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Abstract. We consider the nonlinear interaction of magnetized electrons with an
oblique narrow-band electromagnetic wave-packet. The interaction is analyzed over
and near the local threshold to chaos. The statistical character of the forcing that
controls the trajectories of the particles is also studied. We focus our analysis on
issues related to energy and spatial diffusion across the magnetic field by following
the evolution of the ensemble mean squares < (γ − γ0)2 > and < (r⊥ − r⊥0)2 >

for various values of the wave amplitude and angle of wave propagation. We study
in particular the interaction of magnetized electrons with waves having strong and
moderate amplitudes, near the transition to chaos where the dynamics is complex and
a mixture of periodic and stochastic orbits co-exist. The electron diffusion in real and
energy space is found to obey simple power law in time and the scaling exponents are
indicative of sub-diffusion. This is a direct consequence of the effect of the resonant
phase-space islands in the particle motion.
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1. Introduction

The nonlinear interaction of charged particles with electrostatic and electromagnetic

waves is of great importance for the laboratory and astrophysical plasmas. This problem

has been investigated in detail for the last thirty years. It was found that the coupling

of non-relativistic magnetized ions with an ion-cyclotron electrostatic wave becomes

extremely efficient when the wave amplitude and initial ion energy are above a threshold

value, and the motion becomes chaotic leading to heating of particles in the stochastic

region of the phase space [1, 2, 3]. In this case the chaotic region is bounded, and thus

there is a limit in the maximum possible energy gain by the ions. This mechanism

provided an explanation for the generation of energetic ion tails in lower-hybrid-heating

experiments for the tokamak [4], as well as a possible explanation for observations of

ion acceleration in the ionosphere [5].

The study of the nonlinear interaction of magnetized ions with many electrostatic

waves showed that there can be non-resonant acceleration, and this may lead to

unlimited energy gain regardless of the ion initial energy, depending on the parameters

of the wave spectrum [6].

The importance of relativistic effects has also been recognized [7, 8]. The properties

of the phase space are altered when the relativity theory is included and the energization

appears more intense. The relativistic effects can be very important for electrons, but not

as important as for the dynamics of heavier ions. Low energy electrons gain substantial

energy only when the relativistic effects are included [8, 9].

Electromagnetic waves, due to their nature, have been proved more effective than

electrostatic waves in accelerating and heating the electrons, under certain conditions.

Early studies indicated that, in magnetized plasmas, resonance of the relativistic

cyclotron motion with the Doppler-shifted wave frequency can lead to unlimited coherent

acceleration, as long as the wave propagation is parallel to the magnetic field with the

refraction index close to unity [10, 11]. These results were extended to the more realistic

case of oblique monochromatic propagation [12, 13, 14]. Furthermore, when the parallel

phase velocity of the wave is larger than c, the phase space is open, and thus unlimited

electron acceleration is possible [13], contrary to the perpendicular propagation of

electrostatic waves studied in [1, 2], but also to the non-relativistic approximation

studied in [14], where the phase spaces are closed and the energy gain is limited.

The interaction with more than one electromagnetic waves was studied by means

of the Hamiltonian formalism [15] or by using mapping approximations [16], where

enhancement of the stochastic acceleration mechanism was predicted. Such applications

are very important for the acceleration in the ionosphere, but also in modern fusion

experiments; for example, single and multi-frequency electron-cyclotron resonance

heating (ECRH) is an essential component for the fusion devices of current research,

such as stellarators and tokamaks [17].

The rate of particle transport is crucial for the evolution of plasmas, especially for

the laboratory plasma where controlling the particle diffusion is important for the fusion
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reactors. It has been pointed out in the past that in stochastic acceleration scenarios, as

e.g. in [1, 13], the energy gain has a diffusive nature. Early studies of Hamiltonian chaos

showed that, for a number of cases, the quasilinear approximation is fairly good, and

the corresponding Fokker-Planck (FP) equation describes sufficiently well the evolution

of the distribution function [18, 19].

Since then, a lot of work has been done on the applications of the quasilinear theory,

but also on investigating its domain of validity. For electromagnetic waves interacting

with electrons, theoretical predictions have been obtained on the basis of an FP equation

with a local quasilinear diffusion coefficient using a monochromatic electron-cyclotron

(EC) wave propagating perpendicular [20, 21] or obliquely to the magnetic field [22, 23],

and also for narrow wave-packet propagation [15]. In [20] the analysis was performed in

the globally stochastic regime, and the quasilinear predictions were in agreement with

the numerical results from the equations of motion. On the contrary, in the case of a

locally stochastic phase-space [21], appreciable deviations were found at long times. In

[15, 22] the diffusion process was found to proceed in stages following different scalings.

