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The Sun and the Sunspot Cycle

• At the beginning of any new cycle, sunspots appear at latitudes be-
tween 30 and 45 degrees. and subsequently migrate equatorwards,
concentrating within the 30◦ latitude belt.
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Longitudinal structure:

preferred longitudes

• Magnetic features appear at partic-
ular longitudes.

• Cycle 22: sol min (1996)

• Five major active regions emerge all
at the same Carrington longitude
of about 250◦. (mid April - late
July). DeToma, White & Harvey, 2000

• Persistence of active longitudes has
been calculated up to 120 years.
Berdyugina & Usoskin, 2003

• Threshold mechanism in the pres-
ence of an underlying mean-field
component ? Ruzmaikin 1999
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Preferred longitudes in the Solar Wind

• The poloidal field of the Sun opens into the interplanetary space
carried by the solar wind.

• Non-axisymmetric components of the poloidal field appear as ro-
tating patterns in the interplanetary field.

• In interplanetary field, magnetic field patterns have been found
to have a period of 27.03 days (428nHz), through several solar
cycles. Neugebauer, Smith, Feynman, Ruzmaikin, 2000.

• KEYWORDS:

- Persistence

- Clustering
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Coherent Structures in MHD turbulence.

• Analysis of turbulence at moderate Reynolds number
Brandenburg,Jennings,Nordlund,Rieutord,Stein,Tuominen 1995

• Structures in vorticity and in magnetic field do not coincide.

Bigazzi,Brandenburg,Moss , Phys.Plasmas 6 72-80 (99)
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Coupling of the dynamo azimuthal m-modes
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• Observations suggest, that modes are coupled.
Ruzmaikin, Feynman, Neugebauer, & Smith, 2001
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Where is the solar dynamo?

• Solar rotation curve. Helioseismic data. (M.J.Thompson)
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What is this telling us about the dynamo

• Presence of a non-axisymmetric mean-field which

1. Is concentrated at low latitudes

2. (possibly) maximum close to the tachocline

3. Rotates with a frequency close to 27 days

4. Is modulated with the solar cycle period.
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Turbulence and the α-effect: mean field dynamo.

• Take the induction equation

∂B

∂t
= ∇× (u×B) + ∇× η∇×B

• and separate out the mean from the fluctuating part.

B = B + B′ u = u + u′

• You get an equation for the mean field.

∂

∂t
B = ∇× (u×B) + ∇× u′ ×B′ + η∇2B

• An electric field proportional to the mean fiald and its derivative
results.

E i = u′ ×B′
i = αδijBj + βεijkBj,k

• You have a source and a diffusion term coming from your under-
lying turbulence.

∂

∂t
B = ∇× (u×B)︸ ︷︷ ︸

Ω−effect+merid circ

+∇× αB︸ ︷︷ ︸
α−effect

+ (η + β)︸ ︷︷ ︸
Turb diff

∇2B
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Toroidal and poloidal potentials

• Two variables: T, P:

BT = ∇× rT

BP = ∇×∇× rP

• Two coupled equations:

∂tT = RΩVΩ + RαVα + RMVM

+ η∇2T + ∂rη ·
1

r
∂r(rT ),

∂tS = RΩUΩ + RαUα + RMUM

+ η∇2S

• Non-dmensional numbers:

RΩ =
Ω0R

2
�

η0

, Rα =
α0R�

η0

, RM =
uMR�

η0

.
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Toroidal and poloidal potentials

∂tT = RΩVΩ + RαVα + RMVM

+ η∇2T + ∂rη ·
1

r
∂r(rT ),

∂tS = RΩUΩ + RαUα + RMUM

+ η∇2S

• Relation between the scalars U , V and the sources.

((Ω× r)×B)T = −r×∇UΩ,

∇× ((Ω× r)×B)P = −r×∇VΩ,

(uM ×B)T = −r×∇UM ,

∇× (uM ×B)P = −r×∇VM ,

(αB)T = −r×∇Uα,

∇× (αB)P = −r×∇Vα.

