ANALYTICAL ESTIMATES OF NONLINEAR WAVE-PARTICLE DYNAMICS (IN THE RADIATION BELTS)

Jay Albert
Air Force Research Laboratory

Modern Challenges in Nonlinear Plasma Physics
A Conference honoring the Career of Dennis Papadopoulos
June 15-19, 2009

Wave-particle interactions are considered crucial for understanding the radiation belts. Often, quasilinear theory is used.

But recent reports of RBWWs ${ }^{(T M)}$ (Really Big Whistler Waves) [Cattell et al.; Cully et al.] raise fresh doubts about this.

Recent advances in nonlinear simulations are very timely [Nunn, Omura et al., Gibby, ...] but are very demanding.

Existing theoretical ideas - diffusion, phase bunching, and phase trapping - can be described by transport coefficients, practical in global modeling studies.

Disclaimer:

- physics content
- graphics quality

Current picture: relativistic electrons are produced in the outer radiation belts during magnetic storms ...

by local interactions with cyclotron-resonant waves combined with radial transport by time-varying fields and drift-resonant waves.

Motion of a particle resonant with one fixed wave (not self-consistent)

Start with the Hamiltonian of a particle in a \mathbf{B} field:

$$
H(\mathbf{x}, \mathbf{P} ; t)=m c^{2} \sqrt{1+\left(\frac{\mathbf{P}-q \mathbf{A}(\mathbf{x}) / c}{m c}\right)^{2}}
$$

where $\mathbf{P}=\mathbf{p}+q \mathbf{A} / c$ is the canonical momentum and $\mathbf{A}=\mathbf{A}_{o}+\mathbf{A}_{w}$.

Recall:

$$
\frac{d \mathbf{x}}{d t}=\frac{\partial H}{\partial \mathbf{P}}, \quad \frac{d \mathbf{P}}{d t}=-\frac{\partial H}{\partial \mathbf{x}}
$$

is equivalent to $\mathbf{F}=d \mathbf{p} / d t$.

slab geometry: $z \sim$ distance along field line
$\mathbf{A}_{o}=-y B_{o} g(z) \hat{x} \Rightarrow \mathbf{B}_{o}=-y B_{o} g^{\prime} \hat{y}+B_{o} g \hat{z}$
$\nabla \cdot \mathbf{B}_{o}=0$ exactly for any $g(z)$
For a dipole, near the equator, $g(z) \approx 1+g_{2} z^{2}$.

Change variables from $\left(x, P_{x}, y, P_{y}, z, P_{z}\right)$ to ($X, P_{X}, \phi, I, \tilde{z}, \tilde{P}_{z}$), using the generating function.
I is essentially the first adiabatic invariant $\mu=p_{\perp}^{2} / 2 m B$, ϕ is the gyroangle, and $\tilde{z}=z$.

Rewrite H in the new variables and

- Taylor expand (to $1^{\text {st }}$ order) in $q A_{w} / m c^{2}$
- use the expansion $\sin (a \sin \theta)=\sum_{n=-\infty}^{\infty} J_{n}(a) \sin n \theta$
- normalize the variables

After "a little" algebra ..

To lowest order,

$$
\frac{H}{m c^{2}}=H_{0}+\epsilon \sum_{n=-\infty}^{\infty} H_{n} \sin \xi_{n}
$$

with

$$
\frac{d \xi_{n}}{d t}=\omega-k_{\|} v_{\|}-\operatorname{sn} \frac{\Omega_{c}}{\gamma}
$$

Near the $\ell^{t h}$ resonance, all terms except $n=\ell$ can be dropped by gyroaveraging over ϕ.

Then $d H / d t=\partial H / \partial t \Rightarrow \omega d I / d t=s \ell d \gamma / d t$.

If ω is constant, $\omega I=s \ell \gamma\left(I, P_{z}, z\right)$ eliminates P_{z} and leads to $K(I, \xi ; z)=K_{o}(I, z)+\epsilon K_{1}(I, z) \sin \xi$ with"time" z.

The equations are now simple enough to think about.

