CME DYNAMICS AND PHYSICAL CONNECTION BETWEEN CMEs AND FLARES

James Chen

Plasma Physics Division, Naval Research Laboratory

Valbona Kunkel George Mason University

Modern Challenges of Nonlinear Plasma Physics 15–19 June 2009 Sani Resort, Halkidiki, Greece

SOLAR ERUPTIONS

- Solar eruptions: Coronal mass ejections (CMEs), flares, prominence eruptions
- Canonical parameters of solar eruptions:
 - KE, photons, particles ~ 10^{32-33} erg
 - Mass ~ 10^{14–16} g
 - Speed ~100 2000 km/s
- Space Weather. CMEs are the solar drivers of large geomagnetic storms

SCIENTIFIC CHALLENGES

NRL Plasma Physics Division

Observational challenges:

- All remote sensing
- Different techniques observe different aspects/parts of an erupting structure
- 3-D geometry not directly observed

Theoretical challenges:

- An important unsolved question of theoretical physics
- Energy source
- Driving force ("magnetic forces")
 - Underlying magnetic structure
- Physical relationship between CMEs, flares, and eruptive prominences (EPs)

MAGNETIC GEOMETRY UNDERLYING CMEs

NRL Plasma Physics Division

Pre-SOHO

Illing and Hundhausen (1986)

OBSERVATIONAL EVIDENCE

- Good *quantitative* agreement with a flux rope viewed end-on (*Chen et al.* 1997)
 No evidence of structural changes attributable to disconnection
- Other examples of flux-rope CMEs (Wood et al. 1999; Dere et al., 1999; Wu et al. 1999; Plunkett et al. 2000; Yurchyshyn 2000; Chen et al. 2000; Krall et al. 2001; Thernisien et al. 2006)

OBSERVATIONAL EVIDENCE (cont'd)

- A flux-rope viewed from the side
- Halo CMEs are flux ropes viewed head on [Krall et al. 2005]

THEORETICAL CONCEPTS: TWO MODEL GEOMETRIES

NRL Plasma Physics Division

Magnetic Arcades

Magnetic arcade-to-flux rope

Energy release and formation of flux

rope during eruption

(e.g., *Antiochos et al.* 1999; *Chen and Shibata* 2000; *Linker et al.* 2001; *Lynch et al.* 2004, 2009)

Poynting flux S = 0 through the surface

Not yet quantitative agreement with CMEs

Pre-eruption structure: flux rope with fixed footpoints (S_f) (*Chen 1989; Wu et al.* 1997; *Gibson and Low* 1998; *Roussev et al.* 2003) $S \neq 0$ through the surface (*Chen* 1989)

PHYSICS OF CMEs: Forces

NRL Plasma Physics Division

hen 1989;

994]

- "Toroidal" magnetic flux rope with fixed footpoints separated by S_f
- Major Radial Forces: integrate $\mathbf{f} = \rho \, d\mathbf{v} \, / \, dt = c^{-1} \mathbf{J} \mathbf{x} \mathbf{B} \nabla \rho + \rho \nabla \phi_g$

$$\longrightarrow M \frac{d^2 Z}{dt^2} = \frac{\Phi_p^2}{c^4 L^2 R} \left[\ln\left(\frac{8R}{a}\right) + \frac{1}{2}\beta_p - \frac{1}{2}\frac{B_t^2}{B_p^2} + 2\left(\frac{R}{a}\right)\frac{B_c}{B_p} - 1 + \frac{\xi_i}{2} \right] + F_g + F_d \right]$$

$$[Shafranov 1966; C]$$

$$[Shafranov 1966; C]$$

$$[Shafranov 1966; C]$$

$$[Shafranov 1966; C]$$

$$\Phi_{p} = cLI_{t}, \qquad L = 4\pi \Theta R \left[\ln \left(\frac{8R}{a_{f}} \right) - 2 \right]$$

• Initiation of eruption:

 $\frac{d\Phi_p(t)}{dt} = \text{poloidal flux "injection"}$

MINOR RADIAL DYNAMICS

NRL Plasma Physics Division

• Minor Radial Forces: (integrated over a)

$$\longrightarrow M \frac{d^2 a}{dt^2} = \frac{a}{4} \left(B_t^2 - B_p^2 + \beta_p B_p^2 \right)$$

