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Abstract

My Diploma thesis is divided into three different parts. The first one is the measurement of the
true astronomical seeing in mount Xolomon. The work is based on a variation of the method that
M.Sarazin proposed (ESO-DIMM), the H-DIMM. This method does not require the existence of
a prism for the diversion of light but just a Hartmann mask (a mask with two holes) and an out
of focus telescope. The measurement is done by measuring the relevant error in the CCD chip of
the two images that was created by the out of focus telescope. Using this relevant error with the
known equations from the DIMM theory, we can easily extract the seeing value. The seeing was
measured for more than one year and the result was a median value of 0.82 arcsec. An excellent
value if we take in mind the low altitude of the area the measurements took place (900m). Also a
correlation with weather data was done to see how winds affect seeing. Based on these observations
and within the diploma thesis, a new dedicated DIMM monitor was developed for the astronomy
lab of the Aristotle University of Thessaloniki. New software was developed using Starlink routines
and C-shell programming.

The second part is dedicated to the study of close binary systems. A new method of analysis of
their O-C diagrams, proposed by T.Kalimeris, was applied to data collected for the system ER-Ori.
This new method applies non-linear fitting to the O-C curve and extracts the P (E) function. The
P (E) function is the orbital period vs. orbital cycle. It is very important to know this function for a
binary system as it shows how the orbital period changes with time. The strongest point of the new
method is the continuous character of the P (E) function. Afterwards with Fourier Transformations
and wavelet analysis any trend in the P (E) function of the system is detected. This knowledge it
can then be applied for the calculation of the mass transfer function or by further analysis of the
residuals of the fitting process, it reveals the existence or not of a third body in the system. The
method is so sentive that even a body with the mass of earth can be detected at any star that can
be photometrically observed regardless it’s distance.

The third and final part is the study of behaviour in optical wavelengths of the prototype
microquasar SS433. Differential photometry was done with the 1.2m telescope of NOA in V and
R filters in 2004 and 2005 for a total of sixteen clear nights. The main goal of the research was
to find any periodicities in the light curves that are longer than 30sec. This was done by means
of Fourier and Wavelet analysis to the data. From the resulting periodograms we confirmed the
nutational period of the binary system and found a chaotic behaviour in time scales of hours and
smaller, probably because of the accretion disk of the system.
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Part I

O-C CURVE ANALYSIS OF CONTACT BINARY SYSTEMS



Chapter 1

About O-C Diagrams

“Observing Closer . . . ”

1.1 Eclipses And Times Of Minima

In every double ecliptic system the times of minimum light that are formed from the eclipses they
signal the crossing of one member of the system in front of the other. This fact can be used to
measure the orbital period of the system. The period of any ecliptic system is considered to be the
time between two consecutively crossings of the secondary member in front of the primary, namely
the time between two consecutively primary times of minimum light. The period of ecliptic systems
can be found in great accuracy because the time of minimum light is well defined. Even if we have a
limited number of light curves, we can found the period with an error margin of one minute, whereas
we have a large amount of curves that span in a few thousand orbital cycles, we can estimate the
period with an accuracy of 10−6sec. Of course this level of accuracy can not be achieved with a
direct measurement of the orbital period but only by measuring the total number of cycles and in
conjunction with polynomial fitting.

Ephemeris of apparent minimum light. The knowledge of the orbital period of a system
permits the construction of a simple equation :

CE = T0 + P · E (1.1)

Through this equation we can predict the moment CE(MinI) that the secondary member passes
in front of the primary during the random orbital cycle E. If E takes a non integer value (but
always with a decemical place of the form 0.5) then equation 1.1 will predict the times of crossing of
the primary in front of the secondary member (MinII). T0 is a constant and usually is the oldest
recorded moment of a primary eclipse, is measured in Heliocentric Julian Days (Hel.JD). P of course
is the orbital period of the system and is measured in mean solar days. Equation 1.1 is called an
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ephemeris of minimum light of the double system. For example the ephemeris equation for ER-ORI
is MinI=2443090.53+0.4223399431E

Real and Photometric Times of Minimum The accurate record of the eclipses of a double
system through the times of minimum light permits as to know the moment that the apparent disks
of the members are aligned to the observer here in earth. Every such moment can be used as a start
of measurement of the orbital phase ϕ of the secondary star (0 ≤ ϕ ≤ 2π or 0 ≤ ϕ ≤ 1 through
normalization). By definition orbital phase is 0 during the eclipse of the primary and 0.5 during the
eclipse of the secondary. In systems that their orbits are circular the orbital phase ϕ coincides with
the real anomaly υ. In such cases we can know exactly the location in the orbit of the stars so the
photometric eclipse coincide with the real one, that is when the two centers of gravity of the stars
are aligned. Usually the photometric eclipse occurs in a little different moment than that of the real
eclipse for a various o reasons. One of these reasons is for example when the surface temperature
distribution of the members does not appear to have any symmetry with the axis or the geometrical
centre of the apparent disk of some member. Even in close binary systems that the geometrical and
photometric irregularities are important the difference of the real and the photometric eclipse is not
great. Relative measurements show that this value is not more than 1/100 of the orbital period. So
for W Uma systems this value is in the range of on minute and a few seconds.

1.2 O-C Differences and O-C Diagrams

In a double system that consists of spherical stars with uniform radiant surfaces that they move
in circular orbits of constant orbital period, the observed times of minima OE coincide with the
computed times CE that predicts any linear ephemeris. Namely it is OE − CE = 0. Of course
in real world this relation does not come true but only in approximation, weather it is because at
the moment of the eclipse the photometric centres of the two stellar disks are not aligned with the
dynamic centres or because the orbital period has changed in the meanwhile. A direct consequence
of this is the creation of non-zero differences between observed (OE) and calculated (CE) times of
minimum light. These differences are called O-C differences and can be calculated immediately as
soon as the OE moments are detected in the light curves. Simultaneous observations of one system
in more than one spectral range leads to the creation of multicolour O-C differences.

O-C Diagrams By definition O-C differences can be measured only during the integer or half-
integer values of the orbital cycles E. Therefore O-C differences consist a time series. The graphs
of such time series are known as O-C diagrams. Some O-C diagrams of contact binary systems
are shown in figure 1.1. Because the observations of a system it is impossible to be covered in
an uninterrupted way in all of the orbital cycles, it becomes clear that for every eclipsing binary
system, O-C differences composite time series with random data distribution. Most O-C diagrams
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cover several thousand of orbital cycles in a farraginous manner, namely hereupon a time span of
a few decades to one aeon of observational data. If we think that every light curve can feed at the
most two times of minimum light (one OE for the main eclipse and one OE+0.5 for the secondary
eclipse) we can conclude that the formation of an O-C diagram that covers a few decades is on of
the most demanding and long lasting procedures of observational astronomy.

In most of the O-C diagrams and especially in those that cover two or more decades, O-C differ-
ences don’t appear in random but have a clear structure. This fact was linked with possible orbital
period changes in the binary system since random photometric fluctuations does not presumably
cause a systematic distribution of the O-C differences. From equation 1.1 this link is obvious.
We will see that the complex formation of O-C diagrams does not let us to extract directly safe
conclusions about the orbital period of binary systems.

Figure 1.1: Samples of O-C diagrams : 44i Boo, ER-Ori, AK Her, AH Vir

O-C Diagrams of W Uma Systems The consideration of all available O-C diagrams of W Uma
systems can lead us to a few important considerations :
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1. Diagrams that cover two or three decades reveal the existence of well formed relations of
the form : O − C = f(E) that in the margins of observational errors make O-C differences a clear
function of time. The clarity of these functions of the W Uma systems is not affected even when the
O-C diagram is consisted of multicolour differences or by differences that refer not only in primary
eclipses but in secondary too.

2. In some systems O-C differences obtain values so great that can be compared to the orbital
period. On such example is 44i Boo in figure 1.1. This means that the arrivals or delays of times of
minimum are so great that the computed times are completely different from those observed.

¿From various studies it is confirmed that the O-C diagrams of most types of binary systems
appear to have many similarities. Almost all appear to have changes of alternating character. In a
small percentage less than 10% of the systems these changes are periodical. The time scale of these
changes is from one to ten years. Also one of the first things that were realized is that O-C diagrams
with the most complex behaviour belong to systems of the W uma and RS CVn type(Sahade &
Wood 1978).

1.3 O-C Diagram Creation And Changes Of The Orbital Period

In order to understand the information that O-C diagrams caries it is necessary to examine the way
they are created. The creation involves two procedures, the creation of an O-C difference during the
random orbital cycle because of a dynamical or photometric cause and the effect of this difference
in all the next orbital cycles. The formation of an O-C difference can be caused dew to photometric
causes, to apparent changes (linked with dynamical phenomena) or to real changes of the orbital
period.

First of all let’s see how an O-C difference affects all the next cycles. Suppose we have an ecliptic
system with an orbital period of P = Pe and an ephemeris of minimum light

Ce = T0 + Pe · E (1.2)

We assume that the system has not yet completed his first orbital cycle (E = 0). During the end
of this first cycle and the begining of the second, an observer here in earth will record the main
eclipse and the corresponding time of minimum light of the system at the moment O1 = T0 + Pe

in correspondance with the prediction of equation 1.2 for E = 1. We assume now that because of
a photometric event (eg. the apperance of a dark spot) or a dynamic one (eg. mass transfer) that
occurs in the system during the cycle E = 1, the primary photometric minimum of the next cycle
E = 2 is detected by an amount of δT2 later than it was expected. In this case the photometric
minimum of the main eclipse instead of being oberved at :

C2 = T0 + 2 · Pe (1.3)
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as equation 1.2 preticts, it is observed at

O2 = (T0 + 2 · Pe) + δT2 (1.4)

The observer can then be guided to two different asumptions about the disagreement of oberved
and calculated time of minimum :

a) That a difference is created between the real and the calculated time the primary eclipse
happend during the orbital cycle E = 2 that equals :

(O − C)2 ≡ O2 − C2 = (T0 + 2 · Pe + δT2)− (T0 + 2 · Pe) = δT2 (1.5)

b) That the orbital period of the system changed during the cycle E = 1 and became P2 =
Pe + δT2. Obviously because the observer measures the orbital period reliant in a photometric
phenomena (eclipses), the above time difference δT2 may not be linked with a real orbital period
change, but with a photometric fluctuation such as the appearence of a dark spot in one of the two
members of the binary system. Because we are interested for the effect of the difference δT2 in the
next times of minimum light, we suppose that after the apparent or real period change from Pe to
Pe + δT2 during the cycle E = 2 no other change happens. Then the arrival of the next time of
mimimum for the cycle E = 3 instead of the time :

C3 = (T0 + 3 · Pe) (1.6)

arrives at the time

O3 = O2 + P2 = O2 + (Pe + δT2) = (T0 + 2 · Pe + δT2) + (Pe + δT2) = T0 + 3 · Pe + 2 · δT2 (1.7)

and so the main eclipse will be observed with a delay of :

(O − C)3 = 2 · δT2 (1.8)

Equation 1.8 tels us that in two orbital cycles after the first event that caused the time displacement
of the main eclipse by δT2 the delay in the observation of the main eclipse is doubled. Alike three
cycles after the event the delay will be tripled. In general after the N-th cycle the obsrvation of the
primary minimum will be done at the moment :

ON = T0 +N · Pe + (N − 1) · δT2 (1.9)

instead of the CE = T0 +N · Pe that would normally expected. So the O-C difference that will be
created during the N-th cycle equals :

(O − C)N = (N − 1) · δT2 (1.10)
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This last equation proves that the initial delay spreads as a linear function of the orbital cycle. This
fact gives to the O-C diagram the form of a straight line. Of course we must underline the fact that
even the linear increase of O-C differences, the orbital period remains stable and it is the distance
in time of two minimum of light (OE−)E−1) end equals with Pe + δT2 in all the next cycles after
E = 2. If now the initial delay instead of happening in cycle E = 1 occurs in the random cycle E0

then equation 1.10 becomes :
(O − C)E = (E −E0) · δT (1.11)

We suppose now that in after some cycles (eg, E = 5) an new delay δT5 is further added to the time
of arrival of the minimum light. Taking in mind equation 1.9 it is clear that the time of observation
of the photometric minimum that is linked with the main eclipse of the cycle E = 5 will be :

O5 = O4 + P5 = (T0 + 4 · Pe + 3 · δT2) + P5 = (T0 + 4 · Pe + 3 · δT2) + (O5 −O4) ⇒
O5 = (T0 + 4 · Pe + 3 · δT2) + (P4 + δT5)

And because we assumed that P4 = P3 = P2 = Pe + δT2 consequently we have :

O5 = (T0 + 4 · Pe + 3 · δT2) + (Pe + δT2 + δT5) ⇒
O5 = (T0 + 5 · Pe) + 4 · δT2 + δT5 (1.12)

The moment C5 that the photometric minimum should be observed if the orbital period of the
system was constantly stable according to equation 1.2 is :

C5 = T0 + 5 · Pe (1.13)

¿From equations 1.12 and 1.13 we see that the difference (O − C)5 is :

(O − C)5 = 4 · δT2 + δT5 (1.14)

For the observer back in earth this fact is translated to a new real or apparent increase of the orbital
period from the value (Pe + δT2) to the value (Pe + δT2 + δT5). The propagation of the delay δT5

to the following cycles will be done in the same way as δT2 did. It will create a new straight line
but with different angle. As it is obvious from figure 1.2 positive slope changes of an O-C diagram
are linked with an increase in the orbital period, whereas negative slope changes are linked with a
decrease in the period. Also in figure 1.2 is added one more delay (δT9) wich occurs in the ninth
orbital cycle. It is clearly seen that when the period remains stable the form of the O-C diagram is
a straight line.

