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Spacetime Splitting

Introduce a timelike 4-velocity field, ug, With
ugu® = —1. (1)

This defines the family of the fundamental ob-
servers and is usually identified with the motion
of the fluid.

In cosmological studies, u, IS taken as the 4-
velocity that sets the CMB dipole to zero.

T he spacetime splitting is completed by means of
the projection tensor

hap = Gab + Uauyp, (2)

where g,;, is the spacetime metric. The above
projects orthogonal to u, into the observer’s in-
stantaneous 3-D rest space.

The projector has the standard properties
hgpu’ =0, haChy = hy and he® =3, (3)
and it is also the metric of the 3-space (when

there is no rotation).

On using ug and h,, one obtains a unique 1 4+ 3
spacetime splitting into “time” and ‘'space”.



Timelike and Spacelike Derivatives
We define two derivative operators:

one along the fundamental timelike direction

Tabc--- — udvdTabc--- 3 (4)

which is the covariant time derivative;

and one operating on the observer’s rest space
DyTupe... = hg™ha®hy bl -+ NV Topr...  (5)

Note that all the tensor indices are projected or-
thogonal to wu,.



Kinematics

The covariant derivative of ug splits as

Vb’u,a — DbUa, —I_ UQUb
= %@ + ogp + wWep + Uatyp (6)
where
© = vauaa Oab — D(bub> )
wap = Dy and g = uVyua. (7)

are respectively, the expansion scalar, the shear,
the vorticity and the 4-acceleration.

The first three quantities in the right-hand of
(6) determine the relative position vector between
neighbouring worldlines.

The vorticity tensor defines an associated vector,
parallel to the rotation axis, by

W = %eabcwbc . (8)

In cosmology we use © to define an average scale
factor, a, by

=2 (9)



Matter Fields

Matter fields modify the spacetime geometry through
the Einstein field equations (EFE)

Rap — %Rgab + Ngap = Tp 5 (10)

where R,, is the Ricci tensor, R = Ry% A is
the cosmological constant and 7, is the energy-
momentum tensor of the matter (887G =1 = ¢).

Also,
R=4N -T (11)
with T = Taa.

Relative to ug, the stress-energy tensor of a gen-
eral imperfect fluid decomposes as

Tap = puaup + p hap + 2q5up) + Tap (12)

where

p=Tyuu’, p= %Tabhab,

QCL:habTbcuc and m,, = <achb>dTCd. (13)



Perfect Fluids

For a perfect fluid ¢, = 0 = m, ,, which means
that

Top = Huaup +p hap - (14)

The medium is specified by the equation of state.
In the case of a barotropic fluid, we have

p=rp (n) (15)
with
> _ dp
Cs =— @ (16)

representing the adiabatic sound speed.

Matter fields traditionally satisfy the constraints

p>0, p+p>0, pu+3p>0

and 0<c2<1. (17)



Spacetime Curvature

The Riemann tensor of the spacetime decom-
poses as

Roved = Clabed
+3 (gacRpa + gpaRac — gpeRad — JadRoe)
_%R (9acIbd — Gadbe) (18)

where C,.q IS the conformal curvature (Weyl)
tensor.

Through the EFE, the Ricci curvature determines
the local gravitational field. The Weyl curvature
IS associated to the long range gravitational field,
that is tidal forces and gravity waves.

The Weyl tensor splits as

Cabed = (gabqucds'r — nabqpncdsr) ufu® EPT
— (nabqucdsr + gabqpncdsr) ulu®HP'(19)
where guped = JacGbd — Gaddbe ANd
©, Hyp = 3€qcaC%us,  (20)

are respectively the electric and magnetic com-
ponents of Cy.g (With Eyub =0 = Hub).

— C
Eab — Cacbdu u



Kinematical Evolution

The kinematical evolution derives from the Ricci
identities

2v[avb]uc — Rabcduda (21)
applied to the 4-velocity field ug.