For fixed z, the phase portrait is like that of a plane pendulum:

$$
W \sim \sqrt{\frac{K_{1}}{\partial^{2} K_{o} / \partial I^{2}}}, \quad \omega_{0} \sim \sqrt{K_{1} \frac{\partial^{2} K_{o}}{\partial I^{2}}}
$$

Because K depends on z, the picture shifts as z changes. Differentiating the $0^{t h}$ order resonance condition

$$
\frac{d}{d z}\left\{\frac{\partial H_{o}}{d I}\left(I_{r e s}, z\right)=0\right\}
$$

gives

$$
\frac{d I_{r e s}}{d z}=-\frac{\partial^{2} K_{o} / \partial z \partial I}{\partial^{2} K_{o} / \partial I^{2}}
$$

The "time" for the island to move by its own width is

$$
\tau \equiv \frac{W}{d I_{\text {res }} / d z}
$$

and the inhomogeneity parameter is

$$
\mathcal{R} \equiv \omega_{0} \tau=\left|\frac{\partial^{2} K_{o} / \partial z \partial I}{K_{1}\left(\partial^{2} K_{o} / \partial I^{2}\right)}\right| \sim \frac{\partial B_{o} / \partial z}{B_{w}}
$$

Strongly inhomogeneous case: $\mathcal{R} \gg 1$, the z dependence dominates.

$$
\xi \approx \xi_{r e s}+\frac{A}{2}\left(z-z_{r e s}\right)^{2}, A \equiv\left(\frac{\partial^{2} K_{o}}{\partial z \partial I}\right)_{r e s}
$$

(modified at the equator).
Going across the resonance,

$$
\delta I=\int_{-\infty}^{\infty}-\epsilon K_{1} \cos \xi d z=-\epsilon K_{1} \sqrt{\frac{2 \pi}{|A|}} \cos \left(\xi_{\text {res }}+\frac{\pi}{4} \operatorname{sign}(A)\right)
$$

$\xi_{\text {res }}$ is random over $(0,2 \pi)$, so δI is randomly \pm.

Multiple passes through the resonance: diffusion!

$$
\begin{aligned}
D_{I I}=\frac{K_{1}^{2}}{4 \tau_{b}} \frac{2 \pi}{|A|} & \Rightarrow \\
D_{\alpha_{0} \alpha_{0}} & =\left(\frac{\partial \alpha_{0}}{\partial I}\right)^{2} D_{I I} \\
D_{\alpha_{0} p} & =\left(\frac{\partial \alpha_{0}}{\partial I}\right)\left(\frac{\partial p}{\partial I}\right) D_{I I} \\
D_{p p} & =\left(\frac{\partial p}{\partial I}\right)^{2} D_{I I}
\end{aligned}
$$

This is consistent with

$$
\begin{aligned}
\frac{D_{\alpha p}}{D_{\alpha \alpha}} & =\frac{\sin \alpha \cos \alpha}{-\sin ^{2} \alpha+s \ell \Omega_{c} / \omega \gamma} \\
\frac{D_{p p}}{D_{\alpha \alpha}} & =\left(\frac{\sin \alpha \cos \alpha}{-\sin ^{2} \alpha+s \ell \Omega_{c} / \omega \gamma}\right)^{2}
\end{aligned}
$$

$$
A \approx \frac{\partial}{\partial s}\left(\omega-k_{\|} v_{\|}-n \frac{\Omega_{e}}{\gamma}\right)
$$

gives the interaction length of the resonance, $\sim \sqrt{2 \pi / A}$.

For broadband waves, this is replaced by

$$
\Delta k_{\|}\left|v_{\|}-\frac{\partial \omega}{\partial k_{\|}}\right|
$$

which reproduces the Kennel and Engelmann [1966] diffusion coefficients.

Surprisingly, values of the bounce-averaged broadband and single wave diffusion coefficients are often very close [JGR, 2001; 2007].

And in the single-wave limits $\delta \omega \rightarrow 0$ and $\delta \theta \rightarrow 0$, they become identical! [in preparation]

In the weakly inhomogeneous case, $\mathcal{R} \ll 1$, changes with z are slow and $\mathcal{J}=\int I d \xi$ is an adiabatic invariant which is only violated near the separatrix.

The island width gives a jump in \mathcal{J} at resonance, which yields

$$
\delta I=-\frac{8}{\pi} \sqrt{\left|\frac{K_{1}}{\partial^{2} K_{o} / \partial I^{2}}\right|} \times \operatorname{sign}\left(d I_{r e s} / d z\right)
$$

δI is not random, because ξ is determined by phase bunching.

Even more nonlinear: phase trapping. Particles can enter the separatrix and get caught there for many phase periods. δI grows at the rate $d I_{\text {res }} / d z$.

The probability of trapping (separatrix crossing) is related to $\partial \mathcal{R} / \partial z$.
Can estimate energization if PT is assumed.

