Injection of ELF Magnetic Fields and Currents into the Equatorial E-Region lonosphere

Modern Challenges in Nonlinear Plasma Physics

Halkidiki, Greece, 15–19 June 2009

Bengt Eliasson Ruhr-University Bochum, Germany

in collaboration with

Dennis Papadopoulos University of Maryland

Motivation and Outline

- A. Motivation: The understanding of E-region transient in time $(\sim 10^{-3}-1 \text{ s})$ and small scale size (50–100 km) field and current structures driven by lightning discharges, seismic events, antennas, etc.
- B. Potential application: Conversion of Horizonal Electric Dipole (HED) to ionospheric Vertical Electric Dipole (VED) via Hall conductivity. VED radiates 10⁵ times more efficient than HED (Field et al., 1989)
- C. Numerical modeling results: Helicon/Whistler mode dynamics in 10 Hz range. Dependence on ionospheric conductivity profiles.
- E. Future developments.

Equatorial E-region conductivities

Hall conductivity dominates in the E-region 90-120 km because electrons strongly magnetized ($\nu_{en} \ll \omega_{ce}$) while ions viscously coupled to neutrals ($\nu_{in} \gg \omega_{ci}$). (Forbes, 1976.) Right: Numerical fit used in simulations.

Model: Helicon waves

Faraday's and Ampère's law

$$\frac{\partial \mathbf{B}}{\partial t} = -\nabla \times \mathbf{E}$$
$$\nabla \times \mathbf{B} = \mu_0 \mathbf{j} = \mu_0 e n_0(z) (\mathbf{v}_i - \mathbf{v}_e)$$

 \Box Generalized Ohm's law ($\mathbf{B}_0 = B_0 \widehat{\mathbf{x}}$)

$$\begin{bmatrix} j_x \\ j_y \\ j_z \end{bmatrix} = \begin{bmatrix} \sigma_{||} & 0 & 0 \\ 0 & \sigma_P & -\sigma_H \\ 0 & \sigma_H & \sigma_P \end{bmatrix} \begin{bmatrix} E_x \\ E_y \\ E_z \end{bmatrix}$$

Evolution equation

$$\frac{\partial \mathbf{B}}{\partial t} = -\frac{1}{\mu_0} \nabla \times \left[\bar{\bar{\sigma}}^{-1} \cdot (\nabla \times \mathbf{B})\right]$$
(1)

Conductivities

Pedersen conductivity

$$\sigma_P = \varepsilon_0 \frac{\omega_{pe}^2}{\omega_{ce}} \left[\frac{\nu_{en} \omega_{ce}}{\omega_{ce}^2 + \nu_{en}^2} + \frac{\nu_{in} \omega_{ci}}{\omega_{ci}^2 + \nu_{in}^2} \right]$$

Hall conductivity

$$\sigma_H = \varepsilon_0 \frac{\omega_{pe}^2}{\omega_{ce}} \left[\frac{\omega_{ce}^2}{\omega_{ce}^2 + \nu_{en}^2} - \frac{\omega_{ci}^2}{\omega_{ci}^2 + \nu_{in}^2} \right]$$

Parallel conductivity

$$\sigma_{||} = \varepsilon_0 \frac{\omega_{pe}^2}{\nu_{en}}$$

Geometry of the model

What is special with Equatorial E-Region

- □ lons viscously glued to the neutrals so that $\sigma_H \gg \sigma_P$, which gives rise to whistler-like helicon wave dynamics in the low-frequency range below ion cyclotron frequency.
- Horizontal magnetic field. Very small vertical Hall current j_z, so that

$$E_z = -\frac{\sigma_H}{\sigma_P} E_y \tag{2}$$

and

$$j_y = \underbrace{\frac{(\sigma_P^2 + \sigma_H^2)}{\sigma_P^2}}_{\sim 10^3 - 10^4} \sigma_P E_y \equiv \sigma_C E_y \tag{3}$$

are large (σ_C is the Cowling conductivity). Gives rise to the Equatorial Electrojet! $\sigma_C \gg \sigma_H \gg \sigma_P$!

