Statistical/Evolutionary Models of Power-laws in Plasmas

Modern Challenges in Nonlinear Plasma Physics

Ilan Roth

Space Sciences, UC Berkeley

Halkidiki

GREECE

June 2009

Heavy Tails

- Statistics of Energization Processes
- Anomalous Transport/Diffusion
- Entropy of Super-diffusive Processes

BASICS: Ergodic, weakly interacting system converges into Boltzmann-Gibbs statistics/function

THEREFORE: particles that interact stochastically with electromagnetic fields and perform Brownian motion in phase space, characterized by short-range deviation and short term microscopic memory will approach asymptotically a Gaussian.

Why is there an ubiquity of (broken) power laws?

Example - Solar/Heliospheric Electrons

Heliospheric Signatures

Injection of electrons into heliosphere

Maia, 2001

Energization - occurs behind the CME?

Post-flare, post-CME: Gradual electrons

Electron Spectra

(a) 1997 NOVEMBER 24

(b) 2000 MARCH 7

Yellow – flare siteBlack arrow – CME directionRed – closed (stretched) magnetic field linesBlue - open, in ecliptic planegreen – open, non-ecliptic

Characteristics of electron trajectory in the presence of (oblique) whistler waves

Statistics of Energization Processes

- Anomalous Transport/Diffusion

- Entropy of Super-diffusive Processes

Statistical Analysis – Particle Distribution

Energization is determined by an increment of an independent, identically distributed (iid) random variable (in the language of statistical mathematics), with an assigned probability distribution. Central Limit Theorem (CLT):

Sum of random variables with a finite variance will converge (weakly) to a normal or Gaussian distribution.

No Heavy Tail.

Stable Distribution: addition of a large number of random variables preserves the shape of the distribution (infinitely divisible).

Normal Distribution is an example of a Stable Distribution ("attractor distribution").

Normal Diffusion:

Brownian (random walk) motion – CLT applies, if

a) distribution with finite moments (*variance*)

b) no long range interaction

c) short term memory - Markovian process

Anomalous Diffusion:

CLT does not hold in its regular form

Result: Sub-diffusion or extended tails

Normal Distribution

$$X \sim N(\mu, \sigma^2); P(X \le x) = \frac{1}{\sqrt{2\pi\sigma^2}} \int_{-\infty}^x \exp[-(x-\mu)^2/2\sigma^2] dx$$

 X_1, X_2 – independent, (not)identically – distributed r.v,

 $aX_1 \sim N[a\mu, (a\sigma)^2], \ bX_2 \sim N[b\mu, (b\sigma)^2]$

$$\exists c,d: aX_1 + bX_2 = cX + d = Y \quad (in \ distribution)$$

$$c^{2} = a^{2} + b^{2}, d = (a + b - c)\mu; Y \sim N[c\mu + d, (c\sigma)^{2}]$$

Convolution preserves the (normal) probability

This (stable) Distribution is not unique

Generalization: the sum of a large number of time-homogeneous, independent, identically distributed random variables with an infinite variance will tend to a symmetric (skew) stable Levy distribution.

$$P(X_1 < Z_N < X_2) \mapsto \int_{X_1}^{X_2} L_{\alpha,\beta}(x) dx$$

(Gedanenko-Kolgomorov-Levy)

Lévy (α stable) Probability Distribution The stable distribution functions are completely defined by their Characteristic Function (Fourier Transform of a single event probability) \wedge $l_{\alpha}(\lambda) = \exp[-c|\lambda|^{\alpha} (1 - i\beta \tan(\pi\alpha/2)\operatorname{sgn}(\lambda))]$ $0 \le \alpha \le 2$ – Lévy exponent, c – scale, β - skewness (Gaussian : $\alpha = 2$; Lorentzian /Cauchy: $\alpha = 1$) $\alpha = 2$ – "phase transition"

Normal law attracts all distributions with $\alpha > 2$

Probability density function of stable Levy distributions α -exponent; μ -shift; c= σ -width/scale; β -skewness As α decreases, longer tail and narrower core $\rightarrow \delta$ function.

