Astrophysical Applications of the GW – plasma interactions Qualitative & Quantitative

Joachim Moortgat & Jan Kuijpers

moortgat@astro.kun.nl

Department of Astrophysics Nijmegen, The Netherlands

Astrophysical Applications

Joachim Moortgat

Outline

► Qualitative

- * Explicit plasma wave solutions in Fourier Laplace space,
- * Explicit space-time solutions,
- * Origin of the linear growth,
- \star Lorentz boost relativistic wind \leftrightarrow observer frame.

Quantitative

- * Astrophysical Applications,
- ★ Magnetars,
- ★ Coalescing compact binaries,
- * Numerical Estimates,
- ★ Conclusions.

Explicit solutions in Fourier – Laplace space

Astrophysical Applications

Explicit Space-time solutions

► Slow & fast magneto-acoustic ($\phi_A^{\pm} = \pm k_A z - \omega t$ etc.):

$$\begin{split} v_{z}^{1}(z,t) &= \frac{h_{+}}{4} \frac{u_{\rm s}^{2} u_{\rm A\perp}^{2}}{u_{\rm f}^{2} - u_{\rm s}^{2}} \left[\frac{1 + u_{\rm s}}{1 - u_{\rm s}} \frac{\mathrm{e}^{i\phi_{\rm s}^{+}}}{u_{\rm s}} - \frac{1 - u_{\rm s}}{1 + u_{\rm s}} \frac{\mathrm{e}^{i\phi_{\rm s}^{-}}}{u_{\rm s}} - \frac{4\mathrm{e}^{i\phi_{\rm g}}}{1 - u_{\rm s}^{2}} \right] \\ &- \frac{h_{+}}{4} \frac{u_{\rm f}^{2} u_{\rm A\perp}^{2}}{u_{\rm f}^{2} - u_{\rm s}^{2}} \left[\frac{1 + u_{\rm f}}{1 - u_{\rm f}} \frac{\mathrm{e}^{i\phi_{\rm f}^{+}}}{u_{\rm f}} - \frac{1 - u_{\rm f}}{1 + u_{\rm f}} \frac{\mathrm{e}^{i\phi_{\rm f}^{-}}}{u_{\rm f}} - \frac{4\mathrm{e}^{i\phi_{\rm g}}}{1 - u_{\rm f}^{2}} \right] \\ v_{x}^{1}(z, t) \tan \theta &= \frac{h_{+}}{4} \frac{c_{\rm s}^{2} u_{\rm A\perp}^{2}}{u_{\rm f}^{2} - u_{\rm s}^{2}} \left[\frac{1 + u_{\rm f}}{1 - u_{\rm f}} \frac{\mathrm{e}^{i\phi_{\rm f}^{+}}}{u_{\rm f}} - \frac{1 - u_{\rm f}}{1 + u_{\rm f}} \frac{\mathrm{e}^{i\phi_{\rm f}^{-}}}{u_{\rm f}} - \frac{4\mathrm{e}^{i\phi_{\rm g}}}{1 - u_{\rm f}^{2}} \right] \\ &- \frac{1 + u_{\rm s}}{4} \frac{\mathrm{e}^{i\phi_{\rm s}^{+}}}{u_{\rm f}^{2} - u_{\rm s}^{2}} \left[\frac{1 + u_{\rm f}}{1 - u_{\rm f}} \frac{\mathrm{e}^{i\phi_{\rm f}^{+}}}{u_{\rm f}} - \frac{1 - u_{\rm f}}{1 + u_{\rm f}} \frac{\mathrm{e}^{i\phi_{\rm f}^{-}}}{u_{\rm f}} - \frac{4u_{\rm f}^{2}\mathrm{e}^{i\phi_{\rm g}}}{1 - u_{\rm f}^{2}} \right] \\ &- \frac{1 + u_{\rm s}}{1 - u_{\rm s}} \frac{\mathrm{e}^{i\phi_{\rm s}^{+}}}{u_{\rm s}} + \frac{1 - u_{\rm s}}{1 + u_{\rm s}} \frac{\mathrm{e}^{i\phi_{\rm s}^{-}}}{u_{\rm s}} + \frac{4u_{\rm s}^{2}\mathrm{e}^{i\phi_{\rm g}}}{1 - u_{\rm s}^{2}} \right] - v_{z}^{1} \end{split}$$

► Alfvén:

$$v_{y}^{1}(z,t) = \frac{h_{\times}u_{\mathrm{A}\perp}}{4} \left[\frac{1 + u_{\mathrm{A}\parallel}}{1 - u_{\mathrm{A}\parallel}} \mathrm{e}^{i\phi_{\mathrm{A}}^{+}} - \frac{1 - u_{\mathrm{A}\parallel}}{1 + u_{\mathrm{A}\parallel}} \mathrm{e}^{i\phi_{\mathrm{A}}^{-}} - \frac{4u_{\mathrm{A}\parallel}^{2}}{1 - u_{\mathrm{A}\parallel}^{2}} 2\mathrm{e}^{i\phi_{\mathrm{g}}^{-}} \right]$$

