceleration.

The first three quantities in the right-hand of
(6) determine the relative position vector between
neighbouring worldlines.

The vorticity tensor defines an associated vector,
parallel to the rotation axis, by

ωa = 1
2εabcω

bc . (8)

In cosmology we use Θ to define an average scale
factor, a, by

ȧ

a
=

Θ

3
. (9)



Matter Fields

Matter fields modify the spacetime geometry through

the Einstein field equations (EFE)

Rab − 1
2Rgab + Λgab = Tab , (10)

where Rab is the Ricci tensor, R = Ra
a, Λ is

the cosmological constant and Tab is the energy-

momentum tensor of the matter (8πG = 1 = c).

Also,

R = 4Λ− T (11)

with T = Ta
a.

Relative to ua, the stress-energy tensor of a gen-

eral imperfect fluid decomposes as

Tab = µuaub + p hab + 2q(aub) + πab , (12)

where

µ = Tabu
aub , p = 1

3Tabh
ab ,

qa = ha
bTbcu

c and πab = h〈a
chb〉

dTcd . (13)



Perfect Fluids

For a perfect fluid qa = 0 = πab, which means

that

Tab = µuaub + p hab . (14)

The medium is specified by the equation of state.

In the case of a barotropic fluid, we have

p = p (µ) (15)

with

c2s =
dp

dµ
(16)

representing the adiabatic sound speed.

Matter fields traditionally satisfy the constraints

µ > 0 , µ + p > 0 , µ + 3p > 0

and 0 ≤ c2s ≤ 1 . (17)



Spacetime Curvature

The Riemann tensor of the spacetime decom-
poses as

Rabcd = Cabcd

+1
2 (gacRbd + gbdRac − gbcRad − gadRbc)

−1
6R (gacgbd − gadgbc) , (18)

where Cabcd is the conformal curvature (Weyl)
tensor.

Through the EFE, the Ricci curvature determines
the local gravitational field. The Weyl curvature
is associated to the long range gravitational field,
that is tidal forces and gravity waves.

The Weyl tensor splits as

Cabcd =
(
gabqpgcdsr − ηabqpηcdsr

)
uqusEpr

−
(
ηabqpgcdsr + gabqpηcdsr

)
uqusHpr ,(19)

where gabcd = gacgbd − gadgbc and

Eab = Cacbdu
cud , Hab = 1

2εacdC
cd

beu
e , (20)

are respectively the electric and magnetic com-
ponents of Cabcd (with Eabu

b = 0 = Habu
b).



Kinematical Evolution

The kinematical evolution derives from the Ricci
identities

2∇[a∇b]uc = Rabcdu
d , (21)

applied to the 4-velocity field ua.

The trace, the symmetric trace-free and the an-
tisymmetric parts of the above give

Θ̇ + 1
3Θ

2 = −1
2(µ + 3p)− 2(σ2 − ω2)

+u̇au̇a + Dau̇a + Λ , (22)

where σ2 = σabσ
ab/2, ω2 = ωabω

ab/2 = ωaωa, and

σ̇〈ab〉 = −2
3Θσab − σc〈aσc

b〉 − ω〈aωb〉 + u̇〈au̇b〉
+D〈au̇b〉 +

1
2πab − Eab , (23)

ω̇〈a〉 = −2
3Θωa + σabω

b − curlu̇a , (24)

which determine the evolution of the expansion
scalar, the shear and the vorticity.

The first of the above, which is known as Ray-
chaudhuri’s formula, is the key equation of grav-
itational collapse.



The propagation equations are complemented by

the constraints

2
3DaΘ = Dbσab − curlωa − 2εabcu̇

bωc + qa , (25)

Daωa = ωau̇a , (26)

Hab = curlσab + 2u̇〈aωb〉 + D〈aωb〉 (27)

where by definition

curlσab = εcd〈aD
cσd

b〉 . (28)

These constraints determine the relations between

the covariant kinematical variables in the observer’s

instantaneous rest space.