Cumulative Distribution Function

Procedure:

Characteristic function – Fourier of one event probability Multiplication in Fourier space (instead of convolution) Inverse Fourier integration

a. Pdf with Finite moments [Gram (1883) - Charlier (1905) - Edgeworth (1905)] P(ξ)~exp(- ξ^2)/(2 π)^{1/2}[1+ λ_3 H₃(ξ)/(3! n^{1/2}) + λ_4 H₄(ξ)/(4! n)+...] Corrections to Gaussian ξ =(r/ σ n^{1/2}), λ_i cumulants normalized to the second moment σ

H_n Hermite polynomials.

The Gaussian core of the distribution extends to very high values

b. Leptokurtotic probability function (diverging high (>2) moments) One event probability: $p(r) = \frac{2/\pi^{1/2}}{(1+r^4)}$

Cumulant expansion - log $p(\eta)$ around $\eta = 0$

$$\log p(\eta) = -\eta^2 / 2 + |\eta|^3 / 3\sqrt{2} + 11\eta^4 / 48 + \dots$$

$$\Phi_n(r) = \int e^{ir\eta} e^{-\eta^2/2} \left[1 + \frac{a|\eta|^3}{\sqrt{n}} + \dots\right] \frac{d\eta}{2\pi} \sim$$

$$\sim \Phi_G(r) + \frac{1}{2^{1/2} 6\pi \sqrt{n}} \frac{\partial^3}{\partial r^3} \{ \exp(-r^2/2) \int \exp[-(\eta - ir)^2 d\eta \}$$

$$\Phi_n(r) \sim \Phi_G(r) + \frac{(-1)}{2^{1/2} 6\pi \sqrt{n}} D'''(\frac{r}{2^{1/2}}) + O[\frac{D^{(4)}}{n}] + \dots$$

 $\Phi_G(r)$ – Gaussian; D – Dawson Integral : $D(r) = e^{-r^2} \int_0^r e^{y^2} dy$

$$D(x) \sim \frac{2}{2x} \left[1 + \frac{1}{2x^2} + \frac{3}{4x^4} + \sum_{m=3}^{\infty} \frac{(2m-1)!!}{2^m x^{2m}}\right]$$
$$D'''(x) \sim -\frac{1}{3x^4} \qquad as \quad x \to \infty$$

$$\Phi_n(\xi) \sim \Phi_G(\xi) + \frac{1}{2^{1/2} 6\pi \sqrt{n}} [\xi^{-4} / 12 + \xi^{-6} / 288n]$$

The edge of the central core $\sim (\log n)^{1/2}$

Due to limited interaction time, the observed distribution converges extremely slowly to a Gaussian and exhibits heavy tails.

c. Diverging second pdf moment

Characteristic function with $\alpha < 2$ $l_{\alpha}(\lambda) = \exp(-c|\lambda|^{\alpha})$

$$L_{\alpha,N}(r) = \int_{\infty}^{\infty} \exp(i\lambda r - cn|\lambda|^{\alpha}) d\lambda = n^{-1/\alpha} l_{\alpha}(r/n^{1/\alpha})$$

asymptotically
$$\Phi_{\alpha}(\zeta) = \frac{c\sin(\alpha\pi/2)\Gamma(1/\alpha)\alpha}{\pi|\zeta|^{1+\alpha}} \quad for \quad \zeta \to \infty$$

And a Gaussian which narrows as $\alpha \to 0$ at the central core region $\Phi_{\alpha}(\zeta) = \frac{1}{\pi \alpha} \sum_{m}^{\infty} \frac{(-\zeta^{2})^{m}}{(2m)!} \frac{\Gamma(2m+1/\alpha)}{c^{(2m+1/\alpha)}}$

$$\Phi_{\alpha}(\zeta) \sim \frac{\Gamma(1/\alpha)}{\pi \alpha c^{1/\alpha}} \exp(-\zeta^2/\sigma^2); \quad \sigma \sim \sqrt{\pi/2} \alpha^{3/2} \quad for \quad \zeta \to 0$$

