

Evolution of Whistler Turbulence in the Magnetosphere

Gurudas Ganguli

Plasma Physics Division Naval Research Laboratory, Washington DC 20375

Sponsored by ONR and DARPA

Modern Challenges in Nonlinear Plasma Physics Halkidiki, Greece, June 15 – 19, 2009

L. Rudakov, Icarus Inc.

W. Scales, V. Tech

J. Wang, V. Tech (Presently in USC)

M. Mithaiwala, NRL

C. Crabtree, Global Strategies Group

Acknowledgment

Dennis Papadopoulos, for numerous stimulating discussions

- Whistler waves are ubiquitous in the space plasma environment
 - Transports momentum and energy
 - Signatures of important space plasma processes; e.g., reconnection, lightning, plasmaspheric hiss, etc.
- Whistlers are also injected into the near-Earth space by man-made VLF transmitters
- Both natural and man-made whistlers affect the space plasma environment
 - Hence, important to "space weather"
- Need to understand the evolution of whistler turbulence in the space plasma environment accurately
 - Numerical simulations are necessary
 - Prerequisite for accurate simulation is knowledge of whistler wave properties

Linear Whistler Wave Properties: Homogeneous Plasma

Whistler dispersion relation in cold plasma for $\Omega_{e} > \omega > \Omega_{i}$ obtained by;

$$\vec{7} \cdot \vec{j} / e = \vec{\nabla} \cdot n_0 \left(\frac{c\vec{E} \times \vec{b}}{B_0} + \frac{i\omega}{\Omega_e} \left(1 - \frac{\omega_{LH}^2}{\omega^2} \right) \frac{c\vec{E}_{\perp}}{B_0} + i\frac{eE_z\vec{b}_0}{m\omega} \right) = 0$$
Relative drift (v_i-v_e)

• From Maxwell equations with Coulomb gauge it can be shown that

• For $\omega_{pe} > \Omega_e$ the dispersion relation is,

$$\omega^2 = \left(\frac{\bar{k}_{\parallel}^2}{(1+\bar{k}_{\perp}^2)} + \frac{m_e}{m_i}\right)\frac{\bar{k}^2\Omega_e^2}{1+\bar{k}^2}$$

$$\overline{\mathbf{k}}^2 = \overline{\mathbf{k}}_{\perp}^2 + \overline{\mathbf{k}}_{\parallel}^2$$
$$\overline{\mathbf{k}} = kc / \omega_{pe}$$

Whistlers and Lower Hybrid are the same wave at

different propagation angle

• Frequency in limiting cases:

- LH limit:
$$\bar{k}_{\perp} >> 1$$
, $k_{\perp} >> k_{\parallel}$, $k_{\parallel} / k_{\perp} << \sqrt{m_e / m_i} \rightarrow \omega^2 = \Omega_e \Omega_i$

- Whistler limit: $\overline{k} \ll 1$, $\overline{k}_{\parallel}^2 \gg m_e / m_i \rightarrow \omega^2 = \overline{k}_{\parallel}^2 \overline{k}^2 \Omega_e^2$

- Magnetosonic limit:
$$\overline{k} \ll 1$$
, $\overline{k}_{\parallel}^2 \ll m_e / m_i \rightarrow \omega^2 = k^2 V_A^2$

Greece_NL Phys_2009.4

- With density inhomogeneity the (E X B) drift gives a large term
 - Inhomogeneity could be external or self-consistent

$$\vec{\nabla} \cdot \vec{j} / e = \vec{\nabla} \cdot \left(n_0 + \delta n(x, y)\right) \left(\frac{c\vec{E} \times \vec{b}}{B_0} + \frac{i\omega}{\Omega_e} \left(1 - \frac{\omega_{LH}^2}{\omega^2}\right) \frac{c\vec{E}_{\perp}}{B_0} + i\frac{eE_z\vec{b}_0}{m\omega}\right) = 0$$
• Essentially 3 dimensional - Extends instability relaxation time
$$-n_0 \frac{\omega}{\Omega_e} \left(\frac{1 + \vec{k}^2}{\vec{k}^2} - \frac{\omega_{LH}^2}{\omega^2} - \frac{\Omega_e^2}{\omega^2} \frac{\vec{k}_z^2}{1 + \vec{k}_x^2}\right) \frac{ck_x E_x}{B_0} - \frac{c}{B_0} (\vec{E} \times \vec{\nabla} \delta n) \cdot \vec{b}_0 = 0$$

