NONLINEAR COUPLING BETWEEN DENSITY STRUCTURES AND FEEDBACK-UNSTABLE ULF WAVES IN THE IONOSPHERE

Anatoly V. Streltsov

Thayer School of Engineering, Dartmouth College, USA

Modern Challenges in Nonlinear Plasma Physics

June 15-19, 2008

Halkidiki, GREECE

Observations of intense, small-scale ULF waves at low altitudes

Interaction of two FACs with the ionosphere

Interaction of FACs with the ionosphere

Observations of EM waves and density cavities at low altitudes (DMSP F15 11-06-2001)

Mishin et al. [2003]

Ionospheric Feedback Mechanism (IFM)

$$abla \cdot (\Sigma_P \mathbf{E}_{\perp}) = -j_{\parallel}, \text{ where } \Sigma_P \propto \mathbf{n}$$
 $rac{\partial n}{\partial t} = rac{j_{\parallel}}{eh} + \alpha (n_0^2 - n^2)$

IFM + E_{\perp} + cavity = Ionospheric Feedback Instability (IFI)

IFI growth rate is large when Σ_{P} is small, E_{\perp} is large and k_{\perp} is large

Background Parameters

Simulations

DMSP F15 data

[Streltsov and Mishin, 2004]

"Two-Field" Reduced MHD Model

~

electron momentum:

$$\frac{\partial J_{\parallel e}}{\partial t} + \nabla \cdot (\mathbf{j}_{\parallel e} \mathbf{v}_{\parallel e}) = \frac{e n}{m_e} E_{\parallel}$$

current continuity:

$$\nabla \cdot \left[\left(\frac{1}{V_A^2} + \frac{1}{c^2} \right) \frac{\partial \mathbf{E}_{\perp}}{\partial t} + \mu_0 \mathbf{j}_{\parallel e} \right] = 0$$

$$\mathbf{E}_{\perp} = -\nabla_{\perp} \varphi \ , \qquad E_{\parallel} = -\nabla_{\parallel} \varphi - \frac{\partial A_{\parallel}}{\partial t} \ , \qquad \mathbf{j}_{\parallel e} = -en\mathbf{v}_{\parallel e} = -\frac{1}{\mu_{0}} \nabla \times \nabla \times \mathbf{A}_{\parallel}$$
$$n_{e} \approx n_{e} \equiv n(x)$$

"Three-Field" MHD Model

electron momentum:

$$\frac{\partial J_{\parallel e}}{\partial t} + \nabla \cdot (\mathbf{j}_{\parallel e} \mathbf{v}_{\parallel e}) = \frac{e n}{m_e} E_{\parallel} + \frac{1}{m_e} \nabla_{\parallel} p_e$$

current continuity:

$$\nabla \cdot \left[\left(\frac{1}{\boldsymbol{V}_A^2} + \frac{1}{c^2} \right) \frac{\partial \mathbf{E}_{\perp}}{\partial t} + \boldsymbol{\mu}_0 \mathbf{j}_{\parallel e} \right] = 0$$

density continuity:

$$\frac{\partial n}{\partial t} + \nabla \cdot (n \mathbf{v}_e) = 0$$

$$p_e = nT_e \ ; \quad T_e(t,x) = T_e(x)$$

"Four-Field" MHD Model

Ohm's law:
$$\frac{\partial \mathbf{j}_{\parallel}}{\partial t} + \nabla \cdot (\mathbf{j}_{\parallel i} \mathbf{v}_{\parallel i} - \mathbf{j}_{\parallel e} \mathbf{v}_{\parallel e}) = \frac{e n}{m_e} E_{\parallel} + \frac{1}{m_e} \nabla_{\parallel} p_e$$

current continuity:

$$\nabla \cdot \left[\left(\frac{1}{\mathbf{V}_A^2} + \frac{1}{c^2} \right) \frac{\partial \mathbf{E}_{\perp}}{\partial t} + \mu_0 \mathbf{j}_{\parallel} \right] = 0$$

density continuity:

$$\frac{\partial n}{\partial t} + \nabla \cdot (n \mathbf{v}_i) = 0$$

parallel ion momentum:

$$\frac{\partial j_{\parallel i}}{\partial t} + \nabla \cdot (\mathbf{j}_{\parallel i} \mathbf{v}_{\parallel i}) = \frac{e}{m_i} j_{\perp i} B_{\perp} - \frac{1}{m_i} \nabla_{\parallel} (p_e + p_i) + \mathbf{g} n$$

$$j_{\parallel} = j_{\parallel i} - j_{\parallel e} = en\left(\boldsymbol{v}_{\parallel i} - \boldsymbol{v}_{\parallel e}\right)$$

parallel ion momentum:

$$\frac{\partial j_{\parallel i}}{\partial t} + \nabla \cdot (\mathbf{j}_{\parallel i} \mathbf{v}_{\parallel i}) = \frac{e}{m_i} j_{\perp i} B_{\perp} - \frac{1}{m_i} \nabla_{\parallel} (p_e + p_i) + \mathbf{g} n$$

$$j_{\perp i} = n \frac{m_i}{B_0^2} \frac{\partial E_{\perp}}{\partial t}$$

Ponderomotive term

Interactions of two FACs with the ionosphere

 $\sum_{P} \equiv \text{constant}$

 $\sum_{P0} >> \sum_{A}$ 2 mho 0.16-0.39 mho

 $\sum_{P0} \approx \sum_{A}$ 0.91-2.11 mho 2 mho

FACs at low altitude with (left) and without (right) IAR

[Streltsov and Lotko, 2008]

Density structures inside IAR

 $n_{E} = 6 \times 10^{4} \text{ cm}^{-3}$ $M_{P} = 10^{4} \text{ m}^{2}/\text{sV}$ $\sum_{P0} = 2 \text{ mho}$

 $n_{E} = 3 \times 10^{4} \text{ cm}^{-3}$ $M_{P} = 10^{4} \text{ m}^{2}/\text{sV}$ $\sum_{P_{0}} = 1 \text{ mho}$

 $n_{E} = 3 \times 10^{4} \text{ cm}^{-3}$ $M_{P} = 2 \times 10^{4} \text{ m}^{2}/\text{sV}$ $\sum_{P0} = 2 \text{ mho}$

[Streltsov and Lotko, 2008]

FAC, ion parallel current, and density disturbances inside the IAR

[Streltsov and Lotko, 2008]

Structure of fields and current at the altitude 246 km

[Streltsov and Lotko, 2008]

Conclusion

Large-scale, ULF shear Alfven waves (FACs) can cause significant density disturbances at low altitude in the following 2-step process:

Ionospheric Feedback Instability (IFI) plays the central role in generation of density structures.

Excitation of IFI with HAARP

The experiment was conducted from 05:30 to 08:00 UT on 29 October and 1 November 2008.

The E-region was heated with 4.5 MHz X-mode waves focused to a 20 km spot in the direction of the magnetic zenith and vertically.

Ionospheric Feedback Instability and Substorm

HAARP (Gakona) Fluxgate Magnetometer

HAARP all-sky imager (Todd Pedersen)

UAF/GI magnetometer array