- Statistics of Energization Processes

Anomalous Transport/Diffusion

- Entropy of Super-diffusive Processes

Random walk: continuum description \rightarrow **FP**

$$P_{i}(t + \Delta t) = \frac{1}{2}P_{i+1}(t) + \frac{1}{2}P_{i-1}(t);$$

 $r_{i\pm 1} = r_i \pm \Delta r;$ isotropic jumps Local in space and time

$$\frac{\partial P(r,t)}{\partial t} = \lim_{dr \to 0, dt \to o} \frac{(dr)^2}{dt} \frac{\partial^2}{\partial r^2} P(r,t) \equiv K \frac{\partial^2}{\partial r^2} P(r,t) \quad Continuum \ limit$$

 $P(r,t) = (4\pi Kt)^{-1/2} \exp(-r^2/4Kt)$ Green propagator

 $< r^2 > \sim t^{\alpha}$; $\alpha = 1$ Central limit theorem

Continuous time Random walk

Non-locality in phase space

$$P_{j}(t+dt) = \sum_{n=1} [A_{j,n}P_{j-n}(t) + B_{j,n}P_{j+n}(t)]$$

Generalization

Length of jump, waiting time

 $\chi(r, t) = \lambda(r)\tau(t)$

Decoupled temporal/spatial memory

Probabilities

 $\lambda(r)dr$ phase space jump

 $\tau(t)dt$ waiting time between jumps

Probability P(r,t) - phase space position r at time t probability $\zeta(r,t')$ of arrival at r at an earlier time t' and staying there without a jump:

"survival" probability $\varphi(t)=1-\int dt \tau(t)$;

 $P(\mathbf{r},\mathbf{t}) = \int d\mathbf{t}' \,\zeta(\mathbf{r},\mathbf{t}') \,\phi(\mathbf{t}-\mathbf{t}')$

Master equation

$$\zeta(\mathbf{r},\mathbf{t}) = \int d\mathbf{r}' \int d\mathbf{t}' \,\zeta(\mathbf{r}',\mathbf{t}') \,\chi(\mathbf{r}-\mathbf{r}',\mathbf{t}-\mathbf{t}') + \mathbf{P}_{o}(\mathbf{r}) \,\delta(\mathbf{t})$$

Fourier-Laplace (*Montroll-Weiss*)

$$P(k,u) = \frac{1 - \tau(u)}{u} \frac{P_0}{1 - \chi(k,u)}$$

A. NORMAL Brownian motion - short memory, short range $\tau(t) = [\exp(-t/t_0)/t_0]$; Poissonian (finite) characteristic time $\lambda(r) = (4\pi\sigma)^{-1} \exp[-(r/2\sigma)^2]$ finite jump length variance F-L: $\tau(u) \sim 1$ -ut₀ and $\lambda(k) \sim 1$ - $\sigma^2 k^2$ as $(k,u) \rightarrow (0,0)$

$$P(k,u) = \frac{1}{u + Kk^2}$$

Inverse Fourier-Laplace \rightarrow diffusion limit; FP

$$\frac{\partial P}{\partial t} = K \frac{\partial^2}{\partial x^2} P$$

B. SUBDIFFUSIVE PROCESS

Long-tailed waiting time pdf with finite jump variance

$$\tau(t) = A (t/t_0)^{-1-\alpha}, \alpha < 1; \qquad \lambda(r) = (4\pi\sigma)^{-1} \exp[-(r/2\sigma)^2]$$

$$\tau(u) \sim 1 - (ut_0)^{\alpha}; \qquad \lambda(k) \sim 1 - \sigma^2 k^2 \text{ as } (k, u) -> (0, 0)$$

$$P(k,u) = \frac{P_0(k)/u}{1 + K_\alpha u^{-\alpha} k^2}$$

$$K_{\alpha} = \sigma^2 / t^{\alpha}$$

Riemann-Liouville

$${}_{0}D_{t}^{-\alpha}G(x,t) = \frac{1}{\Gamma(\alpha)} \int_{0}^{t} dt' \frac{G(t')}{(t-t')^{1-\alpha}}$$