The time scales involved are much longer than those in [1], and the FP approximation

becomes invalid for long times. In another, more recent work, ECRH simulations were

performed using a full nonlinear treatment in contrast with the quasilinear theory [24].

The results show that the deviation from the quasilinear theory can be strong for present

day fusion experiments.

In numerous publications [25, 26, 27, 28], examples from the interaction of

electrostatic waves with ions have been studied and it was shown that the quasilinear

theory breaks down due to the presence of resonant periodic orbits (islands) in the

phase-space. These formations cause large time-space scaling of the particle kinetics,

and thus non-Gaussian diffusion. The transition to normal diffusion occurs only for

system parameters corresponding to strong chaos. In [27, 28], but also in a later review

[29], anomalous transport was considered, with strong arguments (as described in [30]),

to be a result of a Lèvy process [31]. In systems undergoing anomalous diffusion, the

scaling of the ensemble mean square displacement of the particles was shown to be

[29, 30]

< (∆R)2 >∝ tα (1)

where a is the transport exponent for the process. The type of anomalous diffusion is

determined by the exponent (a = 1 obviously means normal diffusion): if a < 1 the

evolution is called sub-diffusive, while for a > 1 we have super-diffusion. Furthermore,

it was suggested that the Fractional Fokker-Planck (FFP) formalism is the appropriate

tool for the study of the diffusion properties of such dynamical systems [32, 33, 34, 35].

All the above results suggest that the problem of particle transport is more complicated

than one might have expected.

In this article, we focus our attention on the interaction of magnetized relativistic

electrons with electromagnetic waves. This problem has been studied in the past (see

references mentioned already), but there is still strong disagreement on the character
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of particle diffusion both in energy and real space. We analyze, for the first time,

the diffusion of electrons perpendicular to the external magnetic field in the presence

of electron-cyclotron waves, without using a quasilinear approximation for the phase

space. We pose two questions: (1) Does the nonlinear interaction of EC waves with

magnetized electrons follow a normal or anomalous diffusion? (2) Is the quasilinear

approximation valid for the interaction of EC waves with plasma? The forcing that

controls the trajectories of the particles is also examined, and its complicated character

is emphasized. The EC waves used are right-handed circularly polarized and propagate

in the (x, z) plane at an angle θ with respect to a uniform background magnetic field

B0z. The ambient plasma is assumed to be cold.

The article is organized as follows: in section 2, the formulation of the problem is

presented by the means of an autonomous relativistic Hamiltonian, and also our model

parameters and characteristics are given, while in section 3 the character of the forcing

that affects the particles is discussed. In section 4, the numerical results concerning

the anomalous diffusion are presented and analyzed. Finally, in the last section our

conclusions are summarized and discussed.

2. Our model

2.1. Hamiltonian formulation

In our model, the EC wave-packet consists of N discrete modes which propagate at

frequencies ωi ε [ω − ∆ω/2, ω + ∆ω/2]. The bandwidth ∆ω of the wave-packet is a

small fraction of the main frequency ω. The amplitudes of the subterminal modes

A01, A0N are a fraction of the amplitude A0 of the main mode ω, while the amplitudes

of the remaining modes are distributed within these bands using linear interpolation.

The vector potential describing the wave-particle interaction is [15]

A =

N∑

j=1

A0j(cos θ sin φjx + cos φjy − sin θ sin φjz) + xB0y (2)

with A0j = (4πcSj/ω
2
j )

1/2 the vector potential amplitudes, expressed in terms of the

power flux, φj = ωj(nxjx + nzjz − ct)/c the wave phases and nj the refraction index [36]

n2
j = 1 − ω2

p

ωj(ωj − ωc)
(3)

corresponding to wave frequency ωj, ωc = eB0/mec and ωp = (4πnee
2/me)

