Simulation of a plasmoid penetrating a magnetic barrier

Herbert Gunell^a, Tomas Hurtig^b, Hans Nilsson^c, Jeffrey Walker^a, Mark Koepke^{a,d}, and Nils Brenning^d

^a West Virginia University, Morgantown, WV, USA
^b Swedish Defence Research Agency, Stockholm, Sweden
^c Swedish Institute of Space Physics, Kiruna, Sweden
^d Royal Institute of Technology, Stockholm, Sweden

<u>Left:</u> Impulsive penetration at the magnetopause. <u>Right:</u> Electric field measured by Cluster showing waves in the lower hybrid frequency range (*André, et al. 2001*).

1. **Expulsion.** A plasma structure can penetrate a magnetic barrier by expelling the magnetic field if $\beta_k > 1$ and $\Pi > 1/\sqrt{\beta_k}$.

- 2. Self-polarisation. A plasma structure can penetrate a magnetic barrier by convection in a polarisation electric field if $\Pi < \sqrt{\beta_k}$ for $\beta_k < 1$ and $\Pi < 1/\sqrt{\beta_k}$ for $\beta_k > 1$.
- 3. **Rejection.** The plasma cannot penetrate the magnetic barrier if $\beta_k < 1$ and $\Pi > \sqrt{\beta_k}$.

The long plasmoid – density

The long plasmoid – waves

Density probe at z = 0.39 m.

Wide plasmoids

Pictures from *Ripin et al. (1987)*.

The wide plasmoid

The limit estimated by *Lindberg (1978)*:

x (cm)

The wide plasmoid – density (horizontal slice)

The wide plasmoid – penetration

Conclusions

- Lower hybrid frequency waves are seen at the magnetopause, in laboratory experiments and in simulations.
- For $w < r_{gi}/2$ all cross sectional shapes are compressed into vertically aligned structures.
- Plasmoids with $w \approx r_{gi}$ can penetrate with the aid of a backward propagating potential and through compression to smaller widths.
- The finger-like structures that develop at an early stage for $w \approx r_{gi}$ plasmoids are a result of the same instability that gives rise to the lower hybrid frequency waves along the flanks.
- Next step: $w \gg r_{gi}$