 $\pounds \{ D^{-\alpha} P(r,t) \} = u^{-\alpha} P(r,u)$

Inverse F-L - \rightarrow Fractional FP

$$\frac{\partial P(r,t)}{\partial t} = D_t^{1-\alpha} K_{\alpha} \frac{\partial^2}{\partial r^2} P(r,t)$$

Temporal Integration emphasizes the non-Markovian, long term memory

Solution converges to Brownian as α -->1

$$P(k,u) = \frac{P_0(k)}{u + Kk^2} \qquad P(k,u) = \frac{P_0(k)/u}{1 + K_{\alpha}u^{-\alpha}k^2}$$

Single mode decay

$$P(k,t) = \exp(-Kk^2t)$$

$$P(k,t) = E_{\alpha}(-K_{\alpha}k^{2}t^{\alpha})$$

Exponential relaxation

Stretched exponential

Mittag-Leffler

$$E_{\alpha}(-t^{\alpha}) = \sum_{n=0}^{\infty} \frac{(-t^{\alpha})^n}{\Gamma(1+\alpha n)} \sim [t^{\alpha}\Gamma(1-\alpha)]^{-1}$$

$$<\mathbf{r}^{2}>=[\mathbf{K}/\Gamma(\alpha+1)]\mathbf{t}^{\alpha}, \alpha<1$$

C. SUPERDIFFUSIVE PROCESS

Short memory waiting time - long jumps variance Markovian time pdf Levy diverging jumps: $\mu < 2$ $\tau(\mathbf{u}) \sim 1 - \mathbf{ut}_0; \quad \lambda(\mathbf{k}) = \exp(-\sigma^{\mu} |\mathbf{k}|^{\mu}) \sim 1 - \sigma^{\mu} |\mathbf{k}|^{\mu}$

$$P(k,u) = \frac{P_0(k)}{u + K^{\mu} |k|^{\mu}};$$

$$K^{\mu} = \sigma^{\mu} / t_0$$

Riess/Weyl fractional operator

$${}_{-\infty}D_{z}^{\mu}G(z) = {}_{-\infty}D_{z}^{n-(n-\mu)}G(z) = \frac{1}{\Gamma(n-\mu)}\frac{d^{n}}{dz^{n}}\int_{-\infty}^{z}dz'\frac{G(z')}{(z-z')^{1-(n-\mu)}}$$

Fourier: $\mathbf{F}\left\{_{-\infty}D_{z}^{\mu}G(z)\right\} = -|k|^{\mu}\mathbf{F}\left\{G(z)\right\} \qquad \mu \in (n-1,n)$

$$\frac{\partial P(r,t)}{\partial t} = K^{\mu}{}_{-\infty} D^{\mu}_{r} P(r,t)$$

Spatial Integration emphasizes the probability for a long range interaction

Solution converges to Brownian as μ -->2

Gauss walk

Levy flight

$$P(k,u) = \frac{P_0(k)}{u + Kk^2} \qquad P(k,u) = \frac{P_0(k)}{u + K^{\mu}k^{\mu}}$$

Single mode decay

$$P(k,t) = \exp(-Kk^{2}t)$$
 $P(k,t) = \exp(-K^{\mu}|k|^{\mu}t)$

Exponential relaxation

Extended tail Symmetric Levy

Solution: Mellin Transform

$$\mathbf{M}[F(t)] = F(s) = \int_{0}^{\infty} F(t)t^{s-1}dt$$
$$\mathbf{M}\{L(F(t), p), s\} = \Gamma(s)\mathbf{M}[F(t), 1-s]$$