1/2 are the

cyclotron and plasma frequencies, ne, me are the electron plasma density and electron

rest mass respectively, and nxj = nj sin θ, nzj = nj cos θ are the perpendicular and parallel

refraction indices with respect to the ambient magnetic field. We should note that the

simple dispersion relation (3) is not the exact for obliquely propagating EC waves (for

the exact relation see [36]), however it is a good approximation for the parameters used

in this study [13].
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An autonomous Hamiltonian can be obtained with the use of proper canonical

transformations [15, 22]. As a first step, the generating functions Fj = F2 =

x′px + y′py + (z′ − ct/nzj)pzj (j = 1, .., N), where the old variables are denoted as

primed, are used to transform the time-dependent Hamiltonian of the motion

H = [(p +
eA

c
)2 + m2c2]1/2 (4)

After the N transformations, the system becomes of N + 2 degrees of freedom, namely

the coordinates (x, y, [zj, j = 1, .., N ]). However, the degrees of freedom can be reduced

to 4 (x, y, za, zh) using the generating function FR = −F3 = za

∑N
j=1(1 − nh/nzi)pzi +

zh

∑N
j=1 nhpzi/nzi, and the resulting Hamiltonian is [15]

H = γ − ph

nh
(5)

where γ = [1 + (px + cos θ
∑N

j=1 εj sin φj)
2 + (py + x +

∑N
j=1 εj cos φj)

2 + (pa + ph −
sin θ

∑N
j=1 εj sin φj)

2]1/2 is the relativistic Lorentz factor, φj = ωj[nxjx+(nzj−nh)za+nhzh]

are the dimensionless autonomous wave phases, εj = eA0j/mec
2 are the normalized

amplitudes, nh is the harmonic median of the parallel refraction indices nzj and

x, y, za, zh,px, py, pa, ph stand for the new canonical variables of the system, arising from

the dimension-reduction transformation. The Hamiltonian is normalized with mec
2, the

time with ω−1
c and the wave frequency with ωc. The dimensionless coordinates and

canonical momenta are ωcx/c, ωcy/c, ωcz/c and px/mec, py/mec, pz/mec. Note that the

Hamiltonian does not depend on the coordinate y, and thus y is a cyclic variable and

its conjugate momentum py is a constant of the motion.

From the above analysis, the Hamiltonian equations of motion can be easily

obtained. In the special case of a monochromatic wave (N = 1), the system is

simpler: the degrees of freedom of the autonomous system are 3 (with y cyclic) and

no transformation for reducing the dimensions is needed. The Hamiltonian for this case

can be obtained from (5) after setting zh = z, pa = 0, ph = pz and nh = nz.

2.2. Our model parameters

Our choice for the plasma parameters is the following: the uniform magnetic field is

B0 = 3.5 · 10−5 T, corresponding to a cyclotron frequency ωc = 1.96π MHz, while the

plasma density is ne = 102 cm−3, and so the plasma frequency is ωp = 0.564 MHz.

Practically, these values correspond to the night-time ionosphere at an altitude ∼ 130

km. The main wave frequency is ω = 6π MHz, in the range of radio waves, and the

bandwidth of the wave-packet, which consists of N modes, is ∆ω = 0.12π MHz (2% of

the main frequency). The angle of propagation, unless differently stated, is θ = 40o.

Several wave amplitudes within (0, 0.5] are used when following the system evolution.

An amplitude value ε corresponds to total power flux S = 30
∑N

j=1 njω
2
j ε

2
j (W/cm2).

The equations of motion are integrated using a 4th order Runge-Kutta algorithm. The

accuracy of our scheme was checked using the error in the calculation of the motion
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constant H . This error is of the order 10−8.

We briefly report below some of the characteristics of our model:

2.2.1. Local threshold to chaos For this system, significant chaos exists only for

amplitudes larger than a critical value εcr, which depends on the other parameters (e.g.

wave frequency, propagation angle). A local estimate of εcr can be found by utilizing

the fact that for ε > εcr the acceleration is possible, as seen in figure 1(a) where the

mean energy of a monoenergetic ensemble of 10000 electrons after T = 3000 (0.48 ms)

is given as a function of ε, for the interaction with a single wave (N = 1) as well as

with a wave-packet of N = 5 modes. The initial energy of the ensemble, constituted

by N = 1000 particles, is γ0 = 2.5 (1.279 MeV in physical units). The energy remains

almost constant for small ε, until a sudden increase appears near εcr = 0.03 for N = 1,

a value S = 246 mW/cm2 for the power flux, and for N = 5 near εcr = 0.015 (a lower

value S = 167 mW/cm2). The onset of chaos in the system is similar with respect to

the angle of propagation [14]; for fixed values of the other parameters, there is a critical

angle value over which chaos exists.