¿From the above analysis we can conclude that the O-C difference that will be created at the
N-th orbital cycle after the indroduction of δT5 will be :

(O − C)N = (N − 1)δT2 + (N − 3)δT3 (1.15)
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Figure 1.2: Hypothetical O-C diagram.

If we take a more general case when the changes in the arrival of the photometric minimum is made
at random cycles we take the equation that gives us the O-C difference during the cycle E is :

(O − C)E = (E −Ej)δTj + (E − Ek)δTk (1.16)

Where the change δTj happens during the cycle Ej and δTk happens during Ek.
In general a binary system appears to have contiguous period changes at random orbital cycles.

Then the equation that will give us the O-C difference in the cycle E will be the sum :

(O − C)E =
N=E−E0∑

k=0

(E − E0 − k) · δPk+1 (1.17)

Equation 1.17 is the direct generalization of equation 1.16. It shows us that in any time interval
[E0, E] the O-C diagram of a binary ecliptic system forms from the sum of all the individual changes
δPk of the orbital period, that has been introduced in all the previous cycles of E. The effect of
every δPk in the current difference (O−C)E is a linear increase with time. All in all we cab conclude
that the relation that gives us the function P (E) during the random orbital cycle E is :

P (E) = Pe +
k=0∑

E−E0

δPk+1 (1.18)

Functions like 1.18 of a binary system are called functions of the orbital period and are symbolized
in general as P (E).
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1.4 Basic Principals Of O-C Diagrams

1.4.1 Non-Linear Modulation of O-C Diagrams

We saw in the previous section that every real or apparent change of the orbital period leads in
linear increase or decrease of the O-C differences. Thus if we make the asumption that the period of
a binary system shows instantaneous changes then the O-C diagram will be composed by succesive
straight lines that each of them will show a slope change equal to the period change.

On of the basic principals of O-C diagrams is their non-linear modulation from the real or
apparent changes of the orbital period. This attribute means that even if equal period changes
happens the corresponding slope changes will not be equal but every change will be smaller and
smaller. Let’s suppose that in some orbital cycle (eg. E1) the slope of the diagram is ϕ1 and because
of a change δP during cycle E2 the slope becomes ϕ2, then the diagram presents a turn by an angle
of δϕ = ϕ2 − ϕ1. So we have :

δP = δT2 − δT1 = [(O − C)2 − (O − C)1]− [(O − C)1 − (O − C)0]

and because every change propagates linear in the O-C diagram and because δP is the change per
orbital cycle, we have :

δP = (E2 −E1) tanϕ2 − (E1 −E0) tanϕ1 = tanϕ2 − tanϕ1 = tan(ϕ1 + δϕ)− tanϕ1 ⇒

δP =
tanϕ1 + tan δϕ

1− tanϕ1 · tan δϕ
− tanϕ1

and by the elimination of index ’1’ we have :

tan δϕ =
δP

tan2 ϕ+ δP · tanϕ+ 1
(1.19)

Equation 1.19 gives the change in the slope of an O-C diagram when the orbital period changes
by δP during the random cycle E. It proves that the effect of δP to the slope of the diagram
deppends in a non-linear way from the local slope (tanϕ) that the diagram appears to have at the
cycle E. This fact can be seen in figure 1.3. It is an O-C diagram from instant changes of the orbital
period δP that happens during cycles Ei. It is clear that equal changes of period do not produce
equal changes in the slope δϕi.

In concluson from equation 1.19 we can note that any changes in the period, are spoted more
easyly when they happen in a horizontal branch of the O-C diagram instead of a branch with a big
angle.

1.4.2 Formation of O-C Diagrams from Constant and Stable Rate Changes of

Period.

The next level of complexity after the sudden changes in an O-C diagram is when the period of a
binary system changes constatly with a stable rate of Ṗ = δP . By applying equation 1.17 we find
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Figure 1.3: Non-Linear modulation of slope.

that during the random cycle E, O-C differences that an observer will record, will be given as a
function of time by the equation :

(O − C)E =
E−E0−1∑

k=0

(E − E0 − k) · δP = δP ·
E−E0−1∑

k=0

(E − E0 − k) ⇒

(O − C)E =
E · (E + 1)

2
· δP =

δP

2
· E2 +

δP

2
· E (1.20)

Equation 1.20 proves that the O-C diagram has the form of a parabolic arc. This concluson of
course it applies and in reverse. Namely if an O-C diagram has the form of a parabolic arc with
equation αE2 + βE + c then the change in the period will be δPE = 2α.

1.4.3 Observational and Photometric Noise in O-C Diagrams

¿From all of the above it is obvious that the knowledge of δTE of an O-C diagram in every orbital
cycle, can lead us to the calculation of the real or apparent changes in the period of a binary system.
The problem is that the knowledge of the function δTE = δT (E) requires the knowledge of the O-C
differences for every cycle E with Emin ≤ E ≤ Emax. Obviously this is not possible because the
observations can not cover in a continuum way all the orbital cycles. In actual the O-C differences
are only sporadically known since big time ranges are not covered at all by observations. But even
if the coverage of the diagram was continuum some procedure of smoothing should be applied to
the data, in order to neutralize the effect of errors. These errors of course is called noise and it is
seperated in two categories, photometric and observational noise.

Observational noise is caused by :
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a) The errors of determination in the exact time of minimum light of the main or secondary
eclipse.

b) The interference by the earth’s atmosphere, that causes the scatter of photometric obser-
vations.

c) The effects of the instruments involved at the observations, such as telescopes, cameras,
filters etc. . .

The most important of the above is the first one. Usually observational noise is at a level 0f
±0.001 of the orbital period. This means that in contact binarys this noise is about ±20 to ±60 sec.

In this point we must clear out an important thing. Whereas the accuracy of determination the
photometric minimums is in the scale of one minute, the changes that can be found after analyzing
an O-C diagram are extrymelly good and in the scale usally of 10−6d (0.1sec). The cause for this
is the linear increase of the O-C differences with time. This means that because the period of W
Uma systems is very small (< 1d), even a period change of 0.1sec/E can be detected after at the
most 40 orbital cycles. This happens when the O-C diffrences overcome the noise floor because of
their linear increase.

Photometric noise on the other side is caused by phenomena in the surface of the stars, like
anomalies in symmetries and variable distribution of the temperature. These anomalies have the
effect of the sepperation of the momment of photometric eclipse from that of the real eclipse.

1.5 Photometric Noise and Apparent Period Changes

As it has been said the appearence of O-C differences in the diagram of a binary system be caused
equally to real or apparent changes of the orbital period. Apparent variations can have either a
dynamical or photometric origin. The first of these variations are caused by phenomena like the
light-time effect or the metathesis of the periastron of the orbit. Photometric variations on the
other hand are caused by phenomena like starspots, flares and in general various phenomena in the
photosphaire of the stars. The most important cause of course of photometric variations is starspots.
Let’s say a few things about them.

Let us assume that P is the orbital period of an eclipsing binary and that the light minimum at
the primary eclipse during the orbital cycle E has been shifted by δϕ. The epoch of this minimum
will be displaced from the proper time TE by δt = δϕ · P According to Geyer (1977), this δϕ may
reach values of about 0.005. For a binary with an orbital period of about 1d, such a phase shift will
give the impression that an orbital period change equal to δt = δϕ · P ≈ 5 · 10−3d has occurred.
Consider now a contact binary with a constant orbital period P0, having synchronised components
and an orbital inclination i = 90◦. The position of any spot on the surface of the j-component will
be denoted by (θ, λ)j (j = 1, 2), where θ is the longitude and λ is the latitude. On each component,
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the longitude θ is measured with respect to the meridian which passes through the centre of the
visible disk at the moment of inferior conjunction. This longitude θ is considered positive when a
spot is situated on the leading hemisphere. We further assume that the spots are circular (with an
angular radius rS), and that the temperature difference with respect to the surrounding photosphere
is δT . Such a spot can cause a phase shift of the light minimum only if the following restrictions
hold at the time of conjunction:

a) No other spot with the same physical characteristics (rS , δT ) exists within the positions
(−θ, λ) or (−θ,−λ) of the stellar disk.

b) The longitude of the spot is within the interval 90◦ − rS ≤ θ ≤ 90◦ + rS

If restriction (a) is not satisfied, then two identical spots exist symmetrically with respect to the
reference meridian or to the center of the stellar disk. In such a case, one spot cancels out the effects
of the other. If restriction (b) is not valid, then the starspot is not visible during the primary eclipse.
Several studies have indicated that starspots on close binaries have angular diameters ranging from
10◦ to 40◦, which means that they may cover from 5 to 25% of the whole photosphere of the active
components. Although it is not clear whether such dark areas consist of a group of many small spots
or of just one giant spot, the second option seems to prevail. In most cases, the active component
seems to possess one or two giant spots. It is also argued that such spots can remain on the surface of
the active component even for 10 years, or equivalently, over a thousand orbital revolutions. Hence,
starspot characteristics are different from those of sunspots, since even at solar cycle maximum the
sunspots rarely cover more than 1 to 2% of the solar photosphere, and their lifetimes never exceed
3 to 4 solar revolutions.

As for the W UMa type binaries, observations have shown that approximately 20% to 30% of
all known contact binaries possess one or two giant spots with angular diameters 10◦ to 35◦ and
δT ≈ 500 to 1500K. Two remarks can be readily made :

i) Spots with the same angular diameters cause significantly greater phase shifts when they lie
on the primary component.

ii) Spots on the secondary having rS < 10◦ cause negligible shifts of the light minimum of the
primary eclipse.

The important concluson (kalimeris et al. 2002) is that the effect of starspots at the members
of a binary systems leads to the indroduction of high frequency noise to the O-C diagrams. This
noise is limited to a zone with a width of ±εphot on either side of the zero level of the diagram,
when the period is stable, or on either side of the systematic orbital period variations that modulate
the diagram. Instead of real period changes, a starspot as any other photometric variation, can not
produce permanent changes in the slope of an O-C diagram. So any O-C diagram carries information
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about period changes. These changes can be either real or apparent. if they are apparent then it can
be either photometric or dynamical. From the above we conclude that if the changes are apparent
then it can only be of dynamical nature. The next section is involved with the formation of O-C
diagrams from dynamical phenomena.

1.6 O-C Diagram Formation

In binary systems, it is known that there is dynamic phenomena that even if they don’t alter the
period of the system, they lead to the indroduction of O-C differences. These differences could then
be linked with period changes that of course are not real but apparent. Such phenomena are the
nutation of the line of apsid and the light-time effect.

In binary systems, it is known that there is dynamic phenomena that even if they don’t alter
the period of the system, they lead to the indroduction of O-C differences. These differences could
then be linked with period changes that of course are not real but apparent. Such phenomena
are the nutation of the line of apsid and the light-time effect.In binary systems, it is known that
there is dynamic phenomena that even if they don’t alter the period of the system, they lead to the
indroduction of O-C differences. These differences could then be linked with period changes that
of course are not real but apparent. Such phenomena are the nutation of the line of apsid and the
light-time effect. Here only the light-time effect will be analyzed in depth.

1.6.1 O-C Differences From The Light-Time Effect

The existence of a third star in a binary system it does not only cause the line of apsid to rotate,
but also a periodic variation of the distance of the center of mass (K2 from earth. As a consequence
of that the time the light needs to reach earth is subject to small variations, that are detectable
through the O-C differences. Because the center of mass of the binary system tracks an eliptical
orbit in respect to that of the third star, it can be proven that the distance at a random moment t
is given by the equation :

S = s0 + υob(t− T0) + α′(1− e′ cos ε′) sin i′ · sin(v′ + ω′) (1.21)

where s0 is the distance of K2 from earth during the initial moment T0, υob is the component of
speed of the triple system at the direction of the observation. α′ is the length of the semi-axis of
the orbit of the K2, e′ is the eccentricity of the orbit of K2, i′ is the inclination of the orbit of the
third star, ω′ is the length of the periastron of the orbit and v′,ε′ is the real and acentric anomaly
of the third star during the moment t.