Astrophysical Applications

Joachim Moortgat

Thessaloniki – August 30, 2004

Coherent interaction in PFD wind

▶ All solutions of the same form i. t. o. phase velocity u_{ph} (A–D are constants):

$$Ae^{-i\omega t} \left[\frac{Be^{+\frac{i\omega z}{u_{\rm ph}}}}{1-u_{\rm ph}} + \frac{Ce^{-\frac{i\omega z}{u_{\rm ph}}}}{1+u_{\rm ph}} + \frac{De^{+i\omega z}}{1-u_{\rm ph}^2} \right]$$

► Coherent interaction possible for $u_{ph} \uparrow 1$ or $\Delta k = \omega \left[\frac{1}{u_{ph}} - 1 \right] \downarrow 0$.

- ► Retreating plasma wave (C term) negligible,
- ► $\mathcal{O}[\Delta k]$ leads to linear growth: $\frac{\omega e^{i\omega z}}{u_{ph}\Delta k} \left[1 e^{i\Delta kz}\right] = \frac{i\omega z \Delta k}{u_{ph}\Delta k} e^{i\omega z}$.
- ► Slow: $u_s < 1$; Fast $u_f \uparrow 1$; Alfvén $u_A \cos \theta \uparrow 1$ for $\theta \downarrow 0$, but $A \propto \sin \theta$.

Relativistic PFD wind or jet

Comoving fast magneto-acoustic waves:

$$\frac{B_x^1(z,t)}{B_0} = \frac{v_z^1(z,t)}{\sin\theta} = -\frac{v_x^1(z,t)}{\cos\theta} = \frac{\mu^1(z,t)}{\mu^0\sin\theta} = -\frac{E_y^1(z,t)}{B_0} \simeq \frac{h_+}{2}\sin\theta \ \omega z \ \Im\left[e^{i\phi_g}\right],$$
$$\frac{B_x^0 j_y(z,t)}{\mu^0\omega} \simeq \frac{h_+}{2}\sin^2\theta \ \omega z \ \Re\left[e^{i\phi_g}\right].$$

Comoving Alfvén waves: $\frac{B_y^1(z,t)}{B^0} \sim \frac{\theta h_{\chi}}{2} \omega z \Im[e^{i\phi_g}] + \mathcal{O}[\theta^2]$ etc.

- Lorentz boost to observer frame, with $\Gamma = \frac{1}{\sqrt{1-\beta^2}} \Rightarrow \phi_{\rm ph} = \phi'_{\rm ph}$; $u'_{\rm ph} = \frac{u_{\rm ph}-\beta}{1-\beta u_{\rm ph}}$; $B^0 = (\Gamma B_x^{0\prime}, 0, B_z^{0\prime})$; $\omega = \Gamma(\omega' + \beta k') \simeq 2\Gamma\omega'$; $L = \Gamma L'$; angles;
- ▶ Most importantly relativistic fast mode becomes $E_y = -B_x$ and:

$$B_x \simeq \frac{h_+}{2\Gamma^2} B_x^0 \omega L \Im \left[e^{i\phi} \right]$$

Astrophysical Applications

Joachim Moortgat

Quantitative – Astrophysical Applications

Astrophysical Applications

Joachim Moortgat

Perturbations proportional to:

- \star ambient magnetic field (perpendicular B^0_{\perp}),
- ★ GW amplitude $(h_{+,\times})$ & frequency $(\omega = kc)$,
- * interaction length scale (L), or equivalently GW burst duration ($\Delta t = \frac{L}{c}$),
- * bulk flow velocity (Γ^{-2} in case of rel. wind/jet).

Perturbations proportional to:

- \star ambient magnetic field (perpendicular $m{B}^0_{\perp}$),
- * GW amplitude ($h_{+,\times}$) & frequency ($\omega = kc$),
- * interaction length scale (L), or equivalently GW burst duration ($\Delta t = \frac{L}{c}$),
- * bulk flow velocity (Γ^{-2} in case of rel. wind/jet).

Astrophysical applications are therefore:

- ▶ rapidly spinning NS with small ($< 10^{-5}$) eccentricity,
- ► LMXB (low-mass X-ray binaries = accreting NS),
- ► NS with *r*-mode instabilities,
- ► asymmetric SN core collapse and bounce,
- ▶ newly born NS that boil and oscillate (magnetars),
- ► coalescing compact binaries, NS-BH, BH-BH & NS-NS \Rightarrow short GRB.

Probably most efficient:

- \star Strongest magnetic fields in the universe: B^0 \uparrow 10^{12} T,
- * highest GW frequencies due to quakes $\omega \uparrow 10^5$ rad/s (> plasma freq. ISM),
- * Associated with AXP, SGR & DIN (dim isolated NS),
- ★ birth rate could be similar to NS / pulsars depending on selection criteria \Rightarrow same # of sources for GW detectors.