2.2.2. Poincarè surfaces of section The interaction of electrons with a monochromatic

wave (case N = 1) is essentially of two degrees of freedom, and so the dynamics can be

visualized using Poincarè surfaces of section (PSS). In [14] there is an extensive study in

this direction; here we present only an indicative case in order to uncover the intrinsic

complexity of the phase space. In figure 1(b), the PSS is shown for ε = 0.1. For forming

the surfaces of section, 20-50 electron orbits are followed for T = 2000 − 3000, and the

section points are taken ”stroboscopically” every time when ωnzz is multiple to 2π with

the same direction of crossing ż < 0. Note that the phase space is inhomogeneous, a

highly-complex mixture of periodic and stochastic behavior. A large number of resonant

islands of different scales exists in the stochastic sea. These islands serve as regions of

trapping for the particle motions.

2.2.3. Energy distribution function and electric current The distribution of the particle

energies is an important concept, because the probability density function (PDF)

can be described as the solution of FP/FFP equations, depending on the statistical

characteristics of the motion. In figure 1(c), the distribution function is given for ε = 0.1

after T = 5000, for interaction with the single wave (N = 1) and with the wave-packet of

N = 5 modes. The simulations were performed for initially mono-energetic ensembles

f(γ, t = 0) = δ(γ − γ0) of N = 10000 particles with γ0 = 2.5. In both cases, it is

certain that the evolution of the system is diffusive and associated with energy gain,

and the particles are accelerated more efficiently as the number of modes increases. This

behavior is also seen in figure 1(d), where the electric current I = Ne < υ > resulting

from the particle motion is shown as a function of time for the same parameters. In this

figure, the current values are normalized to the initial current I0 = Neυ0.
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Figure 1. (a) Ensemble mean energy < γ > as a function of ε, (b) Poincarè surface of
section (x, px) for ε = 0.1, (c) Energy distribution function f(γ) for N = 1, 5 (ε = 0.1),
(d) Normalized electric current I/I0 vs time for N = 1, 5 (ε = 0.1).

3. Forcing term

The equation of motion for a magnetized electron in the presence of an electromagnetic

wave-packet is

d(γmev)

dt
= −eE1(r, t) − e

c
[v × (B0(r, t) + B1(r, t))] (6)

where E1(r, t) = −1/c∂A(r, t)/∂t and B1(r, t) = ∇ × A(r, t) are the electric and

magnetic field of the wave-packet, which determine the forcing on the particle.

The statistical properties of the forcing term

F = −eE1(r, t) − e

c
v × B1(r, t) (7)
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are extremely important for the evolution of the gyrating particle and its transport

properties. Several studies have discussed the properties of magnetized ions in the

presence of pre-described forcing terms: in [35], a homogeneous and isotropic electric

field with non-Gaussian, Lèvy-stable statistics is considered and the relevant FFP

equation is solved. The stationary states are essentially non-Maxwellian and the

characteristic displacement of the particles grows super-diffusively with time. In [37] a

non-resonant, frictionless ”impulsive” forcing was studied. The forcing term has random

direction and acts on the particle at random times. The motion is a superposition of a

Brownian motion and a gyration and its transport characteristics are described well with

the FP description when the number of impulsive events is large. In [38], a turbulent

electrostatic field was used to describe magnetized ion motion. It was shown that the

transport properties are anomalous and an FFP equation was necessary to describe

the evolution of the particle distribution function. A similar field was used in [39]

where, apart from anomalous diffusion, it was found that a barrier for transport can be

generated through the randomization of phases of the turbulent field.

The forcing term described in (7) depends on the spatial coordinates and it is highly

inhomogeneous along the trajectory of the particle. In figure 2(a), the distribution of the

perpendicular component of the forcing is given for N = 1, ε = 0.1, while in figure 2(b)

the same is shown for the same amplitude and N = 5. The initial conditions are taken

in the chaotic part of the phase space, and the particle is followed for T = 3000. The

deviation from Gaussian statistics is evident, being more intense in the second case,

which implies that the forcing contains non-Gaussian characteristics. This is connected

to the inhomogeneous character of the forcing mentioned above, and is bound to affect

the chaotic motions with spatially-dependent statistics. The particles show a strong

preference to lie on regions of small perpendicular forcing, especially in the second case.