If for the legth D′ of the semi-axis of the relative orbit of the third star applies D′ >> D, then
for α′ we have the two body problem :

α′ =
m3

m1,2 +m3
·D′ (1.22)



1.6 O-C Diagram Formation 14

By using the proper spread of the quantities 1− e′ cos ε′,sin v′,cos v′ in respect to the mean anomaly
M ′ of the third body, we can have the time distance of the center of mass of the binary system from
earth. This is given by the ”light” equation :

S

c
= υob +

α′ · sin i′
c

[
− 3

2
e′ sinω′ +

(
1− 1

2
e′ 2

)
sin

(
2π

P

P ′
E +N ′

0 + ω′
)
−

−1
8
e′ 2 sin

(
2π

P

P ′
E +N ′

0 − ω′
)

+
1
2
e′ sin

(
4π

P

P ′
E + 2N ′

0 + ω′
)

+

+
3
8
e′ 2 sin

(
6π

P

P ′
E + 3N ′

0 + ω′
)]

(1.23)

where N ′
0 is :

N ′
0 =

2π
P ′
T0 + c′

and c′ is a constant that is choosen in such way that the value of the mean anomaly during the
moment T0 equals with an observable value of M ′

0. Through equation 1.23 it can be proved that the
moment of observation of the photometric minimum of the main eclipse during the orbital cycle E
is given by :

(O − C)E = T0 + P · E +
υob

c
P · E +

α′ · sin i′
c

·
(

1− 1
2
e′2

)
· sin

(
2π

P

P ′
· E +N ′

0 + ω′
)

+

+
1
8
e′ 2 · α sin i′

c
· sin

(
2π

P

P ′
· E +N ′

0 − ω′
)

+

+
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2
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c
· sin

(
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P
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)

+

+
3
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e′ 2 · α
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c
· sin

(
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P
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· E + 3N ′

0 + ω′
)

(1.24)

The sum of the last five terms of equation 1.24, gives the equation of the O-C differences as a
function of the orbital cycle E :

(O − C)E =
υob

c
P · E +

α′ · sin i′
c

·
(

1− 1
2
e′2

)
· sin

(
2π

P

P ′
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0 + ω′
)

+

+
1
8
e′ 2 · α sin i′

c
· sin
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P

P ′
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)

+

+
1
2
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c
· sin

(
4π

P

P ′
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0 + ω′
)

+

+
3
8
e′ 2 · α

′ sin i′

c
· sin

(
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P

P ′
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(1.25)

In equation 1.25 excluding the first term that is the cause of the motion of the system trough the
galaxy, the rest of the terms are functions of sine of the main angle 2πPE/P ′ and of it’s multiples.
The first periodic term of equation 1.25 has the biggest width and of course is the strongest. So
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equation 1.25 shows that the O-C diagram of a binary system that is acompanied by a third star,
will have a sinusodial form with a width of :

B ≈ α′ sin i′

c
·
(

1− 1
2
e′ 2

)
(1.26)

Of course except of the main frequence P/P ′ there will be and it’s harmonics 2P/P ′, 4P/P ′. . .
In figure 1.4 is the O-C diagram of 44i Boo, which is one the few systems that is an astrometic

triple system. The apparent orbit is in the same figure, the theoretic form of the O-C diagram as
expected from equation 1.25 is the continum line and the points are the observed data. We must be

Figure 1.4: Apparent orbit and theoretical O-C diagram of 44i Boo.

very careful with any diagrams that have a sinusoidal form. This of course is not right, to explain all
the periodic data from O-C diagrams of contact binaries with the light-time effect, it is required the
existence of a third star with such masses that normally it could have been detected photometrically
or with spectrums. So a periodic O-C diagram is probably related with internal physical processes
that happen in the members of the system.



Chapter 2

Analysis Methods Of O-C Diagrams

“Observing Closer Part II . . . ”

2.1 The Classical Analysis Model

In previous paragraphs we have seen that the simpler formation of an O-C diagram, is from sudden
changes of the orbital period. The produced O-C diagram is constituted from straight segments, that
form an angle between them at the point where a sudden change is happened. The tangent of this
angle is equal to the change in the orbital period. These simple facts they compose a technique that
has been used the last four decades for the analysis and interpetation of O-C diagrams. According
to this technique, in an O-C diagram that has the form of a straight line the orbital period is stable,
the points of section of successive straight segments in the diagram they fix the points that the
orbital period is changing.

This is the oldest method for analysing O-C diagrams of eclipsing binary systems, it is known
as ”step variations model”. Apart from this simple method of analysis it exists another one method
that it is called ”constant rate variations model”. For this model at the intervals that an O-C
diagram has the form of a parabolic arc with an equation αE2 +βE2 + c, the orbital period changes
with a constant rate of Ṗ = 2α and vice versa. The above two methods form what is known as the
“classic model” for analysing O-C diagrams. According to this model, O-C diagrams present the
following characteristics :

• Successive straight segments with sudden changes of their slope

• Parabolic arcs

• Sinousodial changes

• Irregular changes
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By applying this model to a binary system you can find the P (E) function that is to say, the
period changes vs orbital cycle. To the establisment of the clasic model helped the fact that we
know a few physical mechanisms that lead to the formation of parabolic arcs in O-C diagrams, such
as chemical or thermal evolution of the members of the binary system as well as the interaction of
tides and stellar wind.

Alalysis and Description with the clasic model The basic element of the analysis with the
clasic model of an O-C diagram, is that the personal jugdtment of the investigator plays a big role.
The steps to analyze with that method is :

First of all with an optical examination of the diagram it is decided if the timeseries will be
described by a parabolic arc, by a straight line or by a sinusodial line. In most cases it’s not posible
to describe all the diagram with a single line. This is because all O-C diagrams that have a duration
longer than 10 − 20 years are complicated. The reason for this is that it is much more likely to
document the various mechanismis that change the orbital period of the system in a big time interval.
Consequently if one is limited in small time intervals, he can always find segments of the diagram
that can be described by straight lines or parabolic arcs. This is true even in the most complicated
diagrams. The final calculation of the P (E) function is done by simple adding the various segments
(straight or parabolic). Of course the points of intersection of staight and parabolic arcs make the
P (E) function inconsecutive.

2.2 Why The Classic Model Is Wrong?

It is very easy to see now why the classic method is wrong. There is three important points that
the method is wrong and not consistent with the physical reality.

A) The description of a random time series with consecutive straight lines and parabolic arcs
is wrong because it is in the arbitrary choice of the observer in how he will make the analysis.
Different observers give different results

B) Classic model presumes arbitary things about the physical mechanisms that give the ob-
served period changes. It is not possibly for a system that underlies a sudden period change to
alter it’s physical constants in such a way that it can go from a stable state to another stable state
immediately.

Mathematical failure of the Classic Model The most interesting fact in contact binary sys-
tems is their complex behaviour. This is translated into complex O-C diagrams that in most of
the systems are chaotic, with no visible periodicity. An O-C diagram can be analyzed with many
different ways by a means of combinations of straight lines and parabolic arcs. Every such analysis
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of course leads to a dramaticaly different interpetetion of period changes. This means that the
classic method does not ensure the univocal determination of the P (E) function.

Another point that comes in direct conflict with the theory of the classic model, is the property of
O-C diagrams to have radicaly different form when they are produced from different linear ephimeris
equations, for the same binary system. It is very common for every observer to choose arbitary the
constants T0 and P0 that form the linear ephemeris. In practice all linear ephemeris are in equivalence
with each other. This is shown in figure 2.1 of AB-And that is formed of three linear ephemeris
with common T0 but with different period P0. It is T0 = 2425497.48 J.D. and Pe1 = 0.33188638 d,
Pe20.33189305 d and Pe3 = 0.331889 d. Because of the non-linear modulation of the O-C differences,

Figure 2.1: O-C Diagram of AB-And formed by three different linear ephemeris

it is clear that there is the possibility in one diagram an orbital period change to be easily detectable
and in some other diagram not to. Because of all these we can understand now that in every O-
C diagram that is computed with a different linear ephemeris, it will be described with a totaly
different way with the classic model, leading to different P (E) functions. Consequently by only this
fact the classical analysis method is inappropriate for the description of random time series, like the
time series that are observed in contact binary systems.
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Physical Failure of Classic Method The classic method of analysis is based upon the hypothesis
that the orbital period of binary systems changes in a non-continous manner. The description with
succesive straight lines implies that in the corresponding time span the orbital period is completly
steady, that are only interapted by sudden changes in the order of 0.1 − 1 sec and then again a
steady period. So the clasic model says that the period of the system follows a step form. That’s
why it is also known as the ste-variations model.

The real problem is that it is very difficult to find a physical mechanism to produce such a
behaviour. And even if we could find such a mechanism there is no way to explain the speed in
which the system dampens an orbital variation. It is widely known from any structure model about
binary systems that there is no systems with such a behaviour. So all systems must follow a continows
variation of their parameters after a change in their orbital period1. Especialy in contact binary
systems the above point is much more important because of the close proximity of the members.
All in all the theory of the clasic analysis method comes in complete opposition with the physics of
contact binaries (and any binary system). It can be proven that in systems that are in a state of
tidal equlibrium, and that their members do not change their radius, under a conservative situation,
that mass transfer can cause orbital changes that are given from the equation :

dP

P
= 3

2µ
′ − 1dm

µ′(1− µ′)M
= 3

1− q2dm

qM
(2.1)

where µ
′
= M2/(M1 +M2). So it is clear now that even after a sudden change in the orbital period

the mass tranfer continuous to undergo with various rates for a period of time tK−H therefore the
orbital period will also have similar variations.

1Of course an orbital period change can be caused by many reasons, but mainly by a mass tranfer from one member

to the other, resulting to a point to an O-C diagramm
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2.3 The New Kalimeris Model of O-C Analysis

¿From all of what we said until now it is clear that there is the need of a new method of analysis
and interpetation of O-C diagramm and the information that they contain. This new method must
follow the physics limitations as well as the mathematical too. So A. Kalimeris proposed this new
method in 90’s. The method quicly became very popular and now is widely accepted as the best
and correct method to follow for the O-C diagramm analysis. It is very easy to understand why, it
says what is obvious from mathematical and physical point. It adopts a non-linear fitting procedure
in contrast to the linear one of the clasic method.

2.3.1 Least Squares Polynomial Description of O-C Curves

It is widely known that the use of a function that fits with the best way time series data is the
most appropiate solutions for analysis because ensures the neccesery removal of photometric and
observational noise and at the same time complies with the physics of binary systems. There are
many such methods of analysis, but originaly Kalimeris choose the least square polynomial fitting
with Chebyshev or Legendre plynomials, mainly because of it’s ability to have easy to understand
results and have very good behaviour that has in difficult points of an O-C diagram2 and of course
of the way it handles errors.

The most important thing is something other. It is the independence of the method is used to
fit the time series. The analysis model that kalimeris proposed is indepented and globaly accepts
methods like ARMA (Autoregressive moving model) or Fourier transforms to find the spectrum of
the time series. Of couse there is only one restriction. Any method of fitting that the person who
does the analysis must complie with the physics of contact and in general binary systems. So from
now on i will present you the version of Kalimeris model with a least square polynomial fitting
procedure.

A polynomial description of a time series is given by the equation :

Sm(E) = c
′

m∑

j=1

cj
∏

j

(E
′
) (2.2)

A common problem with such a fitting method is that many times it can not describe the hole set
of data with just one polynomial. The way to deal with this is the piecewise approximation. The
pieces of the diagram uses every time adifferent polynomial description of the form of 2.2.

In equation 2.2
∏

j(E
′
) is the j-polynomial Chebyshev or Legendre and E

′
is the normalized

orbital cycle that is defined as E
′
= E/c

′
where c

′
is a constant that is choosed freely in such a way

to N/c
′
< 1 where N = Emax − Emin and Emax, Emin is the maximum and minimum orbital cycle

that an O-C diagram covers. The above tranformation of time coordinates is neccesery beacause
2points with very fast and stip change in their inclination
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Chebyshev and Legendre polynomials are defined only for −1 ≤ x ≤ 1. The factors cj are computed
by leaste squares theory, so after the neccesary calculations equation 2.2 can be writen as :

∆T (E) ≡ Sm(E) = c
′

m∑

j=1

cjE
′j (2.3)

Where ∆T (E) from now on will be the best fitting of an O-C diagram as a function of orbital cycle
E. The degree of the polynomial used can be selected by just looking a diagram of mean square
error (εrms figure2.2). Here we must point some important things. There is no meaning of εrms to
becomes smaller of the noise floor of an O-C diagram, and second that there is a maximum value of
m that the polynomial is becoming unstable and appears to have oscilations of increasing amplitude.
This is clearly seen in figure 2.2. When such oscilations starts before εrms equals the noise floor3,
then the method of piecewise approximation is obligatory. If piecewise approximation is used then

Figure 2.2: Behaviour of the mean square error (εrms) as a function of the order m of the Chebyshev
polynomial

we must be very carefull not to fail the physics of binary systems. For this not to happen we must
connect each piece of the diagram with a cubic spline. In each connection point we have some
constrains :

d∆Tj(E)
dE

=
d∆Tj+1(E)

dE
(2.4)

3Photometric and observational noise see section 1.5 for details
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and
d2∆Tj(E)
dE2

=
d2∆Tj+1(E)

dE2
(2.5)

These constrains 2.4, 2.5 as i already said are satisfied by a cubic spline connection.

