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The Sun and the Sunspot Cycle |
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e At the beginning of any new cycle, sunspots appear at latitudes be-
tween 30 and 45 degrees. and subsequently migrate equatorwards, Full Screen
concentrating within the 30° latitude belt.
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Preferred longitudes in the Solar Wind |

e The poloidal field of the Sun opens into the interplanetary space
carried by the solar wind.

e Non-axisymmetric components of the poloidal field appear as ro-
tating patterns in the interplanetary field.

e In interplanetary field, magnetic field patterns have been found
to have a period of 27.03 days (428nHz), through several solar
cycles. Neugebauer, Smith, Feynman, Ruzmaikin, 2000.

e KEYWORDS:
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e Analysis of turbulence at moderate Reynolds number

Brandenburg,Jennings,Nordlund,Rieutord,Stein,Tuominen 1995

e Structures in vorticity and in magnetic field do not coincide.

Bigazzi,Brandenburg,Moss , Phys.Plasmas 6 72-80 (99)
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e Observations suggest, that modes are coupled.

Ruzmaikin, Feynman, Neugebauer, & Smith, 2001
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Where is the solar dynamo? |

e Solar rotation curve. Helioseismic data. (M.J.Thompson)

days
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What is this telling us about the dynamo

e Presence of a non-axisymmetric mean-field which

1. Is concentrated at low latitudes

2. (possibly) maximum close to the tachocline
3. Rotates with a frequency close to 27 days
4. Is modulated with the solar cycle period.
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Turbulence and the a-effect: mean field dynamo.

e Take the induction equation

0B
Esz(uxB)jLVanxB
e and separate out the mean from the fluctuating part.
B=B+ B u=1u+u

You get an equation for the mean field.

%E:V < (@xB)+V xwx B +nV’B
e An electric field proportional to the mean fiald and its derivative

results. o o
£ i =u X B,i = aéz-ij + ﬂeijkBj’k

You have a source and a diffusion term coming from your under-
lying turbulence.

0—= LD B B
aB_ V x(wx B) +V xaB + (n+ )V°B

Q—effect+merid circ a—effect Turb diff
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Toroidal and poloidal potentials |

e Two variables: T, P:
BT =V xrT
BPZVXVXI'P Home Page

Title Page

e Two coupled equations:

Contents

0T = RoVo+ RaVa+ RyVu
1
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Toroidal and poloidal potentials |

0T = RoVo+ R.V,+ RuVu
1
+ V2T + 0. - ;&(TT),
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e Relation between the scalars U, V' and the sources. Contents
(xr)x B)y = —rx VU,
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Longitudinal m-modes. |

Expansion in longitudinal m-modes as:

N
T(r,0,¢) = Z T™(r,0)e™ + cc, ...

m=0

Theorem: when w, o and 7 are axisymmetric, the equation de-
compose into an independent set per each m-mode.

aI™ = L™(T™, S™)
9.S™ = G™(T™,S™)

Modes are decoupled.

Non-axisymmetric a naturally couples the modes.

N

(aB)" = .Z o (r,0) B™ (1, 0)

—N

Consider the lowest modes m =0, m = 1.

(aB)! = a’B' + ea' B?
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Our dynamo model: numerical setup.

Non-spectral

- Legendre transform is numerically expensive
- No fast algorithm like FFT exists

- Ease of parallelization
Regular grid in r, 8, typically 80 x 160 grid points.
Solves for m = 0 and the first non-axisymmetric mode m =1

Outer boundary conditions: potential.
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e We include the rotation curve of the Sun

e Coupling is introduced through the non-axisymmetric «

e A variable profile of turbulent diffusivity 7(r) defines the core
boundary.

e We consider three different models for the distributions of «, see
figure above.
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e In latitude: the non-axisymmetric mode concentrates around 30°
e In radius: the field maximises close to the Tachocline

e Surface a: No field at the tachocline.
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The radial gradient of angular velocity is close to null at 30°

That is where the non-axisymmetric (toroidal) field concentrates (when
a overlaps with the shear layer, tachocline, at 0.6Rs).

The angular velocity distribution is reconstructed from helioseismic

data Thompson, M.J. 2000
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Cycle period and phase relations

The m = 1 mode has the same cycle period as the m = 0 mode. { k. 3{
.
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The phases between S and T potentials, modes m = 0 and m = 1,
are consistent with observations (case oy is displayed):
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e The radial (poloidal) field at surface rotates with a rate of 442nHz
(core rotation), M1 and M3, and 433nHz, M2.
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e In interplanetary field a rotation of 27.03 days (428nHz) has been
found. Neugebauer, Smith, Feynman, Ruzmaikin, 2000.

e Fast Ulysses scan at solar max, 2000-2001 (CR1970-CR1981):
432 =+ 437nHz rotation rate of the m = 1 mode (tachocline Close
rate). Jones, Balogh & Smith, 2003
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Conclusions |

e The coupling of dynamo modes due to a non-axisymmetric a-
effect, is responsible for

- The latitudinal localization around 30° of the non-axisymmetric
mode due to the solar rotation curve.
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- The 11 yr cycle for both the m = 0 and m = 1 components. Title Page
- Preferred Longitudes:

Contents

- Longitudinal localization of the fields due to the m-modes
of the dynamo-generated fields.

- Rate of rotation of surface fields determined by the global
evolution of magnetic fields rather than from pure sur-
face phenomena. Page 20 of 22

e How a non-axisymmetric « is produced? Go Back

- Magnetic and/or hydro instabilities o G

- Other mechanisms?
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e Shallow and deep meridional circulation:

- Diffusivity decreased, below the tachocline, to 1/200 the con-
vection zone value.

- Velocity close to the surface of order 20m/s
- Velocity at the bottom 1/10 of surface velocity.

e Distribution is not radically changed.
- m = 1 mode still concentrated at 30° latitude.

e Cycle period and symmetry are more sensitive.
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Rotation rate of the m = 1 mode - Ulysses. |
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e Rotation rate calcutated for the fast Ulysses scan 2000-2001 (CR1970-
CR1981). Jones, Balogh & Smith, 2003

e Ulysses data support a 432 =+ 437nHz rotation rate of the m =1
mode, which correlates with the rotation rate of the tachocline.




