Co-existence of Turbulence and Discrete Modes in the Solar Wind

S. Ghosh, JHU APL D.J. Thomson, Queens University W.H. Matthaeus, University of Delaware L.J. Lanzerotti, New Jersey Institute of Technology

Modern Challenges in Nonlinear Plasma Physics Sani Resort, Halkidiki, Greece June 15-19, 2009

The *p*- and *g*-mode in the SW controversy

Thomson et al, Nature, **376**, 139 (1995)

Roberts et al, Nature, **381**, 31 (1996)

Discrete modes & turbulence in a coronal geometry

Figure 4. (a) Power frequency spectrum of the driving applied at the bottom boundary, for the case of two discrete modes and a broadband background frequency spectrum; (b) Average of power frequency spectra of magnetic field time series at 64 probes on the midplane.

Dmitruk et al, GRL, 31, 21,805 (2004)

3-D Reduced MHD simulations by Dmitruk, Matthaeus & Lanzerotti.

Reduce MHD: Appropriate for weakly compressible plasma in the presence of a strong magnetic field.

Simulations:

Mean B-field in z-direction; No plasma flow in z-direction; Velocity (*p*-mode) timedependent stirring at z=0; Frequency analysis at z=0 and z= z_{max} ;

Anisotropy in MHD turbulence due to a mean magnetic field

Shebalin et al, J. Plasma Phys., 29, 525 (1983)

3D MHD System

1)
$$\frac{\partial}{\partial t} \rho + \nabla \cdot (\rho u) = 0$$

2) $\frac{\partial}{\partial t} u + u \cdot \nabla u = -\frac{1}{\rho} \nabla P + \frac{J \times B}{\rho} + D_{u}$
3) $\frac{\partial}{\partial t} A = u \times B + D_{a}$
where $P \sim \rho^{\gamma} \gamma = 5/3$
Dissipation: $D_{u} \sim k^{4} u_{k} \quad D_{a} \sim k^{4} a_{k}$

Grid sizes = $64 \times 64 \times 64$ and $128 \times 128 \times 128$

Simulation Geometry

• Reduced spectra $k_r : \tan \theta = \frac{k_r}{k_x}$

- Driven 2-D turbulence at $k_x = 0$
- Decaying discrete mode at k_x = 10

Reduced Spectra of the same plasma state measured at different Θ angles to the mean magnetic field

The effect of turbulence with non-zero Δk_{\parallel} bandwidth

Time > 0

Survivability of Monochromatic Alfvénic (high cross-helicity) Mode

• Initial discrete mode
$$\sigma_c = \frac{2 u \cdot B}{u \cdot u + B \cdot B} = +1$$
 at $k_x = 0$

• Driven 2-D turbulence with k_x bandwidths: $\Delta k_x = 0, 1, 2, 3$

Magnetic Surfaces & Field-Line Renditions

Magnetic Surfaces Slab MHD Turbulence

lagnetic Surfaces Composite MHD Turbutence (80% 2D; 20% Stab)

Conclusions

- Discrete modes and turbulence can co-exist for several nonlinear times;
- Persistence of the discrete mode depends on
 - Presence of a background B₀ field
 - Large separation between the k_{\parallel} bandwidth of turbulence and the discrete mode's k_{\parallel} wavenumber;
- Direction of reduced spectrum (k_r) wrt B₀ influences observability.