Density fluctuations introduces new solution (sort of drift waves)

$$\frac{\omega}{\Omega_e} = -\frac{\nabla_y \delta n}{2n_0 k_x} \frac{\bar{k}^2}{1+\bar{k}^2} \pm \left(\left(\frac{\nabla_y \delta n}{2n_0 k_x} \frac{\bar{k}^2}{1+\bar{k}^2} \right)^2 + \frac{m}{M(1+\bar{k}_x^2)} + \frac{\bar{k}_z^2 \bar{k}^2}{(1+\bar{k}_x^2)(1+\bar{k}^2)} \right)^{1/2} \quad \omega \to -\frac{\Omega_e \nabla_y \delta n}{n_0 k_x} \frac{\bar{k}^2}{1+\bar{k}^2}$$

Nonlinear pondermotive force along B₀ can lead to second order density fluctuations

$$\delta n(x, y) \propto k_{\parallel} \equiv \partial / \partial z$$

Small $\delta n/n$ (> max[(m/M)^{1/2},k_z/k]) leads to big change in whistler mode character

- Nonlinear quasi-electrostatic Lower Hybrid (LH) waves extensively studied
 - Porkolab, 1974
 - Hasegawa and Chen, 1975
 - Shapiro, Shevchenko, Papadopoulos and Sagdeev, 1977-1993

• Simulations based on EMHD equation (no density perturbation)

- D. Biskamp, E. Schwartz, and J. F. Drake, Phys. Rev. Lett. 76, 1264 (1996)
- S. Dastgeer, A. Das, P. Kaw, and P. H. Diamond, Phys. Plasmas 7, 571 (2000)

• **2D PIC simulations** $(\vec{k} \times \vec{\nabla} \delta n) \cdot \vec{B}_0 = 0$

- D. Biskamp, E. Schwartz, and J. F. Drake, Phys. Rev. Lett. 76, 1264 (1996)
- S. P. Gary, S. Saito, and H. Li, Geophys. Res. Lett., 35, L02104 (2008)
- S. Saito, S. P. Gary, H. Li, and Y. Narita, Phys. Plasmas 15, 102305 (2008)

Induced whistler wave scattering while radiating low frequency wave

Waves energy and momentum are conserved

$$\omega_1 = \omega_2 + \omega_3, \quad \vec{k}_1 = \vec{k}_2 + \vec{k}_3$$
$$\omega_1 \gg \omega_3 \quad (= LH / MS, \vec{k}c_s, l\Omega_i)$$

Induced wave scattering by plasma particles

 Wave momentum need not be conserved if particles are magnetized (principal momentum conserved)

$$\Delta \vec{P}_{\perp} = (ne/c)\Delta \vec{A}_{\perp} + \Delta n\vec{v}_{\perp} = \left(mnv_e(\Delta \vec{r}_{\perp}/\rho_e) + \sum_k (\Delta \vec{k}_{\perp})N_k\right) = 0$$

Resonance Condition $v_{\parallel e} = \frac{\omega_1 - \omega_2}{k_{\parallel \parallel} - k_{2\parallel}}$
 $\vec{v}_1 \xrightarrow{w_1, \vec{k}_1, \dots, \vec{v}_2, \vec{k}_2, \vec{v}_2}$

W-P interactions are less restrictive than W-W interactions

- Calculate nonlinear conversion of W/LH waves (E₁) into LH/W waves (E₂)
 - Maxwell Equation,
 - Fluid equations for ion
 - Vlasov equation for electrons in drift approximation
- Whistler waves in a medium with slowly varying density perturbation induced by beat waves ($\omega_1 \omega_2$):

$$\nabla \cdot \vec{j} = n_0 \frac{\omega}{\Omega_e} \left(\frac{1 + \bar{k}^2}{\bar{k}^2} - \frac{\omega_{LH}^2}{\omega^2} - \frac{\Omega_e^2}{\omega^2} \frac{\bar{k}_z^2}{1 + \bar{k}_x^2} \right) \frac{c}{B_0} \nabla_\perp \cdot \vec{E}_\perp^{(1)} + \frac{c}{B_0} (\vec{E}^{(1)} \times \vec{\nabla} \delta n_e^{(2)}) \cdot \vec{b}_0 = 0$$