Boundary conditions at plasma-free space boundary

Continuity of the normal component B_z and its normal derivative $\partial B_z/\partial z$.

Free space response: $\nabla^2 \mathbf{B}_{free} = 0$ gives evanescent field $\propto \exp(|k_x|z)$ generated by the plasma:

$$\mathbf{B}_{free} = \underbrace{(\mathbf{B} - \mathbf{B}_{ant})_{z=z_0} \exp[|k_x|(z-z_0)]}_{\text{Generated by the plasma}} + \mathbf{B}_{ant}.$$

Coupling to the antenna field at boundary $z = z_0$:

$$\frac{\partial B_z}{\partial z} - |k_x|B_z = \frac{\partial B_{z,ant}}{\partial z} - |k_x|B_{z,ant}.$$

Numerical fits of conductivities

$$\sigma_{||} = \frac{1}{a_{1,||} \exp(-z/L_{1,||}) + a_{2,||} \exp(-z/L_{2,||})},$$

$$\sigma_{P} = \frac{1}{a_{1,P} \exp(-z/L_{1,P}) + a_{2,P} \exp(z/L_{2,P})},$$

$$\sigma_{H} = \frac{1}{a_{1,H} \exp(-z/L_{1,H}) + a_{2,H} \exp(z/L_{2,H})},$$

Parameter values				
Day	$a_{1, } = 3.1 \times 10^9 \Omega\mathrm{m}$	$L_{1, } = 5.4 \mathrm{km}$	$a_{2, } = 0.63 \times 10^3 \Omega\mathrm{m}$	$L_{2, } = 18 { m km}$
	$a_{1,P} = 7.7 \times 10^{12} \Omega\mathrm{m}$	$L_{1,P} = 5.4 \mathrm{km}$	$a_{2,P} = 0.99 \Omega\mathrm{m}$	$L_{2,P} = 19 \mathrm{km}$
	$a_{1,H} = 1.5 \times 10^{11} \Omega\mathrm{m}$	$L_{1,H} = 5.4 \mathrm{km}$	$a_{2,H}=0.0157\Omega\mathrm{m}$	$L_{2,H} = 11 \mathrm{km}$
Night	$a_{1, } = 1.5 \times 10^{10} \Omega\mathrm{m}$	$L_{1, } = 5.4 \mathrm{km}$	$a_{2, } = 3.2 \times 10^3 \Omega\mathrm{m}$	$L_{2, } = 18 \mathrm{km}$
	$a_{1,P} = 3.8 \times 10^{13} \Omega\mathrm{m}$	$L_{1,P} = 5.4 \mathrm{km}$	$a_{2,P} = 5.0 \Omega\mathrm{m}$	$L_{2,P} = 19 \mathrm{km}$
	$a_{1,H}=7.7 imes10^{11}\Omega{ m m}$	$L_{1,H} = 5.4 \mathrm{km}$	$a_{2,H}=0.078\Omega\mathrm{m}$	$L_{2,H} = 11 \mathrm{km}$

(Conductivities 5 times smaller for nighttime compared to daytime conditions.)

Pulsed antenna field, daytime conditions

Pulsed antenna field, daytime conditions Profiles of B (nT), j (nA/m²) and E (mV/m)

Pulsed antenna field, nighttime conditions

Pulsed antenna field, nighttime conditions Profiles of B (nT), j (nA/m²) and E (mV/m)

Currents at z = 92 km, pulsed antenna field

— Daytime, - - - Nighttime

CW antenna field, day and nighttime conditions Profiles of B (nT), j (nA/m²) and E (mV/m)

Currents at z = 92 km, CW antenna field

— Daytime, - - - Nighttime

Work in progress

Realistic geometry with oblique/curved magnetic field lines

Coupling to Alfvén waves in the magnetosphere.