Resulting in a set of Γ functions

$$\Gamma(s) = \int_{0}^{\infty} e^{-t} t^{s-1} dt$$

$${}_{0}D_{r}^{q}t^{p} = \frac{\Gamma(1+p)}{\Gamma(1+p-q)}t^{p-q} \Longrightarrow {}_{0}D_{r}^{q}1 = \frac{1}{\Gamma(1-q)}t^{-q}$$

Gamma function – holomorphic with simple poles at all the non-positive integers; the residue at -n is $(-1)^n/n!$

Gamma function

Fox (H) : generalized Mellin-Barnes (Meijer G) Functions

$$H(z) = H_{pq}^{mn}[z;_{(b,\beta)}^{(a,\alpha)}] = \frac{1}{2\pi i} \int_{C} \frac{\prod_{i=1}^{m} \Gamma(b_i - \beta_i s) \prod_{i=1}^{n} \Gamma(1 - a_i - \alpha_i s)}{\prod_{i=m+1}^{q} \Gamma(1 - b_i + \beta_i s) \prod_{i=n+1}^{p} \Gamma(a_i - \alpha_i s)} z^s ds$$

 $\alpha_j, \beta_j > 0;$ a_j, b_j -complex; roots of $(a, \alpha)/(b, \beta)$ left/right of C

Series expansion with residue (-1)/l! at the poles b_k - β_k s=-l, l=0,...

$$H_{pq}^{mn}[z;_{(b,\beta)}^{(a,\alpha)}] = \sum_{k=1}^{m} \sum_{l=0}^{\infty} \frac{\prod_{i=1,\neq k}^{m} \Gamma[b_{i} - \frac{\beta_{i}(b_{k}+l)}{\beta_{k}}] \prod_{i=1}^{n} \Gamma[1-a_{i} + \frac{\alpha_{i}(b_{k}+l)}{\beta_{k}}]}{\prod_{i=m+1}^{q} \Gamma[1-b_{i} + \frac{\beta_{i}(b_{k}+l)}{\beta_{k}}] \prod_{i=n+1}^{p} \Gamma[a_{i} - \frac{\alpha_{i}(b_{k}+l)}{\beta_{k}}]} \frac{(-1)^{l} z}{l! b_{k}}$$

Alternating signs – slow convergence

Explicit solution of the FFPE poles

$$P(r,t) = \frac{1}{\mu |r|} H_{22}^{11} [\xi |_{(1,1)(1,1/2)}^{(1,1/\mu)(1,1/2)}] = \frac{1}{\mu |r|} \int_{C} ds \frac{\Gamma(1-s)\Gamma(\frac{s}{\mu})}{\Gamma(\frac{s}{2})\Gamma(1-\frac{s}{\mu})} \xi^{s}$$

$$\xi = \frac{r}{(K^{\mu}t)^{1/\mu}}$$

Roots at s/µ=-m;
$$P(r,t) = \frac{1}{\mu |r|} \sum_{m=0}^{\infty} \frac{\Gamma(m\mu)}{\Gamma(-m\mu/2)} \frac{(-1)^m}{m!} \xi^{-m\mu} \sim \frac{Kt}{r^{1+\mu}}$$

Slow convergence

$$P(r,t) = (Kt)^{-1/\mu} L_{\mu}[|r|/(Kt)^{1/\mu}]$$

General: Long waiting times and large jumps

$$\frac{\partial P(r,t)}{\partial t} = D_t^{1-\alpha} K^{\mu}_{\alpha} \frac{\partial^{\mu}}{\partial r^{\mu}} P(r,t)$$

 $< r^2 >= t^{\alpha/\mu}$

- Statistics of Energization Processes

- Anomalous Transport/Diffusion

Entropy of Super-diffusive processes

*Thermodynamic properties - from microscopic states

*System in contact with a large reservoir

*Short temporal/spatial interaction – random jumps p(r)