The situation may become different when different initial conditions are chosen, but the

general picture remains the same.

The effect of the forcing term on the orbits can be uncovered by studying the motion

of the gyro-center under the E × B drift force. In a ”first order” approximation, for

values of the wave amplitude where B1 < B0, one may neglect the contribution of the

wave magnetic field and study a simplified equation for the perpendicular motion

d(γmev⊥)

dt
= −eE1⊥ − e

c
(v⊥ × B0) (8)

Based on (8), an equivalent drift velocity for the gyro-center, which in this case is

non-constant and relativistic, may be defined as

wD = c
E1⊥ × B0

γB2
0

(9)

In figure 2(c), (d), the orbit of the gyro-center after T = 1000 under the drift force

E1⊥ × B0 is given for N = 1 and N = 5 respectively. In both cases, the value for the

wave amplitude is ε = 0.1, for which B1/B0 ≈ 0.3. The initial conditions are taken in

the chaotic part of the phase space. The complex character of the motion is evident
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Figure 2. Distribution function f(F⊥) of the perpendicular forcing F⊥ for (a) N = 1,
(b) N = 5 (ε = 0.1), and the orbit of the gyro-center under the E1⊥ × B0 drift force
for (c) N = 1, (d) N = 5 (ε = 0.1).

from these figures. The gyro-center motion consists of smooth jumps among positions

where it remains trapped for large times. The trapping is indicative of the non-Gaussian

characteristics mentioned above. The results are qualitatively the same even when the

wave magnetic field B1 is included in the definition of (9).

4. Anomalous diffusion

We estimate the transport properties of the magnetized electrons interacting with the

EC waves by following the orbits of 10000 electrons with initial energy γ0 = 2.5. The

initial conditions of the particles are chosen randomly. We construct the mean square
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displacements < (γ − γ0)
2 > and < (r⊥ − r⊥0)

2 > (see [29, 30]).

In figure 3(a) we plot ln < (γ − γ0)
2 > as a function of ln t for N = 1 and

ε = 0.5, 0.1, and for N = 5, ε = 0.5. In all cases, the log-log curves become linear after

some characteristic time, which is a function of the wave amplitude. Thus, the power

law dependence for the mean values is established after a characteristic time interval.

For the smaller wave amplitudes (e.g. ε = 0.1), the time needed for the diffusion rates

to settle to a characteristic power law is longer because the phase space becomes a very

complex mixture of periodic and stochastic orbits. This complexity has been actually

visualized in figure 1(b). During their motion in the chaotic regions of the phase-space

the particles are trapped for some time around resonant islands, and this makes the

motion a mixture of diffusion and organized motions. Nevertheless, the linear scaling is

still present, at least after the sufficient time has elapsed.

Increasing the number of wave modes causes, in general, enhancement in the

acceleration of the particles. However, the time needed for the scaling variations to

diminish is not always smaller, as seen for N = 5. One reason for this is that the

presence of many modes may bring up significant alterations in the phase space, new

stability islands may arise or existing ones may disappear. It is not easy to make a

prediction whether or where this might happen. The evolution of < (r⊥ − r⊥0)
2 > is

similar to < (γ − γ0)
2 >; the corresponding diagrams are given for the same values of

N, ε in figure 3(b).

In each one of the two spaces, energy and position, the time-scaling of the diffusion is

determined by the exponent aγ and ar of the respective power law. In logarithmic scales,

they are linearly related to the mean square displacements: ln < (γ − γ0)
2 > ∝ αγ ln t

and ln < (r⊥ − r⊥0)
2 > ∝ αr ln t. In figure 4(a),(b) aγ and ar are plotted as a function

of ε for (a) N = 1 and (b) N = 5. We observe that for ε > εcr, both exponents aγ

and ar take values less than 1. This means that the evolution is sub-diffusive. For

N = 1, for stronger amplitudes 0.2 < ε < 0.5 the exponents are found within narrow

bands of values, especially for N = 1. For amplitudes less than 0.1, the exponents

start to decrease. This was expected, as the phase-space for such ε presents resonant

islands. These formations correspond to periodic motions and particle trapping, which

suppresses the diffusive behavior. The decrease of the exponents becomes more radical

as ε approaches εcr.