The Kalimeris Model of O-C Analysis Since i described the implemetation of least square
fitting with a Chebyshev or a Legendre polynomial to O-C time series data of contact binary systems,
it is time to describe the main core (and intepented of the fitting procedure) of the Kalimeris model.
The main thing we are searching during the analysis of O-C diagrams is the P (E) function. Having
already found the ∆T (E) function that gives the O-C differences in every orbital cycle E we have
this obvious equation :

O(E) = C(E) + ∆T (E) (2.6)

using the above equation and knowing the definition of the observed value of the orbital period4 we
can conclude that the P (E) function during a random cycle E is given by :

P (E) = O(E)−O(E − 1) =
[
C(E) + ∆T (E)

]
−

[
C(E − 1)−∆T (E − 1)

]
⇒

P (E) =

{[
T0 + (E − Emin)Pe

]
+ ∆T (E)

}
−

{[
T0 + (E − 1− Emin)Pe

]
+ ∆T (E − 1)

}
⇒

P (E) = Pe + ∆T (E)−∆T (E − 1) (2.7)

Equation 2.7 is a general expresion that gives the observed value of the orbital period , intepented of
the description method that is used for the analysis of an O-C diagram through a fitting procedure.
Through equation 2.7 we can find the rate of change of the orbital period per orbital cycle. It would
be :

Ṗ (E) = ∆T (E)− 2∆T (E − 1) + ∆T (E − 2) (2.8)

The above equation is also a general one, so in our spesific situation that we use a least square
method for the description of the time series, equation 2.8 will be :

Ṗ (E) =
dP

dE
=

1
c′

[
m−1∑

k=0

(k + 1)ckE
′k −

m−1∑

k=0

(k + 1)ck+1

(E − 1
c′

)k
]

(2.9)

Thus with equations 2.7 and 2.8 we can calculate the variations of the orbital period of any binary
system, of course inside the limits of observational and photometric noise.

4Orbital period is defined as the time between two minimum in the light curve of the same type. Meaning the time

between two main or two secondary eclipses.



2.4 Existence of a Third Body in Binary Systems 23

2.3.2 Noise Handling with Chebyshev Polynomials in Kalimeris Model

In the previous paragraph it was mentioned that the kalimeris model is intepented of the method
used for fitting the time series data of an O-C diagram. But the method of least square fitting
with a Chebyshev polynomial was prefered from others for very spesific reasons. These are that this
spesific type of polynomials has a very nice way of handling the photometric noise5.

It can be proved that the least square fitting with a Chebyshev polynomial is equivelant with a
partial development in Fourier series. Thus equation 2.2 can be writen :

Sm(x) =
α0

2
+

m∑

k=1

αkTk(x) =
α0

2
+

m∑

k=1

αk cos(kθ) (2.10)

Where Sm(x) is the least square fitting of the data. The above property of Chebyshev polynomials
allows us the filtering of photometric noise, by cutting off the terms of the developed series that
show a frequency larger or equal to vs. Where vs is the frequency of photometric noise and equals
vs = ∆P

P .

2.4 Existence of a Third Body in Binary Systems

The existence of a third body in orbit around an eclipsing binary, introduces a harmonic term in
the O-C diagram due to the light-time effect. Such an oscillation can be detected in two ways :

• Through the residuals formed between the observed differences O-C and the best fitted polyno-
mial ∆T (E). In simple cases, these residuals have the form of a sinusoid curve. The amplitude
and frequency of such terms are used for the determination of the mass function f(m).

• Through a spectral analysis of the period function P (E). The first method is in common use
and is very efficient whenever linear or quadratic terms fit the observations.

However, scarcely an O-C diagram can be described as a whole so easily without loss of important
information and inconsistencies relative to the underlying physical mechanisms. Generally, polyno-
mials of high order have to be used in order to describe as much as possible of the fine features
of an O-C diagram, light- time due to third body included. When the light-time effect cannot be
described by least square polynomials, it manifests itself in the diagram of residuals However, a
problem appears whenever a least squares polynomial approximates an existing light-time effect 6.
Then the ∆T (E) polynomial is contaminated by the light-time effect which directly distorts the
form of the P (E) function. This, means that P (E) can show fictitious changes due to an unresolved
light-time, although this effect has nothing to do with real orbital period changes. In the following
we examine the way the light-time effect affects the P (E) function.

5Photometric noise has a typical value of εphot ≤ 0.01d for O-C diagrams of contact binay systems.
6Which easily happens when the observations cover a time span comparable to the orbital period of the third body,

or when the orbital period of the eclipsing pair suffers relatively rapid and continuous changes like contact binaries do.
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We suppose that an O-C curve contains a light-time effect, which in, general can be described
by the Fourier series :

∞∑

j=0

[
αj sin(fjE) + bj cos(fjE)

]
(2.11)

Using 2.11 we can find the form of P (E), apart from any polynomic terms, as:

P (E) = Pe

∞∑

j=0

[
αj(1− cos fj)− bj sin fj

]
sin(fjE) +

∞∑

j=0

[
bj(1− cos fj)− αj sin fj

]
cos(fjE) (2.12)

Comparing equations 2.11 and 2.12 we can see that, as it was expected, every harmonic term in
equation 2.11 generates one harmonic term in 2.12 of the same frequency fj , but with different
amplitude. The invariable character of the frequency means that any harmonic term of the O-C
curve will be also present in the spectrum of the period function P (E). In the simple case where the
orbit of the third body is circular and coplanar to the orbit of the eclipsing variable, the light-time
effect can be approximated by a single sine term, so that ∆T (E) becomes (apart from any polynomic
terms) :

∆T (E) = α sin(fE) = α sin
(2pi
T
E

)
(2.13)

where it is supposed that the amplitude of the light-time effect is α and the orbital period of the
third body is T . Then, according to 2.12 the period function P (E) of the eclipsing pair will contain
the periodic term : α(1−cos f) sin(fE)+α sin f cos(fE). Given a spectrum of P (E) that shows the
amplitude of sin terms at different frequencies, we conclude that any light-time effect of amplitude
α and period T will produce a spectral line of amplitude ∆P = α(1− cos f) at a frequency f . Then,
the apparent orbital dimension of the eclipsing variable motion around the center of mass of the
triple system is :

α sin i = c
∆P

(1− cos f)
(2.14)

Consequently, the mass function will be :

f(m) =
(α sin i)3

T 2
=

(M3 sin i)3

(M1 +M2 +M3)2
(2.15)

and of course can be solved for the mass of the third body M3.
As can be seen with a very small arithmetical analysis, third bodies of very small masses are

sufficient to explain the spectral components of typical contact binaries of W Uma type. The small
values of M3 are a consequence of the very small values of the f(m) function. In some cases, the
requisite third body mass is so small at only 0.2 of Jupiter’s masses that its detection is not possible
by present means. So we must be very carefull with such an interpetation of our observational data.



Chapter 3

Photometry - Analysis Of

Observational Data

In this section i analyze with the Kalimeris method data collected for the system ER Ori. I also
present the light curve of this system. The light curve were produced with a Vixen VC200L 8inch,
together with an SBIG ST-7 CCD camera. The characteristics of the camera as well as the scripts
and software used to analyze the photometric data are presented in table 3.1.

The analysis was done in two main parts. The first one is the implementation of Kalimeris
method to collected data and the second one is the reduction of the photometric data obtained with
the above equipment. Observations of the stars mainly took place in Mount Xolomon from summer
2004 until winter 2006. Also some observations was done in Larissa.

For the purpose of this diploma thesis new scripts were developed, using the facilities of Starlink.
For the data reduction flat dark and bias frames was used. With these scripts an accurasy of 0.01
mag was possible.

Characteristic Value
A/D Converter 16 bits
A/D Gain 2.6e−/ADU
Read Noise 15e−/RMS

Pixel Digitization Rate 420000 pixel/sec
Pixel Size 9 x 9 microns
Dark Current 1e−/pixel/sec at 0oC
Pixel Array 765 x 510 pixels, 6.9 x 4.6 mm
Full Well Capacity 100000e−

Table 3.1: SBIG ST7 CCD Camera Characteristics
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3.1 ER-Ori

The star ER-Ori is a typical contact binary system. It has a period of ≈ 0.42 days kai it is already
been observed from the 30’s decate. As a result we have enough observations to conclude some
characteristics of its behaviour. At figure 3.1 it is shown the field of the star as it has observed
by me. Also in figure 3.2 it is the light curve of ER-Ori as it was observed by me with the above
equipment. In x-axis is the time in JD (Julian date) and in y-axis is the instrumental magnitute
(mag). It is a very nice and clean curve that shows that between the maximum and minimum it is
∆mag ≈ 0.7mag. The linear ephemeris that was used for the calculation of the O-C values is :

MinI = JD Hel 2443090.5300 + 0.423399431E.
At figures 3.3, 3.4 and 3.5 it is shown the O-C diagram the non-linear fit and finally the diagram of

the P (E) function. As it has already been said, in the case that it is not possible for one polynomial
to describe the whole O-C diagram then we must have the fitting in pieces and combine them with
a cubic spline. In the case of ER-Ori this was not nessecary since only one polynomial described
the diagramm very well. The only point in the diagram that could posible need such an analysis is
in the space between orbital cycle −15000 through cycle 0. By doing the piecewise analysis i found
that there is no benefit from doing it, so i stayed with the simpler one.

So the procedure that i followed was first finding all the times of minima that i could. Some
characteristics for these minima is shown at table 3.3. Then with the help of the fortran code that
i wrote spesifically for this purpose and by using the linear ephemeris given above, i found the O-C
values for ER-Ori. Then by using the program gnuplot in linux i ploted and fited the O-C curve
with the polynomial 3.1. The algorithm used for this process was the Marquardt-Levenberg.

Figure 3.1: The Stellar Field of ER Ori (14.5x9.6 arcmin).

For the fitting calculations it was used an polynomial 11th order. This polynomial is :

∆(E) = aE11 + bE10 + cE9 + dE8 + eE7 + wE6 + zE5 + fE4 + kE3 + pE2 + hE +m (3.1)
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Figure 3.2: The light curve of ER-Ori

Spectral type B (mag) V (mag) B-V (mag) Ra Dec
G1V 9.96 9.53 0.43 05h 11m 14s -08d 33m 24s

Table 3.2: ER Ori Physical Characteristics

The next step was done throu equation 2.7 :

P (E) = Pe + ∆T (E)−∆T (E − 1) (3.2)

were Pe ≈ 0.42 and then i can take the P (E) function. The coefficiants of the polynomial are :
a = 865.0813, b = 1417.2678, c = 169.0928, d = −690.0042, e = −191.3116, w = 136.3668,

z = 32.9902, f = −13.4859, k = −1.2108, p = 0.5151, h = −0.0246, m = −0.0024
Finally the P (E) function will be :

P (E) = 0.42 + ∆T (E)−∆T (E − 1) (3.3)

The ∆(E) function is the red line at figure 3.4 and as it is clear, it follows the O-C diagram
very well. The final behaviour of ER-Ori is shown at figure 3.5. It is very clear that the smallest
variations that is observed are at the order of 0.2 sec. The bigest variation in it period is only ≈ 0.6
sec. Is very clear now how sensitive the Kalimeris method is in the detection of variations in the
period of the system, that with the methods used until now would be undetectable.

Visual Photoelectric Photographic CCD Total
46 45 5 11 107

Table 3.3: ER Ori Times of Minima Characteristics
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Figure 3.3: The O-C Diagram of ER Ori.

ER-Ori as it finaly seems it has a periodic behaviour. In the time span that there is observations,
it seems that the period of ER-Ori to modulated by two periodic terms. The first one causes the
variations of 0.2 sec. The second one is responsible for the parabolic structure that the diagram has.

The variation of the 0.6 sec is posible caused by a third mechanism that could be not a periodic
one. Of course to short this thing out more observations are needed for at least a few decades.
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Figure 3.4: The O-C Diagram of ER Ori and the non-Linear Fitting.
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Figure 3.5: The P (E) Function of ER Ori.



Chapter 4

Results and Conclusions

4.1 Future Work

Future work posible with this new method, is the analysis of many more contact binary systems so
we can have better statistics. This will allow us to find relations between the physical parameters
of contact binary systems and to understand the physics of these systems. Until now the method
of analysis was wrong, so many things that was supposed true about contact binaries, now possible
they will be wrong and need revising.