- $d^2a/dt^2 \simeq 0$ is a good approximation [*Chen* 1989]
- Key property of flux-rope Geometry:
 Constant S_f is an essential scale length

$$R = \frac{Z^2 + S_f^2 / 4}{2Z}$$

STRUCTURE OF EQUATIONS OF MOTION

- Shafranov's original work:
 - Forces in major and minor radial directions
 - Axisymmetric toroidal equilibrium
- CMEs: An Extension and New Application
 - Local curvature approximation [Chen 1989; Garren and Chen 1994]
 - Stationary photospheric footpoints: nonaxisymmetric \longrightarrow additional lengths scales S_f , a_f
 - Dynamical expansion —— time scales
 - Momentum coupling to the ambient to the ambient plasma
 - Sf and af are directly manifested in observed CME acceleration data [Chen et al. 2006]
- Comparison with other recent models invoking Shafranov
 - Wu et al. [1997] 2D axisymmetric MHD simulation with stationary footpoints
 - Lin et al. [1998], Titov and Demoulin [1999], Kliem and Torok [2005] axisymmetric with no footpoints, no minor radial force equation, no coupling to the ambient plasma
 - Isenberg and Forbes [2007] major radial force only, no dynamics
 - Roussev et al. [2003], Torok and Kliem [2008] -- MHD simulations with fixed footpoints (invoking Titov and Demoulin and Kliem and Torok but scales are different)

DIRECT COMPARISON OF THEORY AND DATA

- Previous comparison of theoretical predictions and directly observable quantities
 - Good agreement with observed height and acceleration data
 - Agreement of predicted Sf-scaling law and observed CME acceleration profiles (17 events)
- A new theoretical prediction: the temporal form of $d\Phi_p(t)/dt$ for a CME should be correlated with that of the X-ray emission profile of the associated flare
 - Physics: $-(1/c)d\Phi_p(t)/dt$ = electromotive force (EMF) \propto electric field

$$M\frac{d^{2}Z}{dt^{2}} = \frac{\Phi_{\rho}^{2}(t)}{c^{4}L^{2}R} \left[\ln\left(\frac{8R}{a}\right) + \frac{1}{2}\beta_{\rho} - \frac{1}{2}\frac{B_{t}^{2}}{B_{\rho}^{2}} + 2\left(\frac{R}{a}\right)\frac{B_{c}}{B_{\rho}} - 1 + \frac{\xi_{i}}{2} \right] + F_{g} + F_{d}$$

BEST-FIT SOLUTION

NRL Plasma Physics Division

• Define goodness of fit with respect to height-time data: *G*

$$G = \frac{1}{T} \sum_{i=1}^{N} \frac{|Z_{data}(t_i) - Z_{th}(t_i)|}{\Delta Z(t_i)} \delta t_i$$

- Adjust $d\Phi_p(t)/dt$ to find theoretical solutions that best fit the observed CME height-time data and compare the *calculated* $d\Phi_p(t)/dt$ with *observed* GOES X-ray data
- Results:
 - The form of $d\Phi_p(t)/dt$ is strongly constrained by the height data with little freedom
 - Agreement is good for both short- and long-duration flare events
- Goodness of fit is determined with no regard to speed, acceleration, and X-ray emissions.

THEORY-DATA COMPARISON

NRL Plasma Physics Division

• Set up initial equilibrium flux rope according to available observational proxies: e.g., S_f , footpoint separation distance, $B_c(Z_0)$. Adjust $d\Phi_p(t) / dt$

G = 0.85 $Sf = 4.5 \times 10^5$ km $E \sim 1$ V/cm G = 0.42 $Sf = 2.0 \times 10^5$ km $E \sim 15$ V/cm

PARAMETER STUDY

- For each set of parameters, adjust $d\Phi_p(t)/dt$ to obtain the best-fit solution
 - All "best-fit" solutions ($G \sim 0.85$ –1.2 for this case) have similar FWHM durations
 - For LASCO heights, the fit is sensitive to the duration but not to V_{sw}

