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The distribution of the published papers in Space Physics
and Astrophysics since 1980 that are related to
kappa distributions (Title / Abstract).
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We show how kappa distributions arise
naturally from Tsallis Statistical Mechanics

We expose the general relation between
kappa and the spectral indices commonly
used to parameterize space plasmas

We develop the concept of physical
temperature for stationary states out of
equilibrium
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Space plasmas are non-equilibrium systems, tending
slowly to stationary states.

A system whose distribution function has stabilized to a
Boltzmann-Maxwell distribution would be in

thermal equilibrium.

However, which would be the expression of probability
distribution for systems relaxing into

stationary states out of equilibrium ?

Entropy: From the Greek word “Eντροπία” 
Εν- : in , towards    +   -Tροπή:  a turning, change

When the probability distribution is stabilized
Entropy is maximized

Towards a turning  Entropy increases
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Equilibrium …

Boltzmann-Gibbs
Statistical Mechanics
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Boltzmann-Gibbs Statistical Mechanics
Discrete probability distribution
associated with a conservative physical system of 
energy spectrum,
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The Lagrange method involves maximizing the functional
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Out of Equilibrium …

Empirically …
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Kappa distribution: An empirical approach
– The low-energy (L-E) region of ion distributions is 

primarily Maxwellian.

– The high-energy (H-E) (or suprathermal) region is non-
Maxwellian: power-law tails.

and     :   ion and bulk flow velocities.buu
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– Vasyliũnas (1968): An empirical functional form for
describing the distribution over the whole energy spectrum,
both the L-E Maxwellian core and the H-E power-law tail.
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Kappa distribution: An empirical approach

– Why up to – (κ + 1) ? ( )
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Because of the coincidence of the spectral index γ with κ.
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Then we have the same coincidence, κ* = γ .
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in 3-dim systems

in 1-dim systems
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Relation between the 2 kinds
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Thermal parameters 
independent of κ, κ*μ
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Out of Equilibrium …

Tsallis Statistical Mechanics
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Generalized Statistical Mechanics

Escort expectation value
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The escort probabilities characterize the system after its 
relaxation in stationary states out of equilibrium.
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Tsallis Statistical Mechanics
Entropy maximization: ( ) 0;}{ 1 =
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Constraints:
(i) Normalization,
(ii) Known internal energy, Uq ,
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Publication γΕ γv γ κ κ* Comments

1 Decker et al.
[2005] 2.13 3.26 1.63 1.63 2.63 2nd kappa 

distribution

2 Fisk & Gloecker
[2006] 2 3 1.5 1.5 2.5

Suprathermal 
power-law 

tail

3 Dialynas et al.
[2009] >3 >5 >2.5 >2.5 >3.5 1st kappa 

distribution

4 Dayeh et al.
[2009] <3 <5 <2.5 <2.5 <3.5

Suprathermal
power-law 

tail

V2
1

2
1

E
* 1 γγγκκ =−==−=

γV, γΕ, γ: exponents in power laws of velocities, energy, flux
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The physical temperature Tq
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3 definitions of temperature that coincide in equilibrium

In Tsallis Statistics, TKE differs out of equilibrium

… but coincides with the physical temperature Tq

Now the Lagrangian T is expressed in terms of Tq , T=T(Tq ;q)
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Two hypothetical routes of transient (metastable)
stationary states towards the equilibrium

The relation of physical temperature Tq
with the Lagrangian temperature T
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Conclusions
We showed how kappa distributions arise
naturally from Tsallis Statistical Mechanics
We developed the concept of physical
temperature out of equilibrium, which
differs significantly from the classical,
equilibrium temperature
We extracted the general relation between
the basic types of kappa distributions and
the spectral indices commonly used to
parameterize space plasmas
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– Tsallis Statistical Mechanics offer a consistent
theoretical framework for describing complex
systems in stationary states out of equilibrium.

– The Tsallis-like Canonical probability distribution is
derived by following along the Gibbs path, by
extremizing the Tsallis entropy under constraints.

– This Canonical probability distribution reads the
kappa distribution that describes the solar plasmas.

– Both the two kinds of kappa distributions can describe
solar plasmas. However the 2nd kind is primary. It is
connected with the escort probability and the physical
temperature.
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