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Validity of Plasma Resonance 
& Pulse-Particle Interaction



Ｌａｎｄａｕ Damping
◆ Damping mechanism of plasma es waves
◆ Effective for linear waves

Why Landau damping now？

→ getting popular outside plasma physics！

◆ sound waves in tenuous neutral gases

◆ instabilities of interstellar gases & star systems
（many body systems in gravitational field）, etc.



◆ Landau damping is based on sinusoidal   
waves that are ideal entities.  
But, all the waves are pulses!

Is Landau damping  applicable to pulses?

◆ Short pulses are dissipated   via 
transit-time acceleration.



What is transit-time acceleration?
◆ Damping mechanism of pulse waves
◆ Pulse waves emerge as dissipative  structures

in turbulence
◆ Applied to strong Langmuir turbulence etc.

Motivation ：
to clarify the relationship between Landau 
damping and transit-time acceleration 



2 ways to derive Landau resonance
1. Mathematical one by 

Landau(1946), in which  
complex integrals are
rigorously evaluated.

2. More physical one 
by Dawson(1961)

http://srd.yahoo.co.jp/IMG/r=3/ig=108x115/id=58a1fdd51cb2da08/l=ri/da=g/tid=MMSI02_03/q=Dawson Plasma/SIG=124jgd4og/EXP=1221891127/*-http%3A//exodus.physics.ucla.edu/people/dawson.jpg


Physics of Landau resonance 
revisited（Stix）

Eq. of motion for a charged particle in an sinusoidal 
wave:

)cos( tzkqE
dt
dvm ω−=

Let z = vo t + zo, and solve above with v1＝０ at 
t=0, then the particle velocity at ｔ equals

This equals the velocity shift due to transit-time 
acceleration of a particle that has penetrated a 
square pulse after t !

{ }

)(

)sin()sin(

0

001

ωα

α
α

−=

−−=

kv

zktzk
m
qEv



Transit-time acceleration of 
a particle and a square pulse



Power due to transit-time acceleration

Thus, position-averaged power becomes

We utilize f(v) to obtain the power P(t).

Stix had approximated each term, but
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→ More accurate derivation becomes  
possible if one notices below.
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This is the power due to transit-time acceleration 
by the square pulse of interaction time t.

In the limit ｔ → ∞,  the following identity may be 
used.
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Thus, the power in the lilmit ｔ→∞ is
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Hence, Landau’s damping rate is obtained as 
an extreme case of transit-time acceleration.



More rigorous expression than 
Landau damping
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・Approximation ｔ → ∞ ignores nonlinearity. 
[Landau approximation?]

Hence, the following equation is better at ｔ＜∞.

・This general power is due to transit-time  
acceleration of  particles with interaction time t.

・This is more realistic than Landau’s expression  
that  is based on sinusoidal waves.



Ｃｏｍｐａｒｉｓｏｎ ｂｅｔｗｅｅｎ P（ｔ） and P（∞）

→ Let f(v) be  Maxwellian distribution.
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Ｐ（ｔ） for vp=ve

=ωｔ



P(t) for vp=2ve



Comparison between P（ｔ）&P（∞）

How close the sinc fn. is to the δ fun is important.
→tn=ωt >>1  is necessary for Landau approximation.  

（depends on ｖｐ and ｖｇ）

However, when E is large, nonlinearity becomes   
important at that time.→Landau approximation fails!
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Where can we use Landau damping 
and/or transit-time acceleration?

Pulse width L
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Cyclotron resonance of 
circularly polarized EM wave
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● Power due to linear cyclotron resonance

● General power due to transit-time acceleration
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How about EM waves?
EM Cyclotron Resonance vs.

Transit-Time Acceleraion



Conclusions
◆ Damping/resonance mechanisms of sinusoidal  

wave with a square envelope was evaluated.

◆ Transit-time acceleration is the elementary 
process of Landau damping.

→ They agree with each other in the limit ωｔ >> １.
→ Same is true for EM cyclotron resonance!

◆ Transit-time acceleration is applicable for plasma 
heating.

Ｒ



Next Step： Gaussian pulse
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Increase in kinetic energy: 



最終垂直速度（共鳴）のパルス幅L依存性



サイクロトロン共鳴のパルス長依存性



L (t) →∞でも共鳴は非デルタ関数的
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