With the Kalimeris method, from the moment that is selfcosistent and does follow all the physics
of contact binaries, it is sure that it can lead us to the right structure theorys not only for contact
binaries but for all double systems that O-C diagrams can be constracted. Moreover because of the
high sensitivity of the method to subtle changes in the period of a double system, it can give us
cantidates for a third body with a mass compareable to earth.

So it is an excellent method to discover new planets in double systmems. The only point that
needs our attention is that it can give us only cantidates. So other methods should be used to verify
the existence of another planet in a binary system.



Part II

Fourier and Wavelet Analysis of SS433 High Speed Photometry



Chapter 1

Introduction to Microquasars and

SS433

“Chaos, Order and Hidden Meanings . . . ”

What is a microquasar and why it has this name? Many people when they here the term microquasar
they think of an extragalactic object called just quasar. They simply think that it’s just a category
of quasars, but the truth is far from this.

Actually microquasars are binary systems that lie well within our galaxy. They have an acretion
disc that is warmed up by falling mass aquired by a hot companion star. So they have very common
characteristics in their spectrum both quasars and microquasars, and thats why they have a common
name. A microquasar is a small version of a quasar, but only in the observed characteristics and
not in their real physical backround. In figure 1.1 their differences are shown.

The main similarities but at the same time their main differences as well is their black hole.
In quasars is very big in the order of a few thousand solar masses in comparison to microquasars
that they have a black hole of only few solar masses. This fact has an imidiate impact on the
temperatures and the size of the jet’s they have, with quasars naturally have everything much bigger.
With quasars we have jet’s that extend in milion light years in comparison to microquasars that
extend in only a few light years. In figure 1.2 there is a list of a few known microquasars in our
galaxy.

It is clear that the name microquasar is properly selected to clarify the analogy with quasars and
to point that the knowledge of the physics of microquasars can easily be aplied to quasars. After
all both type of objects have fundamentaly the same physics of astrophysical jet’s.
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Figure 1.1: Differences of microquasars and quasars

1.1 The SS433 Microquasar

SS433 or else V1343 Aql is famous as the first relativistic jet source in the galaxy and is considered to
be a prototype microquasar. It is essentially a binary system of a compact object, probably a black
hole, and probably an A4 supergiant donor star. It demonstrates precessing jets and a supercritical
accretion disc around the black hole. SS433 is also in the center of the supernova remnant (SNR)
W50. It is a highly variable system and shows different types of periodicities:

Precessional (Pprec = 162.5d) which is observed by periodical Doppler shifts of H, He, I, Fe
and other optical and X-ray emission lines also is clearly visible in optical and X-ray light curves.
(A. M. Cherepashchuk et al., 2004)

Orbital (Porb = 13.082d) which is observed in optical, radio and X-ray bands. The shape of the
optical light curve strongly depends on the precessional phase but its period remains stable for over
30 years. (A. M. Cherepashchuk et al., 2004)

Nutational (Pnut = 6.28d) which is observed as a periodic deviation from the precessional
Doppler motion of emission lines and can also be recovered from photometric data. Nutational
radial velocity variations are delayed from the nutational photometric variations by 0.6 days. This
delay corresponds to the travel time from the accretion disc centre to the region where the moving
optical emission lines, downstream the relativistic jets are formed. This region is located at l ≈
1014 − 1015 cm away from the disc center. This periodicity remains stable for at least 16 years. (A.
M. Cherepashchuk et al., 2004) The fact that makes the SS433 so specific is that its anti parallel
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Figure 1.2: A Small list of Known Microquasars

beams originate from the source position at relativistic velocities. The reason that this object was
very popular in the beginning of 1980 was based on the belief that from the study of the astrophysical
jets of a galactic object it would be possible to have a complete comprehension and application of
the acquired knowledge to the extragalactic astrophysical jets.

1.2 The Kinematic Model

Before we reach and specify the details concerning the study of the compact radio structure of
SS433, it is necessary to explain the simple pattern of the suggested model, which describe the
complete kinetic properties of the source. This kinematic model represent the most useful tool
firstly to comprehend and secondly to precisely figure the motion of the emitted jets. As a result
the measurable (observable) quantities such as the precession period, the magnitude and others can
be precisely estimated. Not only the optical but also the infrared spectrum of SS433 show two sets
of strong shifted emission lines due to the Doppler effect. These systems appear to have random
changes in their wavelength. The maximum measurable radial velocity is at the order of a magnitude
of +50.000Km/sec and 30.000Km/sec.

In the model which we deal with, is considered the assumption that the two Doppler shifted
lines concern the anti-parallel orientated beams of particles. The observed periodic change in radial
velocity is explained by taking into account the revolution around the ejection axis. Due to the
fact that these beams are anti-parallel, the first one moves far away from the observer (red shifted
spectral lines) while the other approach the observer (blue shifted spectral lines). This model was
proposed by Fabian and Rees (1979) and by Milgrom (1979). In addition, for achieving accordance
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Figure 1.3: The supernova remnant W50 and SS433

with measurable radial velocity we have to accept that these beams have almost a relativistic velocity
of about 0.26c. In it’s simplest form, this model is completely described by seven parameters. These
parameters are :

• i The angle between the observation direction and the axis of the cone due to the precession
motion. It is defined that.

• θ The mean angular width of the cone which is bounded by the particle beams.

• ψ The position of the angle of the cone axis as it is projected on the sky plane.

• s The parameter which determines the direction of the beams precession. We use s = 1 for
right-handed rotation and s = −1 for left-handed rotation.

• u The velocity of the particles into the beams. We use the relativistic expression.

• P The precession period.

• t0 The time in which the phase of the precession ψ(t) is zero.

At this time, we will present a more detailed analysis, in which our final purpose is the presen-
tation of a three dimensional model of the jets motion. We consider the axis z

′
, around of which
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Figure 1.4: The SS433 Kinematic model.

the velocity vector u (which defines the direction of ejection) is rotated by an angle of ψ at an
angular velocity Ω. Furthermore, we have the y

′
axis of a right handed coordinate system which is

located at the sky level, supposing that the axis is parallel to y
′
and z

′
. The origin of this system

of reference (and of every system which can be used) coincides to the position of the central object
of SS433. To avoid confusion we define the factors, Srot (rotation sign parameter) and Sjet (jet sign
parameter). Therefore we can write Srot = 2π/P with Srot = +1 for the right handed rotation, with
period P. The value Sjet = +1 corresponds to the jets motion towards the observer (blueshift). The
geometry which correlates the system of reference x

′ − y′ − z′ with the velocity vector u is depicted
in diagram 1.4. Moreover the x axis which points to the observer is also presented, making a pitch
angle i relatively to z

′
axis. The system of reference x−y−z can be taken by a rotation at an angle

of 90− i around of y
′
axis.

Due to the fact that the angle ψ corresponds to one of the angular components (or constituent)
of a polar coordinate system and the angle Ω(t0 − tref ) describes the other angular component of
the vector u at time t0, after passing a reference time period , taking into account that the vector
which defines the direction of emission is located at plane x

′ − z
′
, we can write :

u = sjetū
[
sinΨ cos Ω(t0 − tref ), sinΨ sinΩ(t0 − tref , cos Ψ)

]
(1.1)

The projections of the vector u at the axis x, y and z of this coordinate system are :

ux = Sjetū
[
sinΨ sin i cosΩ(t0 − t)ref) + cos Ψ cos i

]

uy = Sjetū
[
sinΨ sinΩ(t0 − tref )

]
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uz = Sjetū
[
sin i cosΨ− cos i sinΨ cosΩ(t0 − tref )

]
(1.2)

In order the description to be possible of normal motions, it will be necessary the axis y and z to be
rotated at an angle of χ, in order for the new y axis be directed northwards, while the new z axis
to be directed eastward as it appears in scheme B. At this scheme the new z axis is renamed ∆α
and the new y axis is renamed ∆δ. Both the precise definition of the jets position and the other
geometrical parameters are depicted at scheme B. From the projection of the vector u at the axis
∆α and ∆δ we take :

uα = (sinx)uy + (cosx)uz

uδ = (cosx)uy + (sinx)uz (1.3)

We consider teject as the time in which a specific couple of the SS433 jet parts is ejected from the
central object. The observable normal motions of these jet parts in a ulterior time t0 are described
by the following expressions :

µα =
uα(t0 − teject)/ cos δ

d(1− ux/c
(1.4)

and
µδ =

uδ(t0 − teject)
d(1− ux/c

(1.5)

c is the velocity of light, d is the distance of the object, while the factor which is appeared at the
denominators, compensate the finite time period of the observable radiations voyage, as it crosses
the source. Due to this effect (this is a special relativity consequence) the nearest side of a twin jet,
is appeared as it was at a time after t0 while the distant as it was at a time earlier than t0. The time
period of a specific observation t, is correlated with t0 according to the light voyage time between
SS433 and the observer.

Studying the above equations, we see the presence of the following parameters Sjet, Srot, Ψ, i,
χ, P , tref , u/d, u, which are the same for all stages of the object, in a model of constant velocity. It
is important to say that, these equations describe the motion of every particle which be ejected by
from a source, and provide accurate results even in relativistic velocities. Therefore these equations,
can be used not only in case of SS433, but also at quasar’s jet and and also in radio galaxies.

1.3 The Jet’s of SS433 Microquasar

It still remains fairly uncertain the mechanism that describes the accelarating and well defined jets.
In general the hypothesis that either rotation or adding mass through the accretion disc in a compact
star, could be possible provide the big amount of energy that is required. Any model that is trying
to explain the jet’s is restricted by these well observed parameters :

• The jet’s must have a stable velocity of 0.26c. This velocity must be aquired in a time of 100
sec.
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• Well difend jets tha have an angular width of less than 4o.

• The jet’s are two-sided and anti-paralell and they have a preccesion with a period of almost
162 days.

1.4 Flaring Events

SS433 as it is said above it is observed since the 80’s. Already in 1989 it was observed five flaring
events from Vermeulen. A hypothesis was made, that the spectrum of SS433 was a combination of
a quiet one and the spectrus of the flares evolving indepenately.

Before an actual event of a flare it is observed a small dip in the flux density in radiowaves as
well as in other bands. This dip probably some kind of matter that is opticaly thick that is ejected
from SS433 during a flaring event. One other reason for the flux dip could be matter optically thick
ejected in a shell form near the binary system obscuring the quiescent radio emission as well as the
flux in the optical band. Such a dip and flare probably explains the data acquired in August 2005
for this diploma thesis. I will talk again about the observed flare later on. Flares in SS433 have a

Figure 1.5: Flaring Events of SS433

typical life span of five days, they don’t have any particular dependence with frequency but there
is a trend to last longer in lower frequencies. One very important thing is that there is two kind of
flares in SS433 that can be observed.
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Each they have a different way of evolution thus probably they have a different physical creation
mechanism, or they have a different place in SS433 that they create. This fact was observed by
Vermeulen in 1989 with VLBI. An increase in flux in the region of the core of SS433 was observed
followed by repeated flares originating in the jet’s of the object. This exactly is shown in figure 1.5.

All this observations of course reinforce the belief about the chaotic character of SS433. This
chaos is confirmed by my observations as well, that follows.



Chapter 2

Observations And Data Analysis of

SS433

2.1 High Speed Photometry of SS433

We observed SS433 in V and R filters in 2004 and 2005. In 2004 the observations were made in V
for the period of 26 through 31 August and in 2005 in R from 01 to 10 August. The exposure times
were 5 and 10sec. We used the 516x516 CCD camera SI − 502 mounted on the 1.2m telescope of
NOA, located at Kryonerion , Mt. Killini, Greece at an altitude of 1000m. The telescope is shown
at figure 2.1.

2.1.1 Analysis of Observational Data

For the analysis of the observed data a consistenent method was needed that would give us results
free of noise as posible. The method used has three main parts.

Optimal Differential Photometry of SS433 In this first step i had the choice of either using
all-sky photometry or just plain diferrential photometry.

The data were reduced using standard Starlink scripts. In the reduction process we used
bias dark and flat-field corrections. Differential photometry was obtained with the automated
optimal photometry package AUTOPHOTOM, for SS433 and with comparison the star

• GSC 00471-01564
(
RA : 19h11m47.6s Dec : +05d00m36.1s

)

Then fluxes were extracted with their corresponding errors. In order to be sure that any peri-
odicities found were not produced by changes in the comparison star, additional photometry
of the comparison was performed with two other random stars in the field. These stars were :

• C1
(
RA : 19h11m49.9s Dec : +05d00m05.5s

)
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Figure 2.1: The 1.2m Telescope at Kryoneri Corinth

• C2
(
RA : 19h11m47.7s Dec : +05d00m04.0s

)

In all light curves presented here photometry of the two comparison stars (C1 and C2) is
included in each diagram for every night. For artistic reasons a constant was subtracted from
their fluxes of the comparison stars. The upper curve depicts C1 and the lower one C2.

