

Nonlinear Whistler Waves in Earth's Radiation Belts: THEMIS Observations

Chris Cully

Swedish Institute of Space Physics, Uppsala, Sweden chris@irfu.se

- Themis is the result of the work of many. In particular I'd like to acknowledge:
 - Vassilis Angelopoulos
 - Electric Field Instrument:
 - John Bonnell, Forrest Mozer, Robert Ergun
 - Particle Instruments:
 - Jim McFadden, Davin Larson
 - Search Coil Magnetometer:
 - Alain Roux, Olivier LeContel
 - Fluxgate Magnetometer:
 - Karl-Heinz Glassmeier

Outline

- Early observation:
 - Larger E amplitudes than expected
- Event study
 - Where quasilinear theory works
 - Where nonlinear theory is required
 - Chorus sweep
 - Omura's chorus generation mechanism
 - Experimental test
 - Cyclotron harmonic emissions

- Wave-particle interaction is a major controlling process in the Earth's radiation belts
 - Acceleration
 - Loss (scattering into loss cone)
- Whistler waves
 - Largely at dawn
 - Equatorial generation
 - Bursts of rising tones (chorus)

Themis

- 5 satellites in equatorial orbits
- Plasma instruments
 - Low energy (<30 keV)
 + high energy (<6 MeV)
 ions and electrons
 - Electric and magnetic fields

Unexpected amplitudes

- Early Themis result: Whistler electric fields larger than expected
- Heavy-tailed distribution
- >100 mV/m
 - Deterministic
 dynamics rather than stochastic
- Occur in large (hours of MLT) and persistent (days) region
- Agrees with other recent data (eg. STEREO)

Cully et al, GRL, 2008

Oblique propagation

- Many of the largest amplitude events are obliquely propagating
 - Even near the equator
 - Lack the characteristic chorus chirp
 - Propagation effect?

Image: NASA/Jacob Bortnik. See Bortik et al, Science, 2009.

CASE STUDY

Outline

- Early result:
 - Larger E amplitudes than expected
- Event study
 - Where quasilinear theory works
 - Where nonlinear theory is required
 - Chorus sweep
 - Omura's chorus generation mechanism
 - Experimental test
 - Cyclotron harmonic emissions

- Themis-D, L~5 R_F, MLAT~2°
- Bursts of whistler activity up to 0.5 f
 - Gap at 0.5 f_{ce} (common)
 - Parallel propagation

Resonant ellipses

0.1

V⊥/c

-0.1

 Electrons moving counter to the wave motion at

$$V_{R} = \frac{\omega}{k} \left(1 - \frac{\omega_{ce}}{\gamma \omega} \right)$$

- are cyclotronresonant with the wave
- Ellipses at f=0.2 f_{ce}
 and f=0.5 f_{ce}
 demarcate interaction boundaries

Region with potentially resonant particles

0

V_{II}/c

Mirrored

0.1

- Given broad spectrum of waves:
 - In frame moving with wave phase velocity, (relativistic) energy of resonant particle is conserved
 - As energy changes, particle resonates with different frequencies
- Result: diffusion curves shown
 - Hot, relativistic curves shown; cold and nonrelativistic very similar

Summers, Thorne, Xiao, JGR, 1998 Horne and Thorne, GRL, 2003 Gendrin and Roux, JGR, 1980

Experimental test

- Diffusion surface = phase space density iso-surface
 - Valid between the resonant ellipses for the observed wave spectrum
 - Marginal stability criterion

Diffusion curves: result

- Very good agreement with observed distribution function
- Diffusion curve=f isosurface in interaction region
- Isotropic core
 - Resonant frequency above f_{ce}/2 (no wave power available)
- Sometimes see shoulder at f_{ce}/2⁻

Nonlinear questions

Linear theory predicts wave growth in a broad band up to f_{ce} . So:

- 1. Why does the chorus element chirp?
- 2. Why is the wave absorbed at $f_{ce}/2$?