However, relatively ill-understood.

Joachim Moortgat

Merging NS-NS binary

Numerical Estimate

► Energy in GW (where $h_{+,\times} \sim h_{in} \frac{R_{in}}{r}$):

$$\epsilon_{\rm GW} = \frac{c^2 \omega^2}{32\pi G} (h_+^2 + h_\times^2) = F \omega^2 h_{+,\times}^2 \simeq 2 \cdot 10^{29} \frac{\rm J}{\rm m^3} \left[\frac{h_{+,\times}}{0.01}\right]^2 \left[\frac{\omega}{4\pi 10^3 \rm rad/s}\right]^2$$

► Energy in electromagnetic field ($E^2 + B^2 = 2B^2$):

$$\epsilon_{\rm EM}^1 = 2 \; \frac{|\boldsymbol{B}^1|^2}{2\mu_0} = \left[\frac{(\boldsymbol{B}_x^0)^2}{2\mu_0}\right] \frac{\omega^2 h_+^2 \Delta t^2}{2\Gamma^4} \quad \Rightarrow \quad \left|\frac{\epsilon_{\rm EM}^1}{\epsilon_{\rm GW}} = \epsilon_{\rm EM}^0 \left[\frac{\sin^2 \theta \Delta t^2}{2\Gamma^4 F}\right]\right].$$

▶ NB at $R_{\rm in}$ after $\Delta t \sim 0.1$ s. for $\Gamma < 4$: $\omega^2 h_+^2 \Delta t^2 = \mathcal{O}[1] \Rightarrow \epsilon_{\rm EM}^1 \uparrow \epsilon_{\rm EM}^0$.

► NS force-free wind outside light-cylinder $R_{\rm lc} = \frac{c}{\Omega_{\rm bi}} \simeq 50$ km; $B_{\star} \sim 10^{12}$ T:

$$B_{\rm lc} = B_{\star} \left[\frac{R_{\star}}{R_{\rm lc}} \right]^3, \quad B_{\rm t}(r > R_{\rm lc}) = B_{\rm lc} \left[\frac{R_{\rm lc}}{r} \right], \quad B_{\rm p}(r > R_{\rm lc}) = B_{\rm lc} \left[\frac{R_{\rm lc}}{r} \right]^2$$

▶ NS-NS merger \Rightarrow GW burst of $\Delta t \sim 0.1$ s. in rel. plasma wind $\Gamma \sim 30$:

$$E_{\rm EM}^{1} = \int_{r_{\rm in}}^{r_{\rm in}+c\Delta t} \epsilon_{\rm EM}^{1} 4\pi r^{2} dr = \frac{\pi}{\mu_{0}} \left[\frac{r_{\rm in}}{\Gamma}\right]^{4} (B_{\rm in}^{0} h_{\rm in} k)^{2} c\Delta t$$
$$= 10^{34} \, J \left[\frac{R_{\rm lc}}{5 \cdot 10^{4} \, \rm{m}}\right]^{4} \left[\frac{h_{\rm lc}}{0.01}\right]^{2} \left[\frac{B_{\rm lc}}{10^{10} \, \rm{T}}\right]^{2} \left[\frac{\Gamma}{30}\right]^{-4} \left[\frac{k}{4 \cdot 10^{-5} \, \rm{m}^{-1}}\right]^{2} \left[\frac{\Delta t}{0.1 \, \rm{s}}\right]$$

► For magnetars $\omega \uparrow 2\pi \ 15 \cdot 10^3$ rad/s; For mildly rel. $\Gamma \downarrow 3$: $E_{\rm EM}^1 \uparrow 10^{40}$ J.

- ► For persistent GW source $\uparrow 10^7 \times (\frac{L}{c} = \Delta t)$ in force-free wind.
- ► Spinning NS: $h \downarrow \& B \downarrow$,
- $\blacktriangleright \text{ LMXB: } h \downarrow \& B \downarrow \& \omega \downarrow,$

Conclusion

GW in magnetized plasma excite 3 fundamental plasma modes:

- \blacktriangleright Alfvén waves by \times polarized GW,
- ► slow & fast magnetosonic waves by + polarized GW,
- ▶ all amplitudes \propto GW amplitude & frequency and *perpendicular* B^0_{\perp} ,
- ▶ slow mode cannot interact coherently with GW ($u_s \ll c$),
- ▶ Alfvén mode only when B^0 is almost *parallel* ($u_A \cos \theta \simeq c$), amplitude \downarrow ,
- ▶ most efficient is fast MSW ($u_f = c$),
- GW energy \Rightarrow energy in MHD waves. EM radiation mimics GW spectrum.

Even in the most extreme astrophysical sources, it is unlikely that the interaction efficiency is high enough to be detectable.

[This tutorial & more info on: http://moortgat.astro.kun.nl,]

Astrophysical Applications

Joachim Moortgat