• Those relations can be solved numerically
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Longitudinal m-modes.

• Expansion in longitudinal m-modes as:

T (r, θ, φ) =
N∑

m=0

Tm(r, θ)eimφ + cc, ...

• Theorem: when u, α and η are axisymmetric, the equation de-
compose into an independent set per each m-mode.

∂tT
m = Lm(Tm, Sm)

∂tS
m = Gm(Tm, Sm)

• Modes are decoupled.

• Non-axisymmetric α naturally couples the modes.

(αB)m =
N∑

j=−N

αj(r, θ)Bm−j(r, θ)

Consider the lowest modes m = 0, m = 1.

(αB)1 = α0B1 + εα1B0
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Our dynamo model: numerical setup.

• Non-spectral

- Legendre transform is numerically expensive

- No fast algorithm like FFT exists

- Ease of parallelization

• Regular grid in r, θ, typically 80 x 160 grid points.

• Solves for m = 0 and the first non-axisymmetric mode m = 1

• Outer boundary conditions: potential.
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• We include the rotation curve of the Sun

• Coupling is introduced through the non-axisymmetric α

• A variable profile of turbulent diffusivity η(r) defines the core
boundary.

• We consider three different models for the distributions of α, see
figure above.
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Localization of the field.

• In latitude: the non-axisymmetric mode concentrates around 30◦

• In radius: the field maximises close to the Tachocline

• Surface α: No field at the tachocline.
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Localization: solar differential rotation

• The radial gradient of angular velocity is close to null at 30◦

• That is where the non-axisymmetric (toroidal) field concentrates (when
α overlaps with the shear layer, tachocline, at 0.6R�).

• The angular velocity distribution is reconstructed from helioseismic
data Thompson, M.J. 2000
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Cycle period and phase relations

• The m = 1 mode has the same cycle period as the m = 0 mode.
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• The phases between S and T potentials, modes m = 0 and m = 1,
are consistent with observations (case α1 is displayed):

- S1 is max at T0 min.

- S1 is max after S0 min.
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Rotation rate of the m = 1 mode

• The radial (poloidal) field at surface rotates with a rate of 442nHz
(core rotation), M1 and M3, and 433nHz, M2.

• In interplanetary field a rotation of 27.03 days (428nHz) has been
found. Neugebauer, Smith, Feynman, Ruzmaikin, 2000.

• Fast Ulysses scan at solar max, 2000-2001 (CR1970-CR1981):
432 ÷ 437nHz rotation rate of the m = 1 mode (tachocline
rate). Jones, Balogh & Smith, 2003
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Conclusions

• The coupling of dynamo modes due to a non-axisymmetric α-
effect, is responsible for

- The latitudinal localization around 30◦ of the non-axisymmetric
mode due to the solar rotation curve.

- The 11 yr cycle for both the m = 0 and m = 1 components.

- Preferred Longitudes:

- Longitudinal localization of the fields due to the m-modes
of the dynamo-generated fields.

- Rate of rotation of surface fields determined by the global
evolution of magnetic fields rather than from pure sur-
face phenomena.

• How a non-axisymmetric α is produced?

- Magnetic and/or hydro instabilities

- Other mechanisms?

Bigazzi & Ruzmaikin 2003, ApJ, submitted
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Meridional circulation

• Shallow and deep meridional circulation:

- Diffusivity decreased, below the tachocline, to 1/200 the con-
vection zone value.

- Velocity close to the surface of order 20m/s

- Velocity at the bottom 1/10 of surface velocity.

• Distribution is not radically changed.

- m = 1 mode still concentrated at 30◦ latitude.

• Cycle period and symmetry are more sensitive.
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Rotation rate of the m = 1 mode - Ulysses.

• Rotation rate calcutated for the fast Ulysses scan 2000-2001 (CR1970-
CR1981). Jones, Balogh & Smith, 2003

• Ulysses data support a 432÷ 437nHz rotation rate of the m = 1
mode, which correlates with the rotation rate of the tachocline.


