Experiments which observe magnetic field line reconnection within structures in a Magnetoplasma

Walter Gekelman, E. Lawrence, A. Collette, S. Vincena

Department of Physics, UCLA

Recurrent questions in Space and Astrophysics

- Magnetic field generation (magnetic helicity)
- Relaxation of complex field geometries into simpler ones
- Magnetic Field Line Reconnection (what type?)
- Generation and interaction of magnetic flux ropes
- Role of waves (whistlers and Alfvén)
- Bursty verses steady phenomena (plasma instabilities)

Gan we learn something from laboratory experiments?

data acquired: I2 planes (20,000 spatial locations)

$$
\delta x=\delta y=3 \mathrm{~mm}, \delta \mathrm{z}=64 \mathrm{~cm}, \delta \mathrm{t}=40 \mathrm{~ns}
$$

Discharge currents

Small cathodes are biased to 100 V for 2 ms during the main discharge. After 300 $\mu \mathrm{s}\left(\sim 3 \tau_{\mathrm{A}}\right)$, spontaneous oscillations are seen in the LaB_{6} discharge current.

LaB6 heated to 1800 C heater 570 Watt

$\mathrm{B}_{\mathrm{z} 0} \leftarrow \quad \mathrm{~J}_{\mathrm{z}} \rightarrow$

- Flux tube cross section is elliptical at the far end.
\rightarrow Twist $\sim \pi-3 \pi / 2$, writhe $\sim \pi$.

Electron temperature profile of a single channel

(b), (c) lie on same approximate flux surface on the lower flux rope

Hodogram of central field line in flux tubes

Distance between field lines (upper/lower) at two axial positions

J_{z} slices at $\mathrm{t}=190 \mu \mathrm{~s} \quad$ (early in time)

$\mathrm{z}=767 \mathrm{~cm}$

Tuesday, June 16, 2009

Jz profiles during oscillations in discharge current

 $\mathrm{t}=1.7 \mathrm{~ms}$
$\mathrm{z}=383 \mathrm{~cm}$

$z=639 \mathrm{~cm}$

$\mathrm{z}=447 \mathrm{~cm}$

$\mathrm{z}=703 \mathrm{~cm}$

$\mathrm{z}=511 \mathrm{~cm}$

$\mathrm{z}=767 \mathrm{~cm}$

$\mathrm{z}=575 \mathrm{~cm}$

Tuesday, June 16, 2009

Integrated current density

Bottom traces show $\int J_{z} d z$ at various z positions.

Simple sheared X-point model

(a)

(b)

Small footpoint motions at point A would create a drastic shift at point B. In some cases point B can shift discontinuously [Priest and Forbes, 2000,Demoulin, 2006]

Definition of a quasi-separatrix layer

$$
\begin{array}{r}
Q=\frac{N^{2}}{\left|\frac{B_{z}\left(z_{0}\right)}{B_{z}\left(z_{1}\right)}\right|} \quad N=\sqrt{\left(\frac{\partial X}{\partial x}\right)^{2}+\left(\frac{\partial X}{\partial y}\right)^{2}+\left(\frac{\partial Y}{\partial x}\right)^{2}+\left(\frac{\partial Y}{\partial y}\right)^{2}} \\
\quad \text { in our experiment } \quad Q \approx N^{2}
\end{array}
$$

"slip squash factor"

$$
z=z_{0}
$$

$$
z=z_{l}
$$

flux tube

Priest and Démoulin,JGR 1995,
Titov,As. J. (2007)
flux tube squashed: aspect ratio $=\mathrm{Q}$

QSLs in solar flare observations

computed field lines

QSLs at boundaries (thick lines) coincident with H_{α} brightening in solar flares. [Bagalá et al. A\&A 2000]

QSL calculation QSL region if $\mathrm{N} \gg 1$
in this experiment $\mathrm{N}=2000$
Seed field lines at $\mathrm{z}=64 \mathrm{~cm}$

Calculate endpoints and derivatives at $\mathrm{z}=830 \mathrm{~cm}$

In the following slides, Q is shown during the merging phases

QSL forms between flux ropes

Experiment

Q calculated between $z=64 \mathrm{~cm}$ and $z=830 \mathrm{~cm}$ planes at $t=1.7 \mathrm{~ms}$.
$J_{z}=-5.5,-3 \mathrm{~A} / \mathrm{cm}^{2}$ contours overplotted.

Numerical simulations of merging twisted flux tubes [Milano, et al. ApJ 1999]

QSL forms between flux ropes

$Q=1000$ surface

QSL has hyperbolic flux tube geometry

- Initial field line separation is $\sim 0.05 \mathrm{~cm}$, but diverges to $\sim 3 \mathrm{~cm}$.

Axial slices show HFT (hyperbolic flux tube) structure

In nature most reconnection is probably three dimensional and the cocept of a seperatrix is of limited use

In nature most reconnection is probably three dimensional and the cocept of a seperatrix is of limited use

A QSL has been observed when magnetic flux ropes merge and there is reconnection

In nature most reconnection is probably three dimensional and the cocept of a seperatrix is of limited use

A QSL has been observed when magnetic flux ropes merge and there is reconnection

The flux rope current system becomes, sheetlike, complex and return currents appear.

In nature most reconnection is probably three dimensional and the cocept of a seperatrix is of limited use

A QSL has been observed when magnetic flux ropes merge and there is reconnection

The flux rope current system becomes, sheetlike, complex and return currents appear.

The QSL is an indicator that reconnection is occurring, we await a relationship between Q and the reconnection rate.

Laser produced plasma in a magnetoplasma

Tuesday, June 16, 2009

$$
t=5.12 \mu \mathrm{~s}
$$

Blines, E field

Colliding laser produced plasmas

dA/d \dagger

add small guide field

In general (in nature) Magnetic Field line reconnection is three dimensional and is one aspect of what transpires within 3 dimensional current systems.
Reconnection is part of the picture but not the whole story