The trace, the symmetric trace-free and the an-
tisymmetric parts of the above give

©+30° = —3(u+3p) —2(c% - w?)
+0q0% + D% 4+ A, (22)
where 02 = 0,0 /2, Ww? = W, W™ /2 = wew?, and
: 2 .
Olab)y = —590ab = (a0 ) — WiaWh) T U(alip)
+D gty + 57ab — Eap (23)
Gy = —39wa+ o’ —curlig,  (24)

which determine the evolution of the expansion
scalar, the shear and the vorticity.

The first of the above, which is known as Ray-
chaudhuri’'s formula, is the key equation of grav-
itational collapse.



The propagation equations are complemented by
the constraints

2Du® = D’oyp — cUrlwg — 244w’ + o, (25)

D% g = wqu®, (26)

H,, = curlo,, + 2?l<awb> + D(awb> (27)
where by definition

CUI’|O’ab = ecd<aDCO'db> . (28)

T hese constraints determine the relations between
the covariant kinematical variables in the observer’s
instantaneous rest space.



Conservation Laws

From the Bianchi identities one arrives at the con-
servation law

vbT, =0. (29)

The timelike component of the above leads to the
energy density conservation law

o= —O(u+ p) — 2taq® — Dag” — opm®®.  (30)

The momentum density conservation comes from
the spacelike part of (29)

(b +p)iac = —Dap— 5000 — d() — Tapd’
_Dbﬂ-ab - 71-abub + 6abcwch . (31)

For a perfect fluid the above reduce to

fp=—O(u+p)

1
Dg, 32
w+p b (32)

'l:l:a,:—



Gravitational waves

The long range gravitational field is monitored by
means of the Bianchi identities

v[CLRbc]ale =0. (33)

The above split into two propagation equations

Eab

—© Ly, + CurlHgy, — %(M + p)ogp — %@Wab
1 - 1 .

—5Tab — §D<aqb> — U(q4p) T 3ac(aECb>
1 -cpyd

_§Uc(aﬂ-cb> T 2€cd(auCH b)

i1 d
—€cd(a? B — 5€cd(a@ T b 5 (34)

—©Hyy, — curl By, 4 5curlmgy, + 30, H,
1 -cd 1 d 3

+§€cd(auCE b) — §€cd<aqcab> — 2%W(a9b)

—Ecd<awCHdb> . (35)

Combining the above one obtains wave-like equa-
tions for E,, and H_,, which describe propagating
gravitational radiation.



T he Bianchi identities also provide the constraints

DbEab — %DCLIUJ — %@%L — %Dbﬂ'ab + %O-abqb
—3Habwb —|— eabcadecd
+%Eabcwch 3 (36)
DbHab = —(p+pwa+ 3Eabwb — %Wabwb — %Cu rlqa
bd 1 bd
—€abcP Ecd — 5€abcP 7TCd’ (37)

The propagation and constraint equations of the
Weyl field show a remarkable analogy to Maxwell’s
formulae, which explains the name of E; and H .



Spatial Curvature

In the absence of rotation, the geometry of the
observer's 3-D rest space is determined by the
3-Riemann tensor defined by

Rabed = ha®hy! hthg™ Re im
—VacVhd + VadVbe » (38)

where v, = Dpug.

The contractions of the 3-Riemann tensor lead
to Rypy = R e and R = R%. The former is
determined by the Gauss-Codacci equation

Rap = %Rhab - %@Jab + Jc(aacb> + %T‘-ab
—I_Eab ) (39)
where
R:Q(u—%92+02+/\). (40)

The above is also the generalised Friedmann equa-
tion.



The Friedmann Universe

The isotropy and homogeneity of the Friedmann
solution guarantees that the only nonzero covari-
ant quantities are

ok

:UJap7@ and R:—Qa (41)
a

where £k = 0,=+1 is the 3-curvature index.

T he evolution of the model is determined by two
propagation equations

p = —©(u+p)
©+30% = —3(u+3p)+A,  (42)
supplemented by the constraint
3k
= =p—3074+A (43)
a

An alternative expression for the Raychaudhuri
equation is
g=5(u+3p) — A (44)

where ¢ = —ad/a? is the deceleration parameter
of the universe.



Friedmann's equation also reads

k
H? = 31— —+ 3/, (45)
with H = ©/3 representing the Hubble parame-

ter.