The situation is similar for the interaction with the wave-packet using N = 5

modes. The evolution of aγ and ar is presented in figure 4(b). Each scaling exponent

takes slightly larger values than the ones of the previous case, at least within the

error boundaries, but apart from that no significant enhancement of the diffusion

scaling is observed. Of course, such an enhancement may appear in the values of the

properly defined diffusion coefficient, but such a calculation goes beyond this work. The

exponents decrease as ε approaches the threshold, due to the enhancement of phase-

space characteristics like organized motions.

The behavior of aγ and ar with respect to the angle of wave propagation does not

show significant differences with the behavior as a function of the wave amplitude. In
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Figure 3. (a) ln < (γ−γ0)2 > as a function of ln t for N = 1 (ε = 0.5, 0.1) and N = 5
(ε = 0.5), (b) The same for < (r⊥ − r⊥0)2 >.

figure 4(c),(d) the scaling exponents are plotted as a function of the propagation angle

θ for (c) N = 1 and (d) N = 5. For all the angles θ, the exponents aγ and ar take values

corresponding to sub-diffusive scaling. For smaller values of the propagation angle the

exponents start to decrease for the same reasons as in the above description.

5. Summary and Discussion

In this paper, the particle diffusion in the nonlinear interaction of magnetized electrons

with an oblique electromagnetic wave-packet is studied. Electromagnetic waves are

widely used for accelerating and heating charged particles in modern fusion reactors,

but also play an important role in the ionosphere.

In numerous studies in the past, the interaction of charged particles with

electrostatic waves was shown to be dominated by anomalous particle diffusion in real

space [25, 27, 28, 39]. We have shown for the first time that, for electromagnetic waves

interacting with electrons, the evolution in real space does not follow normal diffusion.

The diffusion is found to obey simple power law in time and, for wave amplitudes near

and over the threshold to chaos, the scaling exponents are indicative of sub-diffusion.

The electromagnetic wave, as it was the case for the electrostatic wave [39], acts as a

barrier. The physical reason for the anomalous scaling of diffusion is the inhomogeneous

character of the system phase space, a mixture of periodic and stochastic orbits even

for relatively large values of the wave amplitude. The exponents decrease as the wave

power decreases, due to the enhancement of the periodic orbits in the phase space. The

behavior of the scaling exponents with respect to the angle of wave propagation does

not introduce significant differences to the described picture.

In this article, we find that the evolution of the electrons is sub-diffusive also in the
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Figure 4. Exponents of diffusion aγ and ar as a function of the wave amplitude ε for
(a) a single wave (N = 1) and (b) a wave-packet of N = 5 modes, and as a function of
the propagation angle θ for (c) N = 1 and (d) N = 5.

energy space. The scaling exponents of the energy diffusion have the same properties

as the ones in the real space described above. In this sense, the use of a quasilinear

theory and the FP equation becomes questionable. In the existing literature, there is

still a contradiction on this issue. The quasilinear theory is widely used to describe the

particle diffusion in energy space [20, 21, 23]. In the interaction of ions with electrostatic

waves, there are results showing that the use of the quasilinear is limited and cannot

always describe sufficiently the velocity diffusion [26, 32]. Similar results exist for

electromagnetic waves interacting with electrons [15, 22]. The quasilinear theory is

also used in the theory and simulations of ECRH (see [24] and refs. therein). However,

the results suggest that the quasilinear theory breaks down and the particle distribution
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function cannot be described sufficiently without including nonlinear effects [24].

We have also examined for the first time the forcing that controls the trajectories

of the magnetized electrons in the presence of EC waves. In the past, several studies

have discussed the properties of magnetized ions in the presence of pre-described forcing

terms [35, 37, 38]. We have shown that the forcing is highly inhomogeneous along the

trajectory of the particle. We find that the forces contain non-Gaussian characteristics.

These aspects appear also in the orbit of the gyro-center under the drift force E1⊥×B0,

which consists of smooth jumps between locations of trapping. This result supports the

findings reported above on the anomalous diffusion.

Our main contributions in this article are: (1) We demonstrated clearly that the

quasilinear theory breaks down when chaos is not complete, which might be the case

for present day experiments, and creates the need for different approaches to be used,

such as the inclusion of nonlinear effects and the fractional kinetics, in order to obtain

more consistent results. (2) We have also shown that the EC waves slow down the radial

transport of the electrons, acting as a barrier, and this may have important consequences

for the overall particle transport.
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