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Motivation and Outline

A. Motivation: The understanding of E-region transient in time
(∼ 10−3–1 s) and small scale size (50–100 km) field and
current structures driven by lightning discharges, seismic
events, antennas, etc.

B. Potential application: Conversion of Horizonal Electric Dipole
(HED) to ionospheric Vertical Electric Dipole (VED) via Hall
conductivity. VED radiates 105 times more efficient than HED
(Field et al., 1989)

C. Numerical modeling results: Helicon/Whistler mode dynamics
in 10 Hz range. Dependence on ionospheric conductivity
profiles.

E. Future developments.
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Equatorial E-region conductivities

Hall conductivity dominates in the E-region 90–120 km because
electrons strongly magnetized (νen� ωce) while ions viscously
coupled to neutrals (νin� ωci). (Forbes, 1976.) Right: Numerical
fit used in simulations.
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Model: Helicon waves

o Faraday’s and Ampère’s law

∂B
∂t

= −∇×E

∇×B = µ0j = µ0en0(z)(vi − ve)

o Generalized Ohm’s law (B0 = B0x̂) jx
jy
jz

 =

 σ|| 0 0
0 σP −σH
0 σH σP


 Ex
Ey
Ez

 ,
o Evolution equation

∂B
∂t

= − 1
µ0
∇× [¯̄σ−1 · (∇×B)] (1)
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Conductivities

Pedersen conductivity

σP = ε0
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pe

ωce
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Hall conductivity
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Geometry of the model
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What is special with Equatorial E-Region

o Ions viscously glued to the neutrals so that σH � σP , which
gives rise to whistler-like helicon wave dynamics in the
low-frequency range below ion cyclotron frequency.

o Horizontal magnetic field. Very small vertical Hall current jz, so
that

Ez = −σH
σP
Ey (2)

and
jy =

(σ2
P + σ2

H)
σ2
P︸ ︷︷ ︸

∼103−104

σPEy ≡ σCEy (3)

are large (σC is the Cowling conductivity). Gives rise to the
Equatorial Electrojet! σC � σH � σP !
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Boundary conditions at plasma–free space boundary

Continuity of the normal component Bz and its normal derivative
∂Bz/∂z.

Free space response: ∇2Bfree = 0 gives evanescent field
∝ exp(|kx|z) generated by the plasma:

Bfree = (B−Bant)z=z0 exp[|kx|(z − z0)]︸ ︷︷ ︸
Generated by the plasma

+Bant.

Coupling to the antenna field at boundary z = z0:

∂Bz
∂z
− |kx|Bz =

∂Bz,ant
∂z

− |kx|Bz,ant.
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Numerical fits of conductivities

σ|| =
1

a1,|| exp(−z/L1,||) + a2,|| exp(−z/L2,||)
,

σP =
1

a1,P exp(−z/L1,P ) + a2,P exp(z/L2,P )
,

σH =
1

a1,H exp(−z/L1,H) + a2,H exp(z/L2,H)
,

Parameter values

Day
a1,|| = 3.1× 109 Ωm L1,|| = 5.4 km a2,|| = 0.63× 103 Ωm L2,|| = 18 km

a1,P = 7.7× 1012 Ωm L1,P = 5.4 km a2,P = 0.99 Ωm L2,P = 19 km

a1,H = 1.5× 1011 Ωm L1,H = 5.4 km a2,H = 0.0157 Ωm L2,H = 11 km

Night
a1,|| = 1.5× 1010 Ωm L1,|| = 5.4 km a2,|| = 3.2× 103 Ωm L2,|| = 18 km

a1,P = 3.8× 1013 Ωm L1,P = 5.4 km a2,P = 5.0 Ωm L2,P = 19 km

a1,H = 7.7× 1011 Ωm L1,H = 5.4 km a2,H = 0.078 Ωm L2,H = 11 km

(Conductivities 5 times smaller for nighttime compared to daytime conditions.)
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Pulsed antenna field, daytime conditions
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Pulsed antenna field, daytime conditions
Profiles of B (nT), j (nA/m2) and E (mV/m)
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Pulsed antenna field, nighttime conditions
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Pulsed antenna field, nighttime conditions
Profiles of B (nT), j (nA/m2) and E (mV/m)
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Currents at z = 92 km, pulsed antenna field

—– Daytime, - - - Nighttime
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CW antenna field, day and nighttime conditions
Profiles of B (nT), j (nA/m2) and E (mV/m)
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Currents at z = 92 km, CW antenna field

—– Daytime, - - - Nighttime
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Work in progress

o Realistic geometry with oblique/curved magnetic field lines

o Coupling to Alfvén waves in the magnetosphere.
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Work in progress: General oblique magnetic field

The helicon evolution equation becomes

∂B
∂t

= − 1
µ0
∇× [ ¯̄R ¯̄ρ ¯̄RT · (∇×B)]. (4)

where the rotation matrix and its inverse are

¯̄R =

 cos(θ) 0 − sin(θ)
0 1 0

sin(θ) 0 cos(θ)

 , ¯̄RT =

 cos(θ) 0 sin(θ)
0 1 0

− sin(θ) 0 cos(θ)

 . (5)

with the inclination angle θ(x) and the ”impedance tensor”

¯̄ρ = ¯̄σ−1 =

 ρ|| 0 0
0 ρP ρH
0 −ρH ρP

 (6)

where ρ|| = 1/σ||, ρP = σP/(σ2
P + σ2

H) and ρH = σH/(σ2
P + σ2

H).
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Work in progress: General oblique magnetic field
We have

¯̄R ¯̄ρ ¯̄RT =

 ρ|| cos2(θ) + ρP sin2(θ) ρH sin(θ) (ρ|| − ρP ) sin(θ) cos(θ)
−ρH sin(θ) ρP ρH cos(θ)

(ρ|| − ρP ) sin(θ) cos(θ) −ρH cos(θ) ρ|| sin2(θ) + ρP cos2(θ)

 (7)

Pulse for θ = 0.1 rad.
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Work in progress: Alfvén wave dynamics

Evolution system of equations

∂B
∂t

= −∇×
[
E⊥ +

[B0 · (∇×B)]B0

µ0B2
0σ||

]
(8)

∂E⊥
∂t

= V 2
A

[
(∇×B)⊥ − µ0σH

B0 ×E⊥
B0

− µ0σPE⊥

]
, (9)

Modified Alfvén speed V 2
A = ω2

ci+ν
2
in

ω2
pi

c2, Perpendicular current

density

(∇×B)⊥ = ∇×B− [B0 · (∇×B)]B0

B2
0

(10)

Space-dependent profiles of B0, VA, σP , σH, σ||.
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Summary

A. Investigated E-region transient field and current structures
driven by transient time (∼ 10−3–1 s) and small scale size
(50–100 km) pulses.

B. Motivated by lightning discharges, Seismic events, Horizonal
Electric Dipole (HED) antenna experiments.

C. Coupling of plasma dynamics to free space and antenna fields.

D. Helicon/Whistler mode dynamics and currents for different
E-region plasma parameters.

E. Under investigation: Realistic geometry. Alfvén wave
dynamics. Radiation into Earth-Ionosphere Waveguide.