	File ID	GFIT	Z0	Sf	ASPCT	XPP	(NP(BS0	PHIA	DTC	Dtpea	FSCL1	TSCL2	Vsw
	240+0	1.03	2.0	4.5	2.5	1.0	1.0	-0.5	9.400	76.0	1.0	25.0	73.0	400
	240+1	0.94	2.0	4.5	2.5	1.0	1.0	-1.5	5.300	76.0	1.0	25.0	75.0	400
	240+2	1.13	2.0	4.5	2.5	1.0	1.0	-1.5	4.500	76.0	2.0	20.0	72.0	400
	250	0.96	1.8	4.5	2.5	1.0	1.0	-1.0	5.850	76.8	0.0	20.0	74.6	400
1	250-1	0.85	2.0	4.5	2.5	1.0	1.0	-1.0	5.600	71.0	0.0	20.0	75.0	400
	250-2	0.97	2.0	4.5	2.0	1.0	1.0	-1.0	6.400	70.0	0.0	20.0	72.5	400
	250-3	0.99	1.8	4.5	2.5	1.0	1.0	-1.0	6.430	70.0	0.0	22.0	73.3	400
	250-4	0.87	2.0	4.5	2.5	1.0	1.0	-1.0	6.150	70.0	0.0	22.0	73.3	400
	252+5	1.18	2.0	4.5	2.0	0.5	2.0	-1.0	6.460	72.0	1.0	20.0	67.9	400
	260+0	0.87	2.0	4.5	2.5	1.0	1.0	-1.0	6.700	71.0	0.0	25.0	76.7	400
	260+1	1.09	2.0	4.5	2.5	1.0	1.0	-1.0	8.000	71.0	0.0	30.0	76.7	400
6	616+2	1.29	2.0	5.5	2.5	1.0	1.0	-1.0	5.600	73.0	0.0	25.0	74.5	400
	0530+0	1.09	2.0	5.0	2.5	1.0	2.0	-1.5	4.500	90.0	0.0	25.0	83.0	400
	0530+1	1.18	2.0	5.0	2.5	1.0	2.0	-1.0	5.530	90.0	0.0	25.0	82.0	400
3	0540+1	1.45	2.0	5.0	2.5	1.0	1.0	-1.0	5.400	130.0	0.0	35.0	89.5	400
	0540+2	2.89	2.0	5.0	2.5	1.0	1.0	-1.5	5.400	110.0	0.0	15.0	30.0	400
2	0540+3	2.19	2.0	5.0	2.5	1.0	1.0	-1.0	5.900	110.0	0.0	15.0	38.0	400
4	0550+1	0.87	2.0	4.5	2.5	1.0	1.0	-1.0	5.590	70.7	0.0	20.0	78.2	300
	0550+2	0.88	2.0	4.5	2.5	1.0	1.0	-1.0	5.590	70.7	0.0	20.0	79.7	250
5	0550+3	0.84	2.0	4.5	2.5	1.0	1.0	-1.0	5.580	71.5	0.0	20.0	70.1	600

THEORY-DATA COMPARISON

NRL Plasma Physics Division

*E*_{max} ~ 12 V/cm

E ~ 5 V/cm

E ~ 2 V/cm

• Consistent with observational studies of temporal relationship between acceleration and derivative of soft X-ray: *Zhang et al.* (2001), *Maricic et al.* (2007), *Temmer et al.* (2008)

PHYSICAL INTERPRETATION OF $d\Phi_{\rho}(t) / dt$

- In the toroidal flux rope model, $d\Phi_p(t)/dt$ is a prescribed mathematical function
 - A direct proxy for electric field (super Dreicer) for DC acceleration: $E \sim 0.4-15$ V cm⁻¹
 - Agreement with form of observed X-ray emission profiles is evidence of physical connection linking $d\Phi_{\rho}(t) / dt$, CME acceleration, and flare soft X-rays
- Physical interpretation of $d\Phi_p(t)/dt$:
 - -(1) Subphotospheric origin via poloidal flux transport from deep source
 - (2) Coronal origin via macroscopic reconnection [Antiochos et al. 1999; Amari et al. 2000]
 - Neither has been theoretically or observationally verified
- Comparison with arcade-based coronal storage scenario:
 - 2-D MHD simulation with *J*-dependent resistivity [*Cheng et al.* 2003]: temporal relation between flux-rope acceleration and inferred energy release with $E \sim 10 \text{ V cm}^{-1}$
 - Estimates of reconnected flux based on photospheric magnetograms:
 - -90 V cm⁻¹ [*Qiu et al.*, 2002]
 - 0.2–5 V cm⁻¹ with reconnected flux of ~ 0.5 –10 x 10¹⁸ Mx s⁻¹ [*Jing et al.* 2005; *Qiu et al.* 2007]

