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The Problem Formulation
1. Solar EUV flux ionizing F2-region varies by

1.9-2.9 time in solar cycle, while daytime mid-
latitude NmF2 varies by 5-6 times in Winter
and by 2-2.5 times in Summer.

2. Practically linear NmF2 increase in Winter,
but a saturation effect in Summer  

This is a well-known feature of the F2-layer
Solar Cycle variations



Winter and Summer median NmF2 Solar Cycle Variations
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To understand the reason of these variations 
accurate ionospheric observations should be used 
and main Aeronomic Parameters:

1. Ionizing Solar EUV radiation
2. Neutral composition ([O],[O2],[N2]) and

temperature T(h)
3. Vertical plasma drift

should be specified for the conditions
in question  



Only Incoherent Scatter Observations can be used 
for such analysis
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A comparison of EUV models with SOHO observations
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EUV Model by 
A. Nusinov (1984)
can be used for our 
aeronomic calculations



A Self-Consistent Method
for Modeling Ne(h) in the F2-region

Using ISR Observations
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Observed (ISR) and Calculated Ne(h) Profiles for 
Winter and Summer under Solar Maximum and Minimum
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Calculated and Model Thermospheric Parameters at 300 km

NRLMSISE-00 model by Picone et al.
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The retrieved aeronomic parameters 
controlling the Ne(h) distribution do not bear 
the shortcomings of thermosphere empirical 

models.

They constitute a consistent set of basic 
parameters which can be used for quantitative 

estimates.

This is the basic difference from other similar 
approaches



For mid-latitude daytime F2-layer the well-known 
expressions by  Rishbeth and Barron (1960) can be used.

22 /sin6.0/75.02 HIDqNmF mmmm == ββ

where all parameters are given at the hmF2 height
qm – O+ ion production rate 
Dm – ambipolar diffusion coefficient
βm – linear loss coefficient for O+ ions 
H – atomic oxygen scale height
I – magnetic inclination  

In fact the above expression for NmF2 and hmF2 reflect the idea of
isobaric F2-layer by Rishbeth and Edwards (1989) – the F2-layer
follows the level of P=const in its variations



Calculated aeronomic parameters at the hmF2 height for 
Winter and Summer days under 

Solar Minimum and Solar Maximum

 
 

Date 
lgNmF2 
hmF2, 

km 

Tex 
K 

lg[O]m 
cm-3 

lg[O2]m 
cm-3 

lg[N2]m 
cm-3 

γ1 
x10-13 

cm3 s-1 

γ2 
x10-12 

cm3 s-1 

qm 
x102

 
cm-3 s-1 

βm 
x10-4 

s-1 

qm/βm 
x106 

cm-3 

W 
m s-1 

09.01.97 5.616 
238 

787 9.001 7.490 8.695 5.411 9.528 3.358 5.625 0.597 -6.7 

14.01.90 6.315 
289 

1086 9.063 6.975 8.338 6.699 7.627 7.688 2.178 3.530 -8.2 

09.08.94 5.509 
252 

907 8.694 7.300 8.570 5.851 8.708 1.882 3.911 0.481 +7.1 

05.06.89 5.876 
328 

1444 8.803 7.003 8.511 10.09 6.222 4.954 3.895 1.272 -9.2 

 

This set of aeronomic parameters enables us to make
all quantitative estimates  



Seasonal/Solar Cycle Variations of qm/βm ~NmF2

The qm/βm variations are: 5.91 time for Winter
and 2.64 times for Summer.

Ion production rate qm increases: 
by 2.29 times in Winter

and by 2.63 times in Summer
Loss coefficient  βm decreases:

by  2.58 times in Winter
and  by ≈1.0 times in Summer !

when we pass from Solar Minimum to Solar Maximum



That is loss coefficient β does not 
practically  change at the hmF2 height in 
Summer and the NmF2 increase is totally 

due to qm increase.

In Winter the contributions of qm and βm to 
the NmF2 increase are comparable.



Under Δβm ≈ 1 the leading role in forming the Summer 
Saturation Effect belongs to [O]m variations as

NmF2 ~ qm/βm and qm ~ IEUV[O]m
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Notice - there is no saturation effect
in EUV variations with solar activity
as it is widely accepted to think.

A two-component
model by Nusinov



Why Δβm is small in Summer ?
Winter Summer

[N2] decrease at hmF2 height by
2.27 times                                    1.15 times  

γ (O+ + N2) increase at hmF2 height by
1.08 times                                    1.72 times

That is in summer the γ (O+ + N2) increase 
overcompensates the [N2] decrease

While in Winter the situation is quite different



The main difference between Summer and Winter is in 
Temperature variation range when we pass from

Solar Minimum to Solar Maximum
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Seasonal Thermosphere Circulation
Leading to the [O]/[N2] Summer Decrease 

This is the first step in the chain of processes leading 
to the Summer NmF2 saturation effect 
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The Chain of Processes Leading to the Summer Saturation Effect 

O/N2 summer decrease due to Tn increase, upwelling with summer-
to-winter hemisphere transfer

NmF2 decrease as NmF2 ~ qm/βm

Te increase due to a decrease of electrons cooling         Tn increase

Tv increase

γ (O+ + N2) increase

β increase

NmF2 decrease as NmF2  ~ qm/βm

But this an avalanche type process stops in
some steps at Te ≈ 2600K in the F2-layer
under solar maximum due to:
Confined solar EUV energy;
Confined plasmaspheric energy reservoir;
Cooling effect of winter hemisphere;
Thermal conductivity
Cooling in collisions with ions and neutrals



Summer/Winter difference in NmF2 
variations is mainly due to different 

temperatures
and a corresponding decrease in 

thermospheric  species 
([O], [N2], [O2]) at the hmF2 height

(P = nkT ≈ constant) 
The leading role belongs to Temperature.



Conclusions

1. The observed NmF2 increase in Solar cycle is due to
two reasons: one is EUV increase by a factor of 2, the 
other reason is due to [O] and β variations at the hmF2
height.

2. The difference between Winter and Summer in the
course of Solar cycle is in temperature: T< 1200 K
in Winter and T >1200 K in Summer. This results in
different γ1(O++N2) and larger hmF2 in Summer.



Conclusions

3. Summer decrease in [O] and small variation in 
β = γ1[N2]+γ2[O2] at hmF2 under high solar activity
results in the saturation effect in NmF2 under solar
maximum.

4. The Summer saturation effect in NmF2 results from a
long chain of non-linear processes: 

O/N2 NmF2        Te         (Tn, Tv)         γ1  

β NmF2        O/N2 due to upwelling
and so on.
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