Growth by nonlinear trapping

IRF

- Omura, Katoh and Summers, JGR, 2008
- Wave trapping results in electromagnetic phase space hole
 - For specific conditions, resonant currents cause wave growth
 - Rising frequency
 - Quantified by inhomogeneity ratio S

Omura et al.'s prediction

Fastest-growing wave is the one that maximizes the resonant current

Inhomogeneity
 ratio S ~ -0.4

Making it testable

Need to eliminate some variables:

$$B_{w} = F\left(S, \frac{\partial \omega}{\partial t}, k, \omega, V_{g}, \Omega_{e}, \frac{\partial \Omega_{e}}{\partial h}, v_{\perp}, v_{\parallel}, V_{R}\right)$$

Need to eliminate some variables:

$$B_{w} = F\left(S, \frac{\partial \omega}{\partial t}, h, \omega, V_{e}, \Omega_{e}, \frac{\partial \Omega_{e}}{\partial h}, v_{\perp}, v_{\parallel}, V_{R}\right)$$

- Growth in range -0.6 < S < -0.2</p>
- Dispersion relation (introduces ω_{pe})
- Growth in range $0.2 < f/f_{ce} < 0.5$
- Resonance condition

Plasma parameters Velocities (???)

- Fastest-growing wave is the one that maximizes the resonant current
 - Maximize $n' = \int_{C} f d^{3}v$ over domain bounded by:
 - -0.6 < S < -0.2
 - 0.2 < f/f_{ce} < 0.5 ·

Maximization in velocity space

Integration domain depends on B_w and $\frac{\partial \omega}{\partial t}$ through S

IRF

 By integrating over the observed particle distributions, arrive at

 $n' = F\left(\frac{\partial \omega}{\partial t}, B_w\right)$

- Maximizing n' yields a very specific testable prediction:
 - Relationship between B_w and ∂f/∂t
 - NO adjustable parameters!!

Testing it...

- Need B_w and ∂f/∂t. Either:
 - Select multiple chorus elements, use average B_w and $\partial f/\partial t$ for each element
 - Amplitude and sweep rates vary throughout sweep
 - Select one element
 - Use zero crossings to get "instantaneous" B_w and frequency

- Observed chorus elements agree in detail with the theoretical prediction
 - Lines should follow maximum in n' (red)

- Pitch angle diffusion rates for Electron Cyclotron Harmonic waves (ECH) calculated by Horne and Thorne.
- For 100 mV/m:
 - Strong scattering limit over several tens of degrees for ~keV particles
 - Loss cone filled on each bounce

Horne and Thorne, JGR, 2000

ECH: effect

ECH waves remove "extended" loss cone Whistler waves fill it back in

Conclusions

- Observation: maximum electric field amplitudes larger than previously seen (>100 mV/m)
- Quasilinear theory:
 - Good fit to diffusion curves
 - Featureless spectrum up to f_{ce} not observed
- Nonlinear theory:
 - Amplitude vs. sweep rate (Omura)
 - Specific testable prediction verified
- Open (?):
 - What absorbs the waves at f_{ce}/2?
 - What causes the high-amplitude unstructured oblique whistlers?
 - Interaction between Electron Cyclotron Harmonic waves and chorus whistlers?

EXTRA SLIDES

Dispersion curves

- 2-component plasma: cold isotropic core + hot anisotropic
- Good match to dispersion curve
 - Test of instrument performance

Thermal effects not important below 0.5 f_{ce}
 Wave power confined to range 0.2-0.5 f_{ce}

STATISTICAL RESULTS

Electric field amplitude distribution

- Probability distribution function is "heavy"-tailed, with substantial probability out to tens of mV/m.
 - 4-s averaged data: values up to tens of mV/m
 - Instantaneous values much larger, but limited statistics

Spatial/temporal distribution

- Multiple satellites yield information on spatial and temporal distribution
- Enhanced activity can last for days
- Confined to a few hours of local time

Statistics: conclusions

- Whistler electric field amplitudes have a heavier tail than previously reported
 - > 100 mV/m bursts
 - High-amplitude regions are:
 - Spatially extended (several R_E)
 - Temporally persistend (several days)
 - Relevant for acceleration/loss processes
- Many of the highest-amplitude events are obliquely propagating
 - Even at magnetic latitudes < few degrees</p>
 - Lack the characteristic chorus chirp

