

Nonlinear solar wind - magnetosphere coupling using MHD models

Tuija I. Pulkkinen

Finnish Meteorological Institute, Helsinki, Finland

Solar wind parameter controlling energy input into magnetosphere

Role of magnetotail in the energy circulation process

Coupling of energy transfer through magnetopause with magnetotail state and dynamics

- Dungey, 1962
 - convection cycle driven by reconnection
- McPherron, 1970
 - loading-unloading cycle of substorms

- Test runs with artificial input
- Four IMF rotation runs:
 - slowly rotating IMF
 - constant speed and density
- Two changing pressure runs:
 - changing speed
 - changing density

- Reconnection power
 - flux annihilation at magnetopause from Poynting flux divergence
- Flux generation power
 - at magnetopause from
 Poynting flux divergence
- Energy input through boundary
 - trace total energy vector

(see Palmroth et al., 2003, 2006; Laitinen et al., 2007)

- Reconnection line in GUMICS-4 global MHD simulation
 - black: X-line
 - red: B-direction
 - blue: E-direction (E = -V×B)
- Reconnection line orientation
 - angle roughly half of the IMF clock angle (tan $\theta = B_y/B_z$)

(Pulkkinen et al., 2009)

Efficiency: power / Eparallel

- Magnetic cloud as a driver
- Steady convection event as response
- Examine changes in response, if
 - IMF Bz increased
 - solar wind speed increased
 - solar wind density increased

(Goodrich et al., 2007; Pulkkinen et al., 2007, 2009)

- 10 magnetic cloud events with slowly rotating IMF
 - no prior sheath driving: clean response to cloud

- 10 magnetic cloud events with slowly rotating IMF
 - no prior sheath driving: clean response to cloud
- Ionospheric response by AE
 - efficiency AE/E_{PAR}
 - only dependent on E_{PAR}
 - independent of pressure

- In 3D situation, reconnection rate E_{PAR} along the tilted X-line at the magnetopause determines how much energy enters the magnetosphere
 - pressure/speed has a minor role in controlling flux generation tailward of the cusps
- Explains empirical results of dependence on $sin(\theta/2)$ in e.g. epsilon
 - IMF clock angle controls X-line orientation

Solar wind parameter controlling energy input into magnetosphere

Role of magnetotail in the energy circulation process

Coupling of energy transfer through magnetopause with magnetotail state and dynamics

- Papapdopoulos et al., 1993
 - magnetosphere as a lens for MHD waves
- Papadopoulos et al., 1999
 - Poynting flux focussing to the inner magnetosphere as driver of substorms
 - natural explanation for NENL formation

- Large-scale solar wind structures
 - e.g. magnetic clouds
- Magnetospheric responses
 - steady convection periods
 - sawtooth oscillations
 - magnetic storms
- Key distinguishing parameter
 - solar wind speed

(Pulkkinen et al., 2007)

- Magnetic cloud as a driver
- Steady convection event as response
- Examine changes in response, if
 - IMF Bz increased
 - solar wind speed increased
 - solar wind density increased

- Effect of solar wind speed
 - changes tail response; higher speed induces more dynamic tail
 - low speed
 - intermediate speed
 - high speed

- → steady convection (SMC)
- ➔ periodic activity (sawtooth)
- → strong irregular activity (storm)

Solar wind parameter controlling energy input into magnetosphere

Role of magnetotail in the energy circulation process

Coupling of energy transfer through magnetopause with magnetotail state and dynamics

- Tanskanen et al., 2002
 - substorm size not proportional to energy input during growth phase
 - substorm size depends on energy input during expansion phase

- Milan et al., 2008: substorm size determined by
 - polar cap open magnetic flux
 - dayside reconnection rate

Four categories according to PC flux level

- Pulkkinen et al. 2006, Palmroth et al. 2006
 - no immediate response of energy input to IMF rotation changes
 - energy input through magnetopause directly affects energy dissipation in magnetosphere and ionosphere
 - delay generated already at the magnetopause

- Energy entry through magnetopause controlled by solar wind and IMF parameters AND magnetospheric state
 - magnetosphere only takes in what it can dissipate
 - explains substorm size correlation with integrated energy input
 - explains substorm timing dependence on dayside reconnection rate
 - possibly arises from dayside reconnection process dependence on magnetospheric convection

Conclusions

- Reconnection rate $E_{PAR} = Esin(\theta/2)$ along tilted X-line determines ٠ energy entry to magnetosphere
 - explains epsilon dependence on $sin(\theta/2)$
 - IMF clock angle controls X-line orientation
- Solar wind speed determines magnetotail response mode ۲
 - low speed
- steady convection (SMC)
- high speed
- intermediate speed
 periodic activity (sawtooth)
 - → strong irregular activity (storm)
- Solar wind energy entry controlled also by magnetospheric state ۲
 - substorm size correlation with energy input
 - substorm timing dependence on dayside reconnection rate