MESSENGER at Mercury: Old Questions and New Insights

D.N. Baker, J. A. Slavin, S. M. Krimigis and the MESSENGER Team

Special thanks: D. Odstrcil

Nonlinear Plasma Phy 19 June 2009

A NASA Discovery Mission

Mission Trajectory

LASP Seminar, 14 April 2009

MESSENGER: Comprehensive Payload

- All instruments have operated nominally
- MDIS acquired ~2500 images
- Nearly 1000 MB
 of data returned

MESSENGER Flyby 1 Geometry

Core encounter command load ran for 55 hours (~centered on closest approach)

MESSENGER M1 Particles & Fields Overview

LASP Seminar, 14 April 2009

Magnetic Field

Interconnections are Complex

M1: Plasma and Fields

Energetic Electrons (E> 36 keV)

Quiescent magnetic field – consistent with lack of energetic electrons (2007:365 solar event clearly seen in EPS).

-og Intensity

MESSENGER Solar & Solar Wind Conditions

Real-Time Solar Wind Forecast Model

Comparisons: STEREO & ACE

2008 January 6-15 – Flow Velocity

[Baker et al., JGR in press, 2009]

Model Results and MESSENGER

Only very limited *in situ* solar wind plasma data are available (due to FIPS mounting on S/C)

SW/Mag feature on 20-22 Jan?

Model magnetic field (|**B**|) is spot-on prior to 20 Jan, but too low after

Model Results and MESSENGER

[[]Baker et al., JGR in press, 2009]

Second Flyby Overview

Strong reconnection signatures – Plasmoid, TCRs, Magnetopause B_N, and FTE!

LASP Seminar, 14 April 2009

LASP Seminar, 14 April 2009

MESSENGER Plasmoids, TCRs, and FTEs

MESSENGER observed Strong Dayside & Nightside Reconnection Signatures!!

Plasmoid Ejection at Mercury

The mean X ~ -25 R_e distance to Reconnection X-line at Earth, scales to X ~ -3.5 R_m at Mercury...only M2 provides X < -3 R_m tail observations!

Northward IMF

- Magnetopause Boundary Layer
- Kelvin-Helmholtz Waves on Flanks

Southward IMF

- Magnetopause B-normal is ~ 10 times Earth values; Dungey Cycle Time is ~ 2 min;
- Large Flux Transfer Event when IMF B_z < 0
- Plasmoid and TCRs imply NMNL X ~ -2.6 R_M

The first space mission designed to orbit the planet closest to the Sun

MESSENGER MErcury Surface, Space Environment, GEochemistry, and Ranging

The Journey Continues...

MERCURY:

The Key to Terrestrial Planet Evolution

MESSENGER will start a yearlong study of its target planet in March 2011. Understanding this "end member" among the terrestrial planets is crucial to developing a better understanding of how our own Earth formed, how it evolved, and how it interacts with the Sun.

http://messenger.jhuapl.edu/

Mission Elapsed Time 1774 days

Distance Traveled 5,384,000,000 km (~36 AU) Mercury Flyby 3 29 September 2009

Mercury Orbit Insertion 18 March 2011 (643 days from now)

MESSENGER Orbital Phase

Summary and Future Plans

- Results for M1 encounter show that Mercury was in an extensive region of low speed, quiet solar wind; M2 was modeled to be at high-density sector boundary
- MESSENGER magnetic field and plasma data show vastly different magnetospheric conditions for the two flyby passes; Neither pass showed energetic particles??
- Third MESSENGER flyby (September 2009) may help resolve enigma of substorm behavior and particle properties
- Future solar wind modeling can provide continuous estimate of magnetospheric driving conditions for orbital phase and for ground-based observing

Scientific investigation of the planet Mercury -

Team members

- Principal Investigator Sean C. Solomon, Carnegie Institution of Washington
- Project Management APL
- Spacecraft
 Development/Operations APL
 - Propulsion Aerojet
 - Structure Composite Optics
- Instruments
 APL, GSFC, UColorado (LASP), UMichigan (SPRL)

2008 January 6-15 – Plasma Density