PROPAGATION OF CMEs

- Model the dynamics of a CME (2007 Dec 24) from initiation to 1 AU (STEREO A data). Predict magnetic field at 1 AU and compare with data (STEREO B data).
 [Kunkel and Chen, in preparation, 2009]
- Two situations:
 - Source region can be observed—obtain proxies for S_{f} , Z_{0} , etc.
 - Source region not observed—adjust S_f , Z_0 , and fit model solutions to HI1/HI2 heighttime data \longrightarrow predict **B** field at 1 AU
 - For both situations, $d\Phi_p(t) / dt$ is an adjustable parameter that can be validated using GOES X-ray data

24 DEC 2007 CME

NRL Plasma Physics Division

Separation angle Stereo A and B is 44 degree

CME TRAJECTORY: NEAR SUN

NRL Plasma Physics Division

Inclusion of drag in the force equation is essential for the long-time propagation

PREDICTED MAGNETIC FIELD AT 1 AU

THEORY SUCCESSES

- CME dynamics are described by a set of two ODEs
 - Calculated dynamics have been compared with LASCO and STEREO data
 - Both major radial and minor radial expansion is correctly described by the theory
 - The main acceleration and the subsequent propagation to 1 AU are correctly captured
 - Drag coupling between CMEs and the ambient SW is essential
 - The calculated **B** field at 1 AU is in agreement with *in situ* measurement at 1 AU (1 event)
 - The best-fit solution yields a temporal profile of $d\Phi_p(t) / dt$ in agreement with the **observed** profile of GOES soft X-ray emissions (five CME-flare events)
- Suggests a new theoretical framework of understanding CME dynamics and flare energy release
 - An initial flux rope is set into motion by injection of *poloidal* flux, which generates an EMF and attendant electric field to accelerate particles to X-ray energies

PHYSICS OF POLOIDAL FLUX INJECTION

- Currently, $d\Phi_p(t) / d\mathbf{i}s$ a specified function of time
- Two physical interpretations are possible:
 - Coronal origin: macroscopic reconnection is required. All models use numerical and/or artificial dissipation. Not yet simulated acceleration in agreement with data.
 - Subphotospheric origin: Not yet observed. Observable photospheric signatures not yet modeled. Favorable if coronal reconnection is not fast enough
- $d\Phi_p(t) / dt$ is a point of overlap between the two basic paradigms (arcade *v*. flux rope) [*Chen* 1996; *Chen and Krall* 2003]

OPEN ISSUES

- Both arcade models and erupting flux-rope model with poloidal flux injection require further work
- Major Physics Issues
- Arcade models:
 - Physical reconnection on macroscopic scales
 - Demonstration of specific realistic photospheric motion for observed eruptions
 - Calculation of acceleration and speed in agreement with observed CMEs
- Poloidal flux injection model:
 - Demonstration of photospheric signatures in agreement with *well-resolved* observation
 - Simulation of subphotospheric plasma dynamics

3-D GEOMETRY OF CMEs

NRL Plasma Physics Division

- *"Coronal transients"* (1970's: OSO-7, Skylab)
- "Thin" flux tubes (Mouschovias and Poland 1978; Anzer 1978)
- Halo CMEs (Solwind) (Howard et al. 1982)
 Fully 3-D in extent
- CME morphology (SMM): (Illing and Hundhausen 1986)
 - A CME consists of 3-parts: a bright frontal rim, cavity, and a core
 - Conceptual structure: rotational symmetry (e.g., ice cream cone, light bulb) (*Hundhausen* 1999)
- SOHO data: 3-D flux ropes (Chen et al. 1997)
 -3-part morphology is only part of a CME

SMM (1980-1981; 1984-1989)

FOV: $1.7 - 6 R_s$

SOLAR ERUPTIONS: PHENOMENOLOGY

- Sporadic eruptions
 - Solar flares seen in X-rays, EUV, H_{α} , etc.
 - Filament/prominence eruptions seen in $H\alpha$ or white light
 - CMEs in white light
 - All can be accompanied by solar energetic particles (SEPs)
- Solar flares are usually identified by the disk-integrated X-ray emissions detected by GOES satellites
- Stellar flares are recognized by similar X-ray light curves