Fourier Analysis of the Light Curves We used the Lomb - Scargle method to compute the
power spectra of all the data with the PERIOD package. To avoid any mistakes in the
interpetation of the periods the corresponding window function was also used.

Wavelet Analysis of the Light Curves In this step, the data was analyzed with the Wavelet
method. The software used, was from H. Letho and for his help i thank him very much.

Below i will analyze a litlle more about the fourier and wavelet algorithm.
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2.2 Methods of Time-series Analysis

Time series analysis is the application of mathematical and statistical tests to time varying data,
both to quantify the variation itself and to learn something about the behavior of the system.
Ultimately, the goal of time-series analysis is to gain some physical understanding of the system
under observation: what makes the system time-variable? what makes the system similar to or
different from other systems? is the system predictable? and can we place reliable limits on the
behavior of the system? Clearly, simple forms of time-series analysis were known in ancient times,
since many ancient civilizations made accurate predictions of various cyclical celestial phenomena.

The birth of modern time-series analysis dates to the early 19th century, with Joseph Fouriers
description of the Fourier series, and later, the Fourier transform. (Carl Friedrich Gauss first derived
the Fast Fourier Transform around 1805, before Fourier published his work, but Gauss did not
publish his results.) The greatest advances in time-series analysis coincided with the development of
computing machines and the digital computer in the mid-20th century. The digital computer made
possible the statistical analysis of large amounts of data in much less time than would be possible
by human calculators.

Along with this came the development of more efficient algorithms for time- series analysis (like
the rediscovery of Gauss Fast Fourier Transform by Danielson and Lanczos in the 1940s), and the
development of new ideas such as wavelet analysis and chaos theory. Today, time-series analysis is
regularly applied to a wide variety of problems in the real world, from radio and telecommunications
engineering to financial forecasting.

The practical problems in the analysis of time series concern :

• The detection of a signal against noise.

• The estimation of the parameters characterizing the signal, and

• The presentation of the results.

But let’s discribe better the methods used in this diploma.

2.2.1 The Fourier Algorithm

Fourier analysis is the technique of using an infinite number of sine and cosine functions with different
periods, amplitudes, and phases to represent a given set of numerical data or analytic function. In so
doing, you can estimate the period (or periods) of variability by determining which of these functions
are statistically significant. The amplitudes (and phases) of these components are determined with
a Fourier transform.

If we have a set of time-varying data, given by x(t), then the Fourier transform, F (ν), is given
by the integral :

F (ν) =
∫ +∞

−∞
χ(t)e−i2πνdt (2.1)
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where ν is the frequency, defined as ν = 1/P , i.
If a set of data, χ(t), contains a coherent signal at some frequency, ν ′, then the value of the

Fourier transform, F (ν), should reach a local maximum at ν ′. If the data contain several signals
with different frequencies, then F (ν) should have local maxima at each, with the global maximum
at the frequency having the largest amplitude. The Fourier transform is an extremely powerful yet
elegant technique that is used in many areas of mathematical analysis and the physical sciences.
However, as one might expect, its power is finite, limited by the amount and quality of data that are
transformed. The data place several limits on the usefulness of the transform, including the maxi-
mum and minimum periods testable, the accuracy of the period determination, and the minimum
statistically significant amplitude that can be found.

As an example, consider the following case: you have a data set spanning 5000 days, with an
even sampling rate of 10 data points per day (or one data point every 2.4 hours). The maximum
period detectable in this case is 5000 days, since the data should cover one complete cycle. However,
this detection would be very unreliable since without additional data you have no idea whether the
variation detected was truly periodic or simply a short-term fluctuation that merely looks like a
5000-day period. A more reliable limit is 2500 days, since you could detect two complete cycles
at that period within the data set. The span of the data set also determines the resolution of the
Fourier transform, which is the precision to which the frequency (or period) may be determined.
The sampling theorem defines the set of frequencies that may be measured by a given data set,
and the separation between two adjacent frequencies defines the resolution of the transform. The
resolution is defined by :

dν = 1/N∆ (2.2)

where N is the total number of samples (50000), and is the space between the samples (0.1 day). In
terms of frequency, the resolution is simply the inverse of the span of the data; if the data span 5000
days, the frequency resolution is 1/5000d1. The data set with the longer span clearly provides a
much more precise determination of the period than the shorter data set. This makes clear the need
for long sets of data, particularly when studying long period variables. at maximum and minimum
once each cycle. This is known as the Nyquist frequency. The Nyquist frequency is important not
only because it defines the highest frequency (and shortest period) detectable with a given dataset,
but also because it defines the maximum sampling rate you need in order to fully describe variations
up to the maximum frequency.

In certain circumstances, it is possible to detect frequencies higher than the sampling rate. The
transform will suffer from aliasing, in which several different peaks appear in the transform, along
with the real one. The alias peaks are separated from the true frequency by integer multiples of the
sampling frequency, such that the transform will look like a picket fence when plotted. In the case
of regular sampling, the alias peaks will have equal statistical significance to the real peak, and it
is therefore impossible to tell which peak in the power spectrum is the correct one. In the case of
uneven sampling, you will still have aliasing, but the strengths of the alias peaks will generally be
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lower than that of the dominant one.

2.2.2 Noise And Real Periodicities

One major consideration in Fourier analysis is noiseboth the intrinsic noise of photometric observa-
tions, and measurement errors of the data. Noise is always present in a given signal regardless of the
quality of measuring devices. From a physical standpoint, the precision of photometry is limited by
Poisson statistics the more photons arrive at the detector, the more precisely one is able to measure
the signal. The noise level (defined as the square root of the number of photons) decreases but never
vanishes as the number of photons increases. From an observational standpoint, measurements of a
given signal will always contain some error. For example, visual observations are rarely accurate to
more than 0.1 magnitude for an individual observer, while systematic differences between observers
can amount to 0.2 to 0.3 magnitude or more. CCD and photoelectric measurements typically have
smaller (but still significant) errors caused by sky background and instrumental effects. Fourier
analysis of a given set of data assumes that everything contained within a given data set is a sig-
nal. Thus noise will appear in the Fourier spectrum at some level defined by the strength of the
true periodic modulations relative to the background noise. Measurement of this noise level is an
important part of Fourier analysis, as it allows you to determine the reliability of your results.

A final caveat to those using Fourier analysis to detect periods is that discrete methods for
analyzing unevenly sampled data will produce spectral artifacts of the sampling of the data, in
addition to any signal contained within the data. For example, data taken over a series of nights
(with daylight gaps between) will have aliases caused by the 1 cycle/day sampling windows. These
alias frequencies are centered on any real signals in the data, offset from the central frequency by
integer multiples of 1 cycle/day. The reason for this is that the data sampling produces a window
function in the Fourier transform, which is convolved with the Fourier peak of the real signal. The
result is the picket fence of frequencies in the Fourier spectrum. In general, one deals with aliasing
in the spectrum by assuming the strongest peak observed is the correct frequency, but someone
should always use caution when interpreting the Fourier spectra of gappy data.

2.2.3 The Wavelet Algorithm

Wavelet analysis and the wavelet transform are relatively recent developments in time-series analysis.
The development of the wavelet transform came from the need to analyze signals that were transient
and/or non-sinusoidal in nature. The wavelet transform of a set of time-series data, x(t), is given
by :

W (ω, τ ;x(t))) = ω1/2

∫
x(t)f ∗ (ω, (t− π))dt (2.3)

where ω is a test frequency, is a lag time or a position within the light curve, and the function,
f , is called the mother wavelet, a function which determines how the signal should vary with time,
frequency, and position within the light curve. (The * indicates the complex conjugate of the
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function, f , is used.) The wavelet transform is extremely flexible because the mother wavelet can be
nearly any function at all. This means, for example, one can include both a specific waveform (e.g.,
sinusoid) to search for a periodicity, and a time-varying weighting function (like a sliding window) to
study the time-dependence of the signal. In this way, one could study both the frequency spectrum
of a given signal, as well as the evolution of that spectrum as a function of time.

However, like more traditional Fourier analysis techniques, the wavelet transform also has lim-
itations. The major limitation, as with Fourier analysis, is that the data set must be long enough
and well-sampled enough to adequately measure the periods of interest. If the data only span 1000
days, it would be meaningless to test periods longer than 500 days. Additionally, when the wavelet
contains a window function, the data should span a length of time such that the window is mean-
ingful. For example, if the data span 1000 days, the period of interest is 200 days, and the wavelet
window covers five cycles, the wavelet analysis will not give meaningful information about the time
evolution of the signalnearly all of the data will lie within the window for any chosen value of τ .

2.3 Thoughts in The Appropriate Method of Analysis

Signals can be classified broadly into deterministic and stochastic signals. A deterministic signal,
e.g. a periodic signal, can be predicted for arbitrary spaces of time. For a stochastic signal, no such
prediction can be made beyond a certain time interval, called the correlation length lcorr. For any
finite time series the classification into these two categories is ambiguous so that methods suitable
for both stochastic and periodic signals could be applied to any time series with some success.

Usually processes in the source of the signal (e.g. the nucleus of an active galaxy) and/or
observational errors introduce a random component into the series, called noise. The analysis of
such series usually aims at removing the noise and fitting a model to the remaining component of
the series. Suitable models can be obtained by shifting a known series by some time lag, l, or by
repeating fragments of it with some frequency, ν. Accordingly, we are speaking of an analysis in the
time and frequency domain. In these domains the correlation length lcorr and oscillation frequency
νo, respectively, have particularly simple meanings. It is transparent that the stochastic signals
are analysed more comfortably in the time domain (Wavelet analysis) and periodic signals in the
frequency domain (Fourier analysis).

2.3.1 Deterministic and Stochastic Signals

As noted above, periodic signals are best analysed in the frequency domain while stochastic signals
are usually more profitably analysed in the time domain. The analysis in the time domain often
involves the comparison of two different signals while in the frequency domain analyses usually
concern only one signal. The expectation value of the covariance function of uncorrelated signals
is zero. The expected value of the autocorrelation function of white noise also is zero everywhere
except for 1 at zero lag. The expected ACF of a stochastic signal of correlation length l vanishes
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outside a range ±l about the lags. The ACF of a deterministic function does not vanish at infinity.
In particular the ACF of a function with period P has the same value, P. Signals of intermediate
or mixed type with an ACF which has several maxima spaced evenly by l and a correlation length
LÀ l is called a quasiperiodic oscillation. Its power is significantly above the noise in the 1/l± 1/L
range of frequencies and its correlation length L is called the coherence length.

As it can be seen from the light curves for SS433, the time series that produces is clearly
stochastic. This leads us to the conclusion that the best way to analysze this set of data is the
wavelet algorithm.



Chapter 3

Introduction of Observational Data

3.1 Light Curves of SS433

3.1.1 2004-Data

Here it is presented the light curves of the observations made in 2004.
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Figure 3.1: Light Curves of 26 and 27 August 2004
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Figure 3.2: Light Curves of 29 and 30 August 2004
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Figure 3.3: Light Curves of 31 August 2004
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3.1.2 2005-Data

Here it is presented the light curves of the observations made in 2005.

Figure 3.4: Light Curves of 01 and 02 August 2005
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Figure 3.5: Light Curves of 03 and 04 August 2005
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Figure 3.6: Light Curves of 05 and 06 August 2005
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Figure 3.7: Light Curves of 07 and 08 August 2005
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Figure 3.8: Light Curves of 10 August 2005
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3.2 Fourier Analysis

3.2.1 2004-Data

Here it is presented the fourier analysis of the light curves, for the 2004 data.
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Figure 3.9: Fourier Analysis of the year 2004 Data
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Figure 3.10: Fourier Analysis of 26 August 2004
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Figure 3.11: Fourier Analysis of 27 August 2004
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Figure 3.12: Fourier Analysis of 29 August 2004
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Figure 3.13: Fourier Analysis of 30 August 2004
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Figure 3.14: Fourier Analysis of 31 August 2004
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3.2.2 2005-Data

Here it is presented the fourier analysis of the light curves, for the 2005 data.

