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Landau Damping

sound waves in tenuous neutral gases

instabilities of interstellar gases & star systems
(many body systems in gravitational field), etc.



Landau damping Is based on sinusoidal
waves that are ideal entities.
But, all the waves are pulses!

Is Landau damping applicable to pulses?

Short pulses are dissipated via
transit-time acceleration.



What Is transit-time acceleration?

4 Damping mechanism of pulse waves

€ Pulse waves emerge as dissipative structures
in turbulence

€ Applied to strong Langmuir turbulence etc.
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Motivation :

to clarify the relationship between Landau
damping and transit-time acceleration




2 ways to derive Landau resonance

1. Mathematical one by
Landau(1946), in which
complex integrals are
rigorously evaluated.

2. More physical one
by Dawson(1961)
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Physics of Landau resonance

revisited (Stix)

Eq. of motion for a charged particle in an sinusoidal
wave:

dv
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Letz = v, t+ z,, and solve above with v,=0 at
t=0, then the particle velocity at t equals
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This equals the velocity shift due to transit-time
acceleration of a particle that has penetrated a
square pulse after ¢!
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Transit-time acceleration of
a particle and a square pulse




Power due to transit-time acceleration

Thus, position-averaged power becomes
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Stix had approximated each term, but



— More accurate derivation becomes
possible if one notices below.

2 oo
P(t)_—Ej (V) ( sm(kv—a))tj i

kv—
2 o B

_ 9 2E2 @ df (v)(vsm(kv a))t) iy
2m _ av kv — @

This is the power due to transit-time acceleration
by the square pulse of interaction time t.
In the limit t —» «, the following identity may be

used. (e
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Thus, the power In the lilmit £>% Is
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Hence, Landau’s damping rate is obtained as
an extreme case of transit-time acceleration.
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More rigorous expression than
Landau damping

-Approximation t — « ignores nonlinearity.

Hence, the following equation is better at t<<,
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*This general power is due to
of particles with interaction time t.

*This is more realistic than Landau’s expression
that is based on sinusoidal waves.



Comparison between P(t) and P (=)
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— Let f(v) be Maxwellian distribution.
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Comparison between P (t) &P (=)
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How close the sinc fn. is to the 6 fun is important.
—t =wt >>1 is necessary for Landau approximation.
(depends on vp and vg)

However, when E is large, nonlinearity becomes
important at that time.



Where can we use Landau damping
and/or transit-time acceleration?
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Cyclotron resonance of
circularly polarized EM wave

@® Power due to linear cyclotron resonance
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@® General power due to transit-time acceleration
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How about EM waves?
EM Cyclotron Resonance vs.
Transit-Time Acceleraion
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Conclusions

Damping/resonance mechanisms of sinusoidal
wave with a square envelope was evaluated.

Transit-time acceleration is the elementary
process of Landau damping.
— They agree with each other in the limit wt >> 1.
— Same is true for EM cyclotron resonance!

Transit-time acceleration is applicable for plasma
heating.



Next Step: Gaussian pulse

AV =V,
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