Phase Trapping: Constant Frequency

There are 3 equations:

$$
\begin{aligned}
& \gamma=\sqrt{1+\frac{2 \Omega_{e q} g I}{m c^{2}}+\left(\frac{P_{z}}{m c}\right)^{2}} \\
& \frac{k_{z} P_{z}}{m \gamma}-\omega+\frac{s \ell \Omega_{e q} g}{\gamma}=0 \\
& \frac{\omega}{m c^{2}} I=s \ell \gamma
\end{aligned}
$$

(kinematics)
(resonance)
(dynamics)
in 4 variables: γ, I, P_{z}, and z. Solve for $\gamma(z)$:
$\left(\frac{k_{z}^{2} c^{2}}{\omega^{2}}-1\right) \gamma^{2}-2 \frac{s \ell \Omega_{e q} g}{\omega}\left(\frac{k_{z}^{2} c^{2}}{\omega^{2}}-1\right) \gamma-\left[\frac{k_{z}^{2} c^{2}}{\omega^{2}}+\left(\frac{s \ell \Omega_{e q} g}{\omega}\right)^{2}\right]=0$.
Sustained resonance (stable PT) is assumed.

Phase Trapping: Variable Frequency

Now there are 5 equations in 7 variables: $\gamma, I, P_{z}, \frac{d \gamma}{d t}, \frac{d I}{d t}, \frac{d P_{z}}{d t}$, and z, leading to a 1D ODE for $\gamma(z)$:
$\left(\frac{k_{z}^{2} c^{2}}{\omega^{2}}-1\right) \frac{d \gamma}{d z}+\frac{g^{\prime}}{g}\left(\frac{s \ell \Omega_{e q} g}{\omega}-\frac{k_{z} c}{\omega} \frac{\Omega_{e q} g I / m c^{2}}{P_{z} / m c}\right)+\frac{k_{z}^{\prime} c}{\omega} \frac{P_{z}}{m c}-\frac{\omega^{\prime}}{\omega} \gamma=0$,
where

$$
\frac{P_{z}}{m c}=\frac{\gamma-s \ell \Omega_{e q} g / \omega}{k_{z} c / \omega}, \quad 2 \frac{\Omega_{e q} g}{m c^{2}} I=\gamma^{2}-1-\left(\frac{P_{z}}{m c}\right)^{2} .
$$

Again, stable PT is assumed.
This is basically the procedure of Trakhtengerts et al. [2003] and Demekhov et al. [2006].

RTA can occur ($v_{\|}$goes through 0 while maintaining PT).

This is included in the analytical treatment.

URA (resonances with $\omega>\Omega_{e} / \gamma$) is also included.

So: the nonlinear effects have been summarized as advection terms.

$$
\begin{aligned}
\frac{\partial f}{\partial t} & =-A_{\alpha_{0}} \frac{\partial f}{\partial \alpha_{0}}-A_{p} \frac{\partial f}{\partial p} \\
& +\frac{1}{G p} \frac{\partial}{\partial \alpha_{0}} G\left(D_{\alpha_{0} \alpha_{0}} \frac{1}{p} \frac{\partial f}{\partial \alpha_{0}}+D_{\alpha_{0} p} \frac{\partial f}{\partial p}\right) \\
& +\frac{1}{G} \frac{\partial}{\partial p} G\left(D_{\alpha_{0} p} \frac{1}{p} \frac{\partial f}{\partial \alpha_{0}}+D_{p p} \frac{\partial f}{\partial p}\right)
\end{aligned}
$$

or, if you prefer,
$\frac{\partial f}{\partial t}+\left[\begin{array}{c}A_{\alpha_{0}} \\ A_{p}\end{array}\right]\left[\begin{array}{c}\partial f / \partial \alpha_{0} \\ \partial f / \partial p\end{array}\right]=\frac{1}{G}\left[\frac{\partial}{\partial \alpha_{0}} \frac{\partial}{\partial p}\right] G\left[\begin{array}{cc}D_{\alpha_{0} \alpha_{0}} & D_{\alpha_{0} p} \\ D_{\alpha_{0} p} & D_{p p}\end{array}\right]\left[\begin{array}{c}\partial f / \partial \alpha_{0} \\ \partial f / \partial p\end{array}\right]$,
where $G=p^{2} T\left(\alpha_{0}\right) \sin \alpha_{0} \cos \alpha_{0}$. (And don't forget $D_{L L}$.)

This advection-diffusion/Fokker-Planck equation isn't so bad.

Possible evolution of f (schematic):

Final Thoughts:

small amplitude: linear response
"medium" amplitude: QL diffusion
large amplitude: NL behavior very large amplitude: island overlap, QL diffusion!?

Broadband waves, homogeneous background \Rightarrow diffusion Monochromatic waves, inhomogeneous background $\Rightarrow D, \mathrm{~PB}, \mathrm{PT}$ Broadband waves, inhomogeneous background \Rightarrow ???