Work in progress: General oblique magnetic field

The helicon evolution equation becomes

$$\frac{\partial \mathbf{B}}{\partial t} = -\frac{1}{\mu_0} \nabla \times [\bar{\bar{R}}\bar{\bar{\rho}}\bar{\bar{R}}^T \cdot (\nabla \times \mathbf{B})].$$
(4)

where the rotation matrix and its inverse are

$$\bar{\bar{R}} = \begin{bmatrix} \cos(\theta) & 0 & -\sin(\theta) \\ 0 & 1 & 0 \\ \sin(\theta) & 0 & \cos(\theta) \end{bmatrix}, \quad \bar{\bar{R}}^T = \begin{bmatrix} \cos(\theta) & 0 & \sin(\theta) \\ 0 & 1 & 0 \\ -\sin(\theta) & 0 & \cos(\theta) \end{bmatrix}.$$
(5)

with the inclination angle $\theta(\mathbf{x})$ and the "impedance tensor"

$$\bar{\rho} = \bar{\sigma}^{-1} = \begin{bmatrix} \rho_{||} & 0 & 0\\ 0 & \rho_P & \rho_H\\ 0 & -\rho_H & \rho_P \end{bmatrix}$$
(6)

where $\rho_{||} = 1/\sigma_{||}$, $\rho_P = \sigma_P/(\sigma_P^2 + \sigma_H^2)$ and $\rho_H = \sigma_H/(\sigma_P^2 + \sigma_H^2)$.

Work in progress: General oblique magnetic field We have

 $\bar{\bar{R}}\bar{\bar{\rho}}\bar{\bar{R}}^{T} = \begin{bmatrix} \rho_{||}\cos^{2}(\theta) + \rho_{P}\sin^{2}(\theta) & \rho_{H}\sin(\theta) & (\rho_{||} - \rho_{P})\sin(\theta)\cos(\theta) \\ -\rho_{H}\sin(\theta) & \rho_{P} & \rho_{H}\cos(\theta) \\ (\rho_{||} - \rho_{P})\sin(\theta)\cos(\theta) & -\rho_{H}\cos(\theta) & \rho_{||}\sin^{2}(\theta) + \rho_{P}\cos^{2}(\theta) \end{bmatrix}$ (7)

Pulse for $\theta = 0.1$ rad.

Work in progress: Alfvén wave dynamics

Evolution system of equations

$$\frac{\partial \mathbf{B}}{\partial t} = -\nabla \times \left[\mathbf{E}_{\perp} + \frac{[\mathbf{B}_0 \cdot (\nabla \times \mathbf{B})]\mathbf{B}_0}{\mu_0 B_0^2 \sigma_{||}} \right]$$
(8)

$$\frac{\partial \mathbf{E}_{\perp}}{\partial t} = V_A^2 \left[(\nabla \times \mathbf{B})_{\perp} - \mu_0 \sigma_H \frac{\mathbf{B}_0 \times \mathbf{E}_{\perp}}{B_0} - \mu_0 \sigma_P \mathbf{E}_{\perp} \right], \quad (9)$$

Modified Alfvén speed $V_A^2 = \frac{\omega_{ci}^2 + \nu_{in}^2}{\omega_{pi}^2} c^2$, Perpendicular current density

 $(\nabla \times \mathbf{B})_{\perp} = \nabla \times \mathbf{B} - \frac{[\mathbf{B}_0 \cdot (\nabla \times \mathbf{B})]\mathbf{B}_0}{B_0^2}$ (10)

Space-dependent profiles of \mathbf{B}_0 , V_A , σ_P , σ_H , $\sigma_{||}$.

Summary

- A. Investigated E-region transient field and current structures driven by transient time ($\sim 10^{-3}$ –1 s) and small scale size (50–100 km) pulses.
- B. Motivated by lightning discharges, Seismic events, Horizonal Electric Dipole (HED) antenna experiments.
- C. Coupling of plasma dynamics to free space and antenna fields.
- D. Helicon/Whistler mode dynamics and currents for different E-region plasma parameters.
- E. Under investigation: Realistic geometry. Alfvén wave dynamics. Radiation into Earth-Ionosphere Waveguide.