Conservation Laws

From the Bianchi identities one arrives at the con-

servation law

∇bTab = 0 . (29)

The timelike component of the above leads to the

energy density conservation law

µ̇ = −Θ(µ + p)− 2u̇aqa −Daqa − σabπ
ab . (30)

The momentum density conservation comes from

the spacelike part of (29)

(µ + p)u̇a = −Dap− 4
3Θqa − q̇〈a〉 − σabq

b

−Dbπab − πabu̇
b + εabcω

bqc . (31)

For a perfect fluid the above reduce to

µ̇ = −Θ(µ + p)

u̇a = −
1

µ + p
Dap (32)



Gravitational waves

The long range gravitational field is monitored by

means of the Bianchi identities

∇[aRbc]de = 0 . (33)

The above split into two propagation equations

Ėab = −ΘEab + curlHab − 1
2(µ + p)σab − 1

6Θπab

−1
2π̇ab − 1

2D〈aqb〉 − u̇〈aqb〉 + 3σc〈aEc
b〉

−1
2σc〈aπc

b〉 + 2εcd〈au̇cHd
b〉

−εcd〈aωcEd
b〉 −

1
2εcd〈aωcπd

b〉 , (34)

Ḣab = −ΘHab − curlEab + 1
2curlπab + 3σc〈aHc

b〉

+1
2εcd〈au̇cEd

b〉 −
1
2εcd〈aqcσd

b〉 −
3
2ω〈aqb〉

−εcd〈aωcHd
b〉 . (35)

Combining the above one obtains wave-like equa-

tions for Eab and Hab, which describe propagating

gravitational radiation.



The Bianchi identities also provide the constraints

DbEab = 1
3Daµ− 1

3Θqa − 1
2D

bπab + 1
2σabq

b

−3Habω
b + εabcσ

bdHc
d

+3
2εabcω

bqc , (36)

DbHab = −(µ + p)ωa + 3Eabω
b − 1

2πabω
b − 1

2curlqa

−εabcσ
bdEc

d − 1
2εabcσ

bdπc
d . (37)

The propagation and constraint equations of the

Weyl field show a remarkable analogy to Maxwell’s

formulae, which explains the name of Eab and Hab.



Spatial Curvature

In the absence of rotation, the geometry of the

observer’s 3-D rest space is determined by the

3-Riemann tensor defined by

Rabcd = ha
ehb

fhc
lhd

mReflm

−vacvbd + vadvbc , (38)

where vab = Dbua.

The contractions of the 3-Riemann tensor lead

to Rab = Rc
acb and R = Ra

a. The former is

determined by the Gauss-Codacci equation

Rab = 1
3Rhab − 1

3Θσab + σc〈aσc
b〉 +

1
2πab

+Eab , (39)

where

R = 2
(
µ− 1

3Θ
2 + σ2 + Λ

)
. (40)

The above is also the generalised Friedmann equa-

tion.



The Friedmann Universe

The isotropy and homogeneity of the Friedmann

solution guarantees that the only nonzero covari-

ant quantities are

µ , p , Θ and R =
6k

a2
, (41)

where k = 0,±1 is the 3-curvature index.

The evolution of the model is determined by two

propagation equations

µ̇ = −Θ(µ + p)

Θ̇ + 1
3Θ

2 = −1
2(µ + 3p) + Λ , (42)

supplemented by the constraint

3k

a2
= µ− 1

3Θ
2 + Λ (43)

An alternative expression for the Raychaudhuri

equation is

q = 1
2(µ + 3p)− Λ (44)

where q = −aä/ȧ2 is the deceleration parameter

of the universe.



Friedmann’s equation also reads

H2 = 1
3µ−

k

a2
+ 1

3Λ , (45)

with H = Θ/3 representing the Hubble parame-

ter.

Alternatively we may recast the above as

1−Ω = −
k

a2H2
+ ΩΛ , (46)

where Ω = µ/3H2 is the density parameter and

ΩΛ = Λ/3H2.

The model is completely determined when the

equation of state of the cosmic medium is given.

For conventional matter p = 0 corresponds to a

non-relativistic (dust) component, when p = µ/3

we have a radiative matter and for p = µ the so

called “stiff” fluid.

On the other hand, de Sitter type inflation corre-

sponds to p = −µ.