- 2nd order density perturbation due to pondermotive force along B₀.
 - Maxwell electrons and unmagnetized ions

$$\frac{\delta n_{e}^{(2)}}{n_{0}} = \left(-\frac{c}{B_{0}}(\vec{E}_{k2} \times \vec{k}_{1})_{z} \frac{\vec{k}_{1\perp}^{2} e \varphi_{k1}}{\omega_{k1}(1 + \vec{k}_{1\perp}^{2})T_{e}}(1 + \zeta Z(\zeta))\right), \quad \zeta = \frac{\omega_{k1} - \omega_{k2}}{(k_{1z} - k_{2z})v_{te}}$$

- Subsonic ion condition: $(\omega_{k1} - \omega_{k2})^2 < (\overline{k}_{1\perp} - \overline{k}_{2\perp})^2 c_s^2$

İ

 $\omega_1 - \Delta \omega_2 k_2$

• For narrow frequency band ($\delta \omega < \gamma_{NL}$) Re Z leads to modulation instability, NLS equation and collapse of localized LH 3D wave packets (if T_e >> T_i)

$$\frac{\partial E_{k2}}{\partial t} \sim -E_{k2}\omega_{LH} \frac{M}{m} \frac{W_{k2}}{n_0 T_e} + E_{k2}(\omega - \omega_{LH}) \quad W_k \equiv \frac{\omega_{pe}^2}{\Omega_e^2} \frac{|E_k|^2}{8\pi}$$

- For broad frequency band turbulence Im Z leads to nonlinear scattering by plasma electrons
 - Short wavelength electrostatic case discussed by Hasegawa and Chen, 1975

$$\gamma_{LH \to LH} \equiv \frac{\partial \ln W_{k2}}{\partial t} = \omega_{LH} \frac{M}{m} \sum_{k1} \frac{(\vec{k}_1 \times \vec{k}_2)_z^2}{k_{1\perp}^2 k_{2\perp}^2} \zeta \operatorname{Im} Z(\zeta) \frac{W_{k1}}{n_0 T_e}$$

• Frequency decreases while wave scatters

$$\Delta \omega \sim \min\left\{k_{1z} - k_{2z} \mid \mathbf{v}_{te}, \mid \vec{k}_{1\perp} - \vec{k}_{2\perp} \mid c_s\right\}$$

 ω_1, k_1

 $\omega_{LH}, \vec{k}_{LH}$

- Generalization of Hasegawa and Chen
 - Long wavelength electromagnetic regime

$$\gamma_{NL} = \frac{dN_{k2}}{N_{k2}dt} \sim \Omega_e^2 \frac{\bar{k}_{2\perp}^2}{1 + \bar{k}_{2\perp}^2} \sum_{k1} \frac{(\bar{k}_1 \times \bar{k}_2)_z^2}{k_{1\perp}^2 k_{2\perp}^2} \frac{\bar{k}_{1\perp}^2}{1 + \bar{k}_{1\perp}^2} \zeta \operatorname{Im} Z(\zeta) \frac{N_{k1}}{n_0 T_e} \qquad N_k = W_k / \omega_k$$

Scattering rate decreases frequency slightly and conserves "plasmons" N

$$\Delta \omega / \omega_{LH} < |\vec{k}_{1\perp} - \vec{k}_{2\perp}| \beta_e^{1/2}$$
Wave-particle resonance can be easily met for any combinations of $(k_{\parallel}, k_{\perp})$ in a thin slot in which $\omega \sim \text{const.}$

$$\omega^2 = \left(\frac{\vec{k}_{\parallel}^2}{(1+\vec{k}_{\perp}^2)} + \frac{m_e}{m_i}\right) \frac{\vec{k}^2 \Omega_e^2}{1+\vec{k}^2}$$

Short wavelength can scatter into long wavelength and vice-versa: γ_{NL} largest for $k_1 \perp k_2$