Alternatively we may recast the above as

k

where Q = p/3H? is the density parameter and
QA = A/3H?.

The model is completely determined when the
equation of state of the cosmic medium is given.

For conventional matter p = 0 corresponds to a
non-relativistic (dust) component, when p = /3
we have a radiative matter and for p = u the so
called “stiff” fluid.

On the other hand, de Sitter type inflation corre-
sponds to p = —u.



Perturbed Friedmann Universes

The theory of linear cosmological perturbations
IS plagued by what is known as the *“gauge prob-
lem” .

This emerges from the fact that we actually deal
with two spacetimes: the realistic perturbed uni-
verse and the fictitious background one. The lat-
ter is usually identified with the FRW model.

To proceed we need to specify the connection,
the “gauge’, between these two spacetimes.

The main problem is that by changing the gauge
one can arbitrarily change the perturbed value of
a physical quantity. For example, the density con-
trast given by

p— i
7
IS set to zero by identifying the perturbed surfaces

of constant density with the background surfaces
of constant time.

5= (47)

The best way around the gauge problem is by
using gauge-independent variables.



T he Perturbation Variables

To linear order, scalars are gauge invariant when
they are covariantly constant in the background.
Tensors, on the other hand, are gauge-independent
only if they have zero background values.

We describe density perturbations by means of
the vector

Xa = Dap = ha"Vpu, (48)

which describes the density variation between two
neighbouring fundamental observers.

The above leads to the dimensionless, comoving
density gradient
W

In addition we define

Za — CLD@@ and Ya — Dap, (50)

which describe perturbations in the expansion and
the fluid pressure respectively.

All three variables vanish in a FRW background
and are therefore gauge invariant.



Evolution of the Inhomogeneities

The propagation equations for D, and Z, are
—(0gh — wap) D" (51)
and
Z(CL> — _%@Za — %,U,Da _l_ G%UCL _I_ a/DaA
—(0ap — wap) Z® — 2aDa(0? — w?) (52)
where w = p/u, A = Vqau? and

R=2IR+A-3(0°—w?). (53)

The above system monitors the nonlinear evolu-
tion of density inhomogeneities in a general space-
time (containing a perfect fluid). Next we will
linearise these equations about a FRW universe
with flat spatial sections.



The Linear Regime

During linearisation, quantities that have nonzero
background value are treated as zero order vari-
ables. Those that vanish in the background are
first order and higher order terms are ignored.
scheme

Under this scheme, the nonlinear equations given
before linearise to

D = wOD, — (1 + w)Z, (54)
and
Zy = —20Z, — 5uDa + aDJA. (55)

For dust (p =0), © =2/t and p = 4/3t2. Then,
the above system gives

Da + 50D — 5uDa = 0, (56)
with solution
Dy = Clt2/3 -+ Czt_l (57)

where C'1 and (5 are time independent quantities.



In the case of radiation (p = /3), © = 3/2t and
p = 3/4t2. Therefore,

Do = —(5-w)ODa+ 3(1 — w)(1+ 3w)uDa
+c£D?Dy, (58)
with D2 = D,D®.

Then,on introducing the harmonic decomposition
n

2 n?
D<Q, = —a—QQZ’ (60)
we have

Dn = —(53-w)ODy
1 n’
+ [3(1 — w)(1 + 3w — c2—5 | Dn (61)
a

The last term in the right-hand side of the above
describes the counteracting effects of gravity and
pressure. On large enough scales gravity dom-
inates and the inhomogeneity grows. On small
scales, however, pressure support forces the per-
turbation to oscillate like a sound wave.



The Jeans’ Scale

The gravitational and the pressure effects bal-
ance each other at a critical wavelength, which
IS known as the “Jeans scale” and given by

Aj = (62)

1_6\/ 2
ny V(1 —w)(1+ 3w

Wavelengths below the Jeans’ scale are supported
by pressure and oscillate like acoustic waves.

On scales much larger than Ay, on the other hand,
the pressure term in Eq. (61) is negligible and
density inhomogeneities grow as

n = C1t}/2 4 Ot 1. (63)