Perturbed Friedmann Universes

The theory of linear cosmological perturbations
is plagued by what is known as the “gauge prob-
lem”.

This emerges from the fact that we actually deal
with two spacetimes: the realistic perturbed uni-
verse and the fictitious background one. The lat-
ter is usually identified with the FRW model.

To proceed we need to specify the connection,
the “gauge”, between these two spacetimes.

The main problem is that by changing the gauge
one can arbitrarily change the perturbed value of
a physical quantity. For example, the density con-
trast given by

δ =
µ− µ̄

µ̄
(47)

is set to zero by identifying the perturbed surfaces
of constant density with the background surfaces
of constant time.

The best way around the gauge problem is by
using gauge-independent variables.



The Perturbation Variables

To linear order, scalars are gauge invariant when
they are covariantly constant in the background.
Tensors, on the other hand, are gauge-independent
only if they have zero background values.

We describe density perturbations by means of
the vector

Xa = Daµ = ha
b∇bµ , (48)

which describes the density variation between two
neighbouring fundamental observers.

The above leads to the dimensionless, comoving
density gradient

Da =
a

µ
Xa . (49)

In addition we define

Za = aDaΘ and Ya = Dap , (50)

which describe perturbations in the expansion and
the fluid pressure respectively.

All three variables vanish in a FRW background
and are therefore gauge invariant.



Evolution of the Inhomogeneities

The propagation equations for Da and Za are

Ḋ〈a〉 = wΘDa − (1 + w)Za

−(σab − ωab)Db (51)

and

Ż〈a〉 = −2
3ΘZa − 1

2µDa + a<u̇a + aDaA

−(σab − ωab)Zb − 2aDa(σ
2 − ω2) ,(52)

where w = p/µ, A = ∇au̇a and

< = 1
2R+ A− 3(σ2 − ω2) . (53)

The above system monitors the nonlinear evolu-

tion of density inhomogeneities in a general space-

time (containing a perfect fluid). Next we will

linearise these equations about a FRW universe

with flat spatial sections.



The Linear Regime

During linearisation, quantities that have nonzero

background value are treated as zero order vari-

ables. Those that vanish in the background are

first order and higher order terms are ignored.

scheme

Under this scheme, the nonlinear equations given

before linearise to

Ḋ = wΘDa − (1 + w)Za (54)

and

Ża = −2
3ΘZa − 1

2µDa + aDaA . (55)

For dust (p = 0), Θ = 2/t and µ = 4/3t2. Then,

the above system gives

D̈a + 2
3ΘDa − 1

2µDa = 0 , (56)

with solution

Da = C1t2/3 + C2t−1 (57)

where C1 and C2 are time independent quantities.



In the case of radiation (p = µ/3), Θ = 3/2t and
µ = 3/4t2. Therefore,

D̈a = −(2
3 − w)ΘḊa + 1

2(1− w)(1 + 3w)µDa

+c2sD
2Da , (58)

with D2 = DaDa.

Then,on introducing the harmonic decomposition

Da =
∑
n
DnQn

a , (59)

with DaDn = 0 = Q̇n
a and

D2Qn
a = −

n2

a2
Qn

a (60)

we have

D̈n = −(2
3 − w)ΘḊn

+

[
1
2(1− w)(1 + 3w)µ− c2s

n2

a2

]
Dn .(61)

The last term in the right-hand side of the above
describes the counteracting effects of gravity and
pressure. On large enough scales gravity dom-
inates and the inhomogeneity grows. On small
scales, however, pressure support forces the per-
turbation to oscillate like a sound wave.



The Jeans’ Scale

The gravitational and the pressure effects bal-

ance each other at a critical wavelength, which

is known as the “Jeans scale” and given by

λJ =
a

nJ
= cs

√
2

(1− w)(1 + 3w)µ
(62)

Wavelengths below the Jeans’ scale are supported

by pressure and oscillate like acoustic waves.

On scales much larger than λJ, on the other hand,

the pressure term in Eq. (61) is negligible and

density inhomogeneities grow as

Dn = C1t1/2 + C2t−1 . (63)