- Simulation box (X-Y) 512 x 256, equals 51.2 and 25.6 electron inertial lengths
- Magnetic field in (X-Z) plane with inclination $b_x = B_x/B_0$

Simulation parameters

$$m_i = 100m_e, \ \omega_{pe}^2 / \Omega_e^2 = 5, \ v_{te} = 0.14c, \ \beta_e = 0.1, \ T_e = T_i$$

• Whistlers self-consistently generated by "heavy ring electrons"

$$n_r / n_e = 0.25;$$

 $V_r / c = 0.2$
 $m_r / m_e = 3 \& 10$

Greece_NL Phys_2009.11

- Hydro: Whistlers generated by ring beam for $\Omega_{e} > \omega > \omega_{LH}$ [Ganguli et al., JGR, 2007]
 - Large $k_{\perp}V_r / \Omega_r > 1$ necessary

$$\omega = l\Omega_r \qquad \frac{\gamma}{l\Omega_r} = \frac{1}{2} \sqrt{\frac{n_r m_r}{n_e m_e}} \left| \frac{dJ_l^2(\sigma_r)}{\sigma_r d\sigma_r} \right| \frac{b_e}{\Gamma_l(b_e)} \left(\frac{\Omega_e^2 - l^2 \Omega_r^2}{\Omega_e^2} \right)^2 \frac{\bar{k}^2}{1 + \bar{k}^2}$$

6 For the simulation parameters and for l = 1∼<u>-0.04</u> Case 1 $\sigma_r = k_{\perp} V_r / \Omega_r = 0.45 \overline{k_{\perp}} (m_r / m_e)$ B₀ Z 3

$$= (k_{\perp} \rho_e)^2 / 2 \ll 1 \Longrightarrow b_e / \Gamma_1(b_e) \sim 2$$

Small $k_1 V_r / \Omega_r < 1$ necessary

$$\frac{\omega}{\Omega_r} = 1 - \frac{1}{\kappa^2} \qquad \frac{\gamma}{\Omega_r} = \sqrt{\pi} \frac{\left(\theta - \kappa^2\right)}{\theta^{-1/2} \beta_{\perp}^{1/2} |\kappa|^7} \exp\left(-\frac{1}{\theta^{-1} \beta_{\perp} \kappa^6}\right)$$

$$\kappa = k_{\parallel} c / \omega_{pr} \qquad \theta = m_r V_r^2 / 2T_{\parallel r} \qquad \beta_{\perp} = \frac{4\pi n_r m_r V_r^2}{B_0^2} \qquad \frac{\gamma_{\max}}{\Omega_r} \sim \sqrt{\beta_{\perp}} \theta$$

 $\stackrel{\scriptscriptstyle 3}{\longleftrightarrow} \stackrel{\scriptscriptstyle 4}{\rightarrow} \sigma$

0.08

-0.02

-0.06

-0.08 -0.1

X

 $k_{\rm m} = k_{\rm m} \sin \theta$

ь 1006 9 0.04 р 0.02

 b_{e}

Whistler $\omega_{M} = 3.3 \omega_{LH}$ scatters radiating LH/MS wave $\omega_{D} \simeq 0.5 \omega_{LH}$

Whistler scatters radiating daughter waves $\Delta \omega / \omega_{LH} < \Delta k_{\perp} c / \omega_{pe} \beta^{1/2} < 0.2$. No third low frequency wave to satisfy 3 wave decay condition.

Whistler radiates daughter waves with large angle rotation for which γ_{NL} is large

No nonlinear scattering on this time scale contrary to the $b_x = 0.2$ case

Only whistler with small k_{\perp}/k_{\parallel} arise. No nonlinear scattering.

- Electromagnetic PIC simulations show that evolution of whistler turbulence is dominated by nonlinear ponderomotive force
- The ponderomotive force leads to higher (second) order density perturbation
- The density perturbation significantly changes the whistler evolution
 - Extends the instability relaxation time by orders of magnitude
 - Introduces an essentially 3 dimensional character
 - Nonlinear scattering (wave-wave and wave-particle) dominate the nonlinear phase
- Wave-particle interactions convert short wavelength quasi-em waves into long wavelength em waves and vice-versa
 - Large changes in wavelength possible because wave momentum need not be conserved