Figure 3.15: Fourier Analysis of the year 2005 Data



3.2 Fourier Analysis 65

Figure 3.16: Fourier Analysis of 01 August 2005
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Figure 3.17: Fourier Analysis of 02 August 2005
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Figure 3.18: Fourier Analysis of 03 August 2005
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Figure 3.19: Fourier Analysis of 04 August 2005
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Figure 3.20: Fourier Analysis of 05 August 2005
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Figure 3.21: Fourier Analysis of 06 August 2005
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Figure 3.22: Fourier Analysis of 07 August 2005
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Figure 3.23: Fourier Analysis of 08 August 2005
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Figure 3.24: Fourier Analysis of 10 August 2005
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3.3 Wavelet Analysis

3.3.1 2004-Data

Here it is presented the wavelet analysis of the light curves, for the 2004 data.
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Figure 3.25: Wavelet Analysis of 26 and 27 August 2004



3.3 Wavelet Analysis 76

Figure 3.26: Wavelet Analysis of 29 and 30 August 2004
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Figure 3.27: Wavelet Analysis of 31 August 2004
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3.3.2 2005-Data

Here it is presented the wavelet analysis of the light curves, for the 2005 data.
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Figure 3.28: Wavelet Analysis of 01 and 02 August 2005
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Figure 3.29: Wavelet Analysis of 03 and 04 August 2005
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Figure 3.30: Wavelet Analysis of 05 and 06 August 2005
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Figure 3.31: Wavelet Analysis of 07 and 08 August 2005
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Figure 3.32: Wavelet Analysis of 10 August 2005
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3.4 Phase Diagram for the Nutational Period Of SS433

The folding was done in the 2005 data. The diagram at figure 3.33 was produced with the linear
ephemeris Max∆V = 2450000.94 + 5.2dE Folding is very important for the confirmation of a
periodicity. Here after folding, a half sine function appears indicating that the physical mechanism
producing this kind of a periodicity follows a sinusoidal law. This fact is strong evidence that the
signal we have detected is the nutational period of the system. The intermediate variations are
probably caused by the chaotic nature of the system in relatively small time scales.

Figure 3.33: Phase Diagram for the Nutational period of the system.

To produce this diagram new fortran code was used to find the corresponding values given a
linear ephemeris. Also the code had the capability to interact with the user, in order to fine tune
the period of the system.



Chapter 4

Results, Conclusions And discoveries

4.1 Conclusions

High speed photometry was undertaken on SS433 in 2004 and 2005, with interesting results. It is
obvious from the above light curves that SS433 is a highly variable system in time scales between
a few minutes and a few hours. In almost all nights a QPO (Quasi Periodic Oscillation) pattern is
observed with periods of over 1100s, much bigger than a usual QPO whose period ranges from 60s
to 1000s. This probably means that these variations are not actually due to a QPO behaviour, but
to random perturbations in the accretion disk. The fact that there is no periodicity stable enough
to appear in two or more consecutive nights, could be explained by assuming that every periodicity
is unique and short lived.

The important fact is that there is always a periodicity in a scale of tens of minutes showing that
there is a physical mechanism capable for producing such a unique temporal behaviour. Further
investigation is needed to find out if there is any coherence between the periodicities found here. If
any relationship is found then the characterisation as random should be withdrawn.

Another known characteristic of SS433 is that it has distinct active and passive states. During
the active (flaring) states the signature of regular orbital and precessional variabilities in the light
curves is destroyed. This fact is confirmed from our data if we compare the 2004 with the 2005
observations. Between 26 to 31 August 2004 our data is in agreement with the published linear
ephemeris for the orbital period: MinI(HJD) = 2450023.62 + 13d.08211E (V.P Goranskij et al.,
1998), but in 2005, after 04/08, the flux instead of continuing to decrease, it increases until the
08/08, after which it decreases again.

This behaviour could be attributed to a flaring event that occurred in SS433, obscuring the
orbital period of 13d,08. It has been shown by Revnivtsev M. (et al., 2004) that simultaneous
observations show a clear correlation between the light curves pattern in X-rays and in the optical,
with the X-rays being delayed by about 80 sec in respect to the optical. This confirms the fact that
any variations discovered here are produced by various physical phenomena in the accretion disk
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and not in the donor star. The 80 sec delay is attributed to the light time difference between the
compact star and the edge of the accretion disk. Any correlation between these variabilities must
take in mind the inclination of the disk in respect to earth.

That was the conclusions of the photometry and the fourier analysis. The results of the Wavelet
analysis was far more interesting and revealing. In almost all the diagrams there is a relatively
steady periodicity with a value of ≈ 9 min. This fact was not even detected with the fourier
analysis, showing the strength of wavelet analysis in these kind of time-series. Now we can assume
with relatively security that the periodicity of ≈ 9 min is caused by a feature in the accretion disk
that is stable enough to exist for at least the observing period. The most interesting fact is that
this phenomenon is observed both in the data of 2004 and 2005. This is a very important thing
since whatever physical mechanism is creating this periodicity has a life of at least one year. This
means that there is a strong posibility that the ≈ 9 min periodicity is caused by a fundamental
characteristic os SS433.

More investigation is needed of course to find out how stable enough is this phenomenon and if
it is actual have a span in the scale of years. Of course more observations should be done to find if
there are any other characteristics and their properties.

4.2 Possible Future Research

A future evolution of the presented work can be done with more observations of longer duration.
This duration should be longer than 13 days, in order to detect the orbital period periodicity with
a much smaller error margin.

Also if it is posibly, even higher speed photometry should be done so we can investigate the
behaviour of SS433 in even smaller time scales. The final thing to say, is that any future resarch in
SS433 should be based upon wavelet analysis and not fourier. This is because of the type of time
series that SS433 produces.
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Chapter 1

Atmosphere And Astronomical

Observing

Our atmosphere. It protects us, nourishes us, and gives us life. However, it also acts as a distorting
filter when we view the sky. Below we will see the various effects of the atmosphere that indroduces
to the incoming star light. But first let’s see an important characteristic of the atmosphere, the air
mass.

1.1 Air Mass - Extinction

An effect which must be corrected when calibrating instrumental magnitudes, is the atmospheric
extinction or the dimming of starlight. The longer the path length the starlight traverses through
the atmosphere the more it is dimmed. Thus, a star close to the horizon will be dimmed more than
one close to the zenith, and the observed brightness of a given star will change throughout a night,
as its zenith distance varies. The path length through the atmosphere is known as the air mass.
Consider an observation through the blanket of the atmosphere around the curved surface of the
Earth. At any particular wavelength, λ,we can relate m0(λ), the magnitude of the observed object
outside the atmosphere, to m(λ), the magnitude of the observed object at the surface of the earth,
by:

m(λ) = m0(λ) + κ(λ)X(z) (1.1)

where X(z) is the air mass, κ(λ) is the extinction coefficient at wavelength λ and z is the zenith
distance (the angular distance of the object from the zenith at the time of observation). X is defined
as the number of times the quantity of air seen along the line of sight is greater than the quantity
of air in the direction of the zenith and will vary as the observed line of sight moves away from the
zenith, that is, as z increases. Note that the air mass is a normalised quantity and the air mass
at the zenith is one. For small zenith angles X = sec z is a reasonable approximation, but as z
increases, refraction effects, curvature of the atmosphere and variations of air density with height
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can become important. Hardie gives a more refined relationship:

X = sec z − 0.0018167(sec z − 1)− 0.002875(sec z − 1)2 − 0.0008083(sec z − 1)3 (1.2)

and Young and Irvine propose :

X = sec z
(
1− 0.0012(sec2 z − 1)

)
(1.3)

Both these equations imply the use of zt, the true zenith angle, that is, the zenith angle to the
observed object in the absence of the atmosphere as opposed to the apparent zenith angle za affected
by refraction effects. The atmospheric extinction coefficient, κ(λ), can be determined by observing
the same object (through an appropriate filter) at several times during the night at varying zenith
angles. When the observed magnitudes of the object are plotted against computed air mass (see
Figure 1.1), they should lie on a straight line with a slope equal to κ(λ). It is important to note
that the extinction is dependent upon wavelength, being greater for blue light than red.

Figure 1.1: Calculation of extinction coefficient.

1.1.1 Laplace’s extinction theorem

Toward the end of his monumental work on Celestial Mechanics, Laplace has a long chapter dealing
with atmospheric refraction. In the course of it, he derives a remarkable result, which seems to have
been forgotten by most people today :the extinction of the atmosphere is related to its refraction.

This concluson is called Laplace’s extinction theorem. Exactly it sais that the logarithm of the
intensity of light, of any star, is proportional to its refraction, divided by the cosine of its apparent
altitude. We must immediately notice that the proportionality constant is negative, because the
stars become dimmer as they approach the horizon, and their refractions increase. Furthermore,
one should strictly say the relation is a linear one, rather than a simple proportionality. So we have
the equation :

M ∝ r

sin z
(1.4)



1.1 Air Mass - Extinction 90

where M is the air mass r is the refraction and z is the zenith angle. Let’s see how this equation is
derived.

The differential of airmass is dM it is just proportional to the differential of path length ds

in figure 1.2, multiplied by the local density, ρ Let’s regard the differential of refraction from a

Figure 1.2: Calculation of Laplace’s theorem

different point of view: dr must be equal to the ray curvature multiplied by the element of path
length ds. The curvature in turn, is proportional to the component of the atmospheric density
gradient dρ/dh normal to the path of the ray. As the atmospheric model is horizontally stratified,
its density gradient is a vector directed vertically i.e., toward the zenith. The component of this
gradient normal to the ray is just proportional to sin z. So we have :

dr ∝ dρ

dh
sin zds (1.5)

Now we need to assume that the density gradient is proportional to the density itself. Very near the
horizon, the diminution of light depends, like the refraction, upon the constitution of the atmosphere.
We may, without fear of any sensible error, use the hypothesis of a uniform temperature. So we
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assume an exponential atmosphere, in which dρ/dh ∝ ρ, and have :

dr ∝ ρ sin zds (1.6)

But also we have dM ∝ ρds. If we eliminate the product ρds on the right side of the last propor-
tionality for dr by replacing it with dM , we see that :

dM ∝ dr

sin z
(1.7)

Then integration will give Laplace’s result, M ∝ r/ sin z, provided that we can factor some mean
value of sin z out of the integrand when we integrate this differential relation. In fact, this is not a
bad approximation, because sin z is nearly constant through the atmosphere near the zenith (where
z is nearly constant along the line of sight) and sin z is itself nearly constant near the horizon,
because the sine function flattens out near unity when z is near 90o.

Notice that Laplace’s result is trivially true for the flat-Earth approximation, where M = sec z
and r ∝ tan z. Also, in a long duct, where the ray simply follows the curve of the Earth, and sin z
is unity, the refraction in the duct is obviously proportional to the path length there.

1.2 Atmospheric refraction

The direction of light as it passes through the atmosphere is also changed because of refraction since
the index of refraction changes through the atmosphere. The amount of change is characterized by
Snell’s law:

µ1 sin θ1 = µ2 sin θ2 (1.8)

Let z0 be the true zenith distance, z be the observed zenith distance, zn be the observed zenith
distance at layer n in the atmosphere, µ be the index of refraction at the surface, and µn be the
index of refraction at layer n. At the top of the atmosphere it is :

µN =
sin z0
sin zN

(1.9)

At each infinitessimal layer we have :

sin zn
sin zn−1

=
µn−1

µn
(1.10)

as so on for each layer down to the lowest layer it will be :

sin z1
sin z

=
µ

µ1
(1.11)

By multipling equations 1.10 and 1.11 we get:

sin z0 = µ · sin z (1.12)
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from which we can see that the refraction depends only by the index of refraction near the earth’s
surface. We define astronomical refraction r, to be the angular amount that the object is displaced
by the refraction of the Earth’s atmosphere :

sin(z + r) = µ sin z (1.13)

in cases where r is small (pretty much always) it is :

r = (µ− 1) tan z ≡ R tan z (1.14)

where we have defined R, known as the “constant of refraction”. A typical value of the index of
refraction is µ ∼ 1.00029, which gives R = 60arcsec (red light). The direction of refraction is that a
star apparently moves towards the zenith. Consequently in most cases, star moves in both RA and
DEC:

rα = r sin q

rδ = r cos q

where q is the parallactic angle, the angle between N and the zenith :

sin q = cosφ
sinh
sin z

(1.15)

Note that the expression for r is only accurate for small zenith distances (z < 45). At larger z, we
can’t use the approximation of a plane parallel atmosphere. Observers have empirically found that
:

r = A tan z +B tan3 z (1.16)

where A = (µ− 1) +B and B ∼ −0.07′′. But these vary with time, so for precise measurements, A
and B must be calculated each night of observations. Of course, the index of refraction varies with
wavelength, so consequently does the astronomical refraction, this gives rise to the phenomenon of
atmospheric dispersion, or differential refraction. Because of the variation of index of refraction
with wavelenth, every object actually appears as a little spectrum with the blue end towards the
zenith. The spread in object position is proportional to tan z. Note the importance of this effect
for spectroscopy, and the consequent importance of the relation between a slit orientation and the
parallactic angle.