Boltzmann-Gibbs-Shannon entropy-*extensive* **~system size**

$$S_{BG} = S_1 = -\int p(r) \ln p(r) dr$$

Constrains:
$$\int p(r)dr = 1;$$
 $\langle r^2 \rangle = \int r^2 p(r)dr = \sigma^2 < \infty$

Variational Optimization; β-Lagrange multiplier

$$p_1(r) = \frac{\exp(-\beta r^2)}{Z_1(\beta)} = \frac{\exp(-\beta r^2)}{\int dr e^{-\beta r^2}}; \quad \beta = T^{-1} = 1/(2\sigma^2)$$

Gaussian – attractor in distribution space

Long range interaction makes the entropy non-extensive →formation of tails in the distribution. q-statistics/entropy (Tsallis):

 $S_q = [1 - \int p^q(r) dr] / (q - 1) \longrightarrow S_{BG} = S_1 \text{ as } q \to 1$ Optimization of S_q with q-expectation constraint $< r^2 > = \int r^2 [p(r)]^q dr$

and β as Lagrange multiplier leads to heavy tail distributions

$$p_{q}(r) = [1 - (1 - q)\beta r^{2}]^{1/(1 - q)} / Z_{q} \longrightarrow \frac{\sqrt{\beta}}{\sqrt{\pi}} \exp(-\beta r^{2})$$
$$e_{q}^{r} = [1 + (1 - q)r]^{1/(1 - q)} \Longrightarrow p_{q}(r) = \frac{\exp_{q}(-\beta r^{2})}{Z_{q}(\beta)} = \frac{\exp_{q}(-\beta r^{2})}{\int dr \exp_{q}(-\beta r^{2})}$$

$$p_{q}(r) = \left[1 - (1 - q)\beta r^{2}\right]^{\frac{1}{(1 - q)}} / \int \left[1 - (1 - q)\beta r^{2}\right]^{\frac{1}{(1 - q)}} dr$$
$$\infty < q < 3$$

Converges to Gaussian for q=1.

Converges to Cauchy for q=2 Variance – finite for q < 5/3, diverges for 5/3 <q <3 q-variance: $\int dxx^2 p(x)^q$ finite for q < 3,

$$p_q(r) \sim r^{-2/(q-1)}$$
 i.e. $\alpha = (3-q)/(q-1); \ 0 < \alpha < 2$

$$p_q(r,N) = [\beta^{1/2} / N^{1/\alpha}] L_{\alpha}[(\beta^{1/2} / N^{1/\alpha})r]: \quad 5/3 < q < 3$$

"Phase Transition" at q=5/3 ($\alpha=2$)

q-entropy converges to stable laws (distributions)

Comparison with the data allows to assess

- a) the validity of the single event probability density function
- b) the relative importance of the different expansion terms – power law transition
- c) the "duration" of the interaction

SUMMARY

One-event Impulsive probability O $p(E) = \frac{A}{(1+E^4)}$

Electron Spectra

with an incomplete asymptotic Gaussian evolution

One-event Gradual probability

α=0.5-1.0 (Lévy)

O
$$p(E) = \frac{A}{(1+E^{\delta})}; \delta = 1.5 - 2.0$$

with a truncated Levy index α

at the range of Holtsmark-Cauchy

ΕΠΙΛΟΓΟΣ

Distribution function of electrons and ions in space plasmas due to random, resonant interactions with electromagnetic turbulence displays numerous characteristic forms, combining Gaussians with (broken) power laws. The basic single event interaction probability determines the asymptotic distribution with a phase transition at the index of the characteristic function $\alpha=2$, while the global interaction time determines the observed non-asymptotic distribution. The distribution function of the injected particles may be construed via general arguments of stochastic processes, and parameterized via non-extensive entropy.