Chapter 2

Theory Of Astronomical Seeing

“Seeing Clearer. . . ”

Generally, a perfect astronomical optical system will make a perfect (diffraction-limited) image for
an incoming plane wavefront of light. The Earth’s atmosphere is turbulent and variations in the
index of refraction cause the plane wavefront from distant objects to be distorted. This distortion
introduces amplitude variations, positional shifts and also image degradation. This causes two
astronomical effects :

• Scintillation. Which is amplitude variations, which typically vary over scales of cm: generally
very small for larger apertures

• Seeing. Positional changes and image quality changes. The effect of seeing depends on aper-
ture size: for small apertures, one sees a diffraction pattern moving around, while for large apertures,
one sees a set of diffraction patterns (speckles) moving around on scale of ∼ 1 arcsec. These obser-
vations imply local wavefront curvatures flat on scales of small apertures, and instantaneous slopes
that vary for about an arcsec. The time variation scales are several milliseconds and up. The
effect of seeing can be derived from theories of atmospheric turbulence, worked out originally by
Kolmogorov, Tatarski, Fried. Here, I’ll quote some pertinent results, without derivation.

2.1 In General About Seeing and Turbulent Flows

2.1.1 Kolmogorov Model And the Fried Parameter

A description of the nature of the wavefront perturbations introduced by the atmosphere is provided
by the Kolmogorov model based partly on the studies of turbulence by the Russian mathematician
Andrei Kolmogorov. This model is supported by a variety of experimental measurements and is
widely used in simulations of astronomical imaging. The model assumes that the wavefront pertur-
bations are brought about by variations in the refractive index of the atmosphere. These refractive
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index variations lead directly to phase fluctuations described by φa (r), but any amplitude fluctua-
tions are only brought about as a second-order effect while the perturbed wavefronts propagate from
the perturbing atmospheric layer to the telescope. For all reasonable models of the Earth’s atmo-
sphere at optical and infra-red wavelengths the instantaneous imaging performance is dominated by
the phase fluctuations φa (r). The amplitude fluctuations described by χa (r) have negligible effect
on the structure of the images seen in the focus of a large telescope.

A turbulent field can be described statistically by a structure function:

DN (x) ==< |N(r + x)−N(r)|2 > (2.1)

where x is separation of points, N is any variable (e.g. tempereature, index of refraction, etc) and
r is position. Kolmogorov turbulence gives :

Dn(x) = C2
n

x2

3
(2.2)

where Cn is the refractive index structure constant. From this, one can derive the phase structure
function at the telescope aperture :

Dφ(x) = 6.88
(
x

ro

)5/3

(2.3)

where the coherence length r0 (also known as the Fried parameter) is :

r0 = 0.185λ6/5 cos3/5 z

[ ∫
(C2

ndh)
]−3/5

(2.4)

where z is zenith angle, λ is wavelength. Using optics theory, one can convert Dφ into an image
shape. Physically, r0 is inversely proportional to the image size from seeing :

d ∼ 0.98
λ

r0
(2.5)

as compared with the image size from diffraction-limited images :

d ∼ 1.22
λ

D
(2.6)

Seeing dominates when r0 < D, a larger r0 means better seeing. Seeing is more important than
diffraction at shorter wavelengths (and for larger apertures), diffraction is more important at longer
wavelengths (and for smaller apertures), the effects of diffraction and seeing cross over in the IR for
most astronomical-sized telescopes (∼5 microns for 4m), the crossover falls at a shorter wavelength
for smaller telescope or better seeing. The meaning of r0 is in

∫
(C2

ndh) as you might expect, this
varies from site to site and also in time. At most sites, there seems to be three regimes : ”surface
layer” (wind-surface interactions and manmade seeing), ”planetary boundary layer” ( influenced
by diurnal heating), and “free atmosphere” (high wind shears, 10 km is tropopause). A typical
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astronomical site has r0 ∼ 10 cm at 5000A. We also have to consider the coherence of the same
turbulence pattern over the sky : coherence angle called the isoplanatic angle, and region over which
the turbulence pattern is the same, is called the isoplanatic patch. So it is :

θ ∼ 0.314
r0
H

(2.7)

where H is the average distance of the seeing layer :

H = sec z
[∫

(C2
nh

5/3dh)∫
(C2

ndh)

]3/5

(2.8)

At a typical astronomical site where we have r0 = 10cm in the optical it will be H ∼ 5000m and
θ ∼ 1.3arcsec. In the infrared where it’s r0 ∼ 70cm it will be H ∼ 5000m and θ ∼ 9arcsec.

In reality, phase fluctuations in the atmosphere are only expected to follow the structure function
shown in equation 2.3 over a finite range of length scales. The turbulent energy is injected at large
scales by wind shear. The bulk of the wind shear is expected in discrete layers of the atmosphere,
and the largest turbulent structures are expected to fit within one of these atmospheric layers. The
length scale at which the structure function for Kolmogorov turbulence breaks down at large scales
is called the outer scale of turbulence (L0). Several attempts have been made at measuring the size
of this outer scale using a variety of different methods but there has been substantial variation in the
measured values. The Von Karman model (Ishimaru, 1978) is expected to describe the form of the
power spectrum for phase fluctuations on length scales larger than the outer scale. If the outer scale
is larger than the telescope diameter, then most of the properties of short exposure astronomical
images will not depend significantly on the precise size of the outer scale (although the amplitude
of image motion is still weakly dependent on the outer scale size).

At small scales (< 1cm) the turbulent energy in the atmosphere is dissipated through the vis-
cosity of the air (Roddier, 1981). The length scale at which this becomes significant is called the
inner scale of turbulence (l0). The steepness of the Kolmogorov turbulence spectrum means that
any reduction in the power at such small length scales has relatively little effect on the imaging
performance of optical and infra-red telescopes.

2.1.2 Temporal Behaviour of Turbulence

A model for the time-dependence of the phase fluctuations can be derived from the spatial fluctua-
tions under the assumption of “frozen turbulence”, that is to say that the turbulent cells are blown
past the observer faster than the cells themselves evolve. Observational evidence for the validity of
this hypothesis has been obtained by Caccia, Azouit & Vernin (1987), although only for cells of air
with characteristic sizes of a few cm. Under this assumption, the temporal phase structure function
will have the form

Dt,ϕ(t) ≡ 〈
[ϕ(t′)− ϕ(t′ + t)]2

〉
= (

t

t0
)5/3 (2.9)
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where ϕ(t) is the phase perturbation at a given point on the wavefront at time t. This equation
serves to define a ’coherence time’ t0 (Buscher 1988) which is related to r0 and the windspeed V by
the equation :

t0 = 0.314
r0
V

(2.10)

It should be noted that no single definition of the coherence time has been adopted by the optical
community. Colavita, Shao & Staelin (1987) define a coherence time T0 such that T0 = 0.81r0/V .
As in the spatial case, equation 2.10 is valid only for l0 << V t << L0. Where l0 and L0 is the inner
and outer scale of turbulence respectively. Also the velocity V is given by the equation :

V =

[∫∞
0 C2

n(h) · V (h)5/3dh∫∞
0 C2

n(h)dh

]3/5

(2.11)

Where C2
n(h) is the vertical profiles of the turbulence and h the height from the ground.

Finally, we can define the relationship between the temporal power spectrum Wf,ϕ and the
temporal structure function of the phase perturbations via a Fourier transform :

Dt,ϕ(t) = 2
∫ ∞

−∞
Wf,ϕ(f)df − 2

∫ ∞

−∞
Wf,ϕ(f)e2πiftdf (2.12)

This gives for the structure function of equation 2.9 a power spectrum :

Wf,ϕ = 5.6 · 10−3t
−5/3
0 |f |−8/3 (2.13)

In the above discussions it has been assumed that there is a single layer of turbulence being blown
past the observer. In fact there is a large body of experimental evidence showing that there are many
layers of turbulence at difference heights contributing to the seeing, each a few metres thick each
moving with a different speed and direction, and each with its own outer scale. The properties of the
seeing affecting a star observed at ground level will be an average of the properties of these layers,
weighted by the strength of the refractive-index fluctuations in each layer. Thus, for example, V in
equation 2.10 will be an ‘average windspeed’, rather than the speed of any particular layer. Here
something must be mentioned about the effects of dome seeing. The steep temperature gradients
formed by the mixing of warm air in the dome (produced by instruments and machinery) and colder
air outside can produce very strong refractive index effects. Any turbulent cells inside the dome will
be driven primarily by convection and so will not conform to the ‘frozen turbulence’ assumption.
It is also likely that these will not be described by Kolmogorov statistics, i.e. the turbulence is not
‘fully developed’. As you can understand coherence time t0 is very important for adaptive optics
systems, since it is the minimum time that corrections must be done.

2.1.3 Impact of Turbulence (Seeing) to an Image

The “quality” of an image can be described in many different ways. The overall shape of the distri-
bution of light from a point source is specified by the point spread function. Diffraction gives a basic
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limit to the quality of the PSF, but any aberrations or image motion add to structure/broadening
of the PSF. Another way of describing the quality of an image is to specify it’s modulation transfer
function (MTF). The MTF and PSF are a Fourier transform pair. Turbulence theory gives:

MTF (ν) = exp
[
− 3.44

(
λ · ν
ro

)5/3]
(2.14)

where ν is the spatial frequency. Note that a gaussian goes as ν2, so this is close to a gaussian.
The shape of seeing-limited images is roughly Gaussian in core but has more extended wings This is
relevant because the seeing is often described by fitting a Gaussian to a stellar profile. A potentially
better empirical fitting function is a Moffat function :

I = p1(1 + (x− p2)2/p2
4 + (y − p3)2/p2

5)
−p6 (2.15)

A final way of characterizing the image quality, more commonly used in adaptive optics applications,
is the Strehl ratio. The Strehl ratio is the ratio between the peak amplitude of the PSF and the
peak amplitude expected in the presence of diffraction only.



Chapter 3

Methods to Calculate Astronomical

Seeing - The DIMM

“DifferentialImagingMakesMagic . . . ”

Probably the most common way of describing the seeing is by specifying the full width half maximum
(FWHM) of the image, which may be estimated either by direct inspection or by fitting a function
(usually a Gaussian), note the correspondence of FWHM to σ of a gaussian: FWHM = 2.355σ.
This is fact is shown in figure 3.1 We can measure FWHM in a astronomical image very easy with

Figure 3.1: The Full Width Half Maximum (FWHM)

many programs that have that feature. The problem is that such a measurment will not be accurate
for various reasons :

• Guiding problems

• Focus problems

All these reasons cause the FWHM to be overestimated. Thus we need a method to overcome all
these problems. Such a method is the DIMM method that will be analyzed in the next paragraph.
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3.1 DIMM - Differential Image Motion Monitor

The DIMM method consists of measuring wavefront slope differences over two small pupils some
distance apart. Because it is a differential method, the technique is inherently insensitive to tracking
errors. It had already been used as early as 1960 to provide qualitative seeing estimates. The theory
of differential measurements is now well understood. It shows that the differential motion exceeds the
absolute motion as soon as the distance between the two apertures equals a few times their diameter.
Hence a compact instrument can be built and still provide good sensitivity. One needs to select the
starlight having passed through two circular apertures in the entrance pupil plane (Hartmann holes)
so as to obtain dual star images whose relative motion in the image plane represent local wavefront
tilts. This is shown in figure 3.2. The theory is reviewed below, ESO and Hartmann seeing monitors
are described.

Figure 3.2: Visualisation Of The DIMM Method

3.1.1 ESO-DIMM

The ESO-DIMM method in order to produce the two images in the focal plane, uses a prism in one
of the Hartmann hole to deverse light. Below is the theory of the ESO-DIMM.

The wavefront corrugation z(x, y) is proportional to the wavefront phase error φ(x, y) :

z(x, y) =
λ

2π
φ(x, y) (3.1)

Since light rays are normal to the wavefront surface, the component α of the angle-of-arrival fluctu-
ation in the x direction is given by :

α(x, y) = − ∂

∂x
z(x, y) =

λ

2π
∂

∂x
φ(x, y) (3.2)
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Hence, the covariance of the angle-of-arrival fluctuation is :

Bα(ξ, η) = 〈α(x, y), α(x+ ξ, y + η)〉 (3.3)

is related to the covariance Bφ(ξ, η) of the phase fluctuation by :

Bα(ξ, η) = − λ2

4π2

∂2

∂ξ2
Bφ(ξ, η) (3.4)

and introducing the phase structure function :

Dφ(ξ, η) = 2
[
Bφ(0, 0)−Bφ(ξ, η)

]
(3.5)

and so it becomes :

Bα(ξ, η) =
λ2

8π2

∂2

∂ξ2
Dφ(ξ, η) (3.6)

For Kolmogorov turbulence at the near-field approximation, the phase structure function is given
by the widely used expression (2.3) :

Dφ(ξ, η) = 6.88
(
r

ro

)5/3

(3.7)

where r =
√
ξ2 + η2 and ro is Fried’s seeing parameter. Putting 3.7 into 3.6 gives :

Bα(ξ, η) = 0.145λ2r
−5/3
0

[
(ξ2 + η2)−1/6 − 1

3
ξ2(ξ2 + η2)−7/6

]
(3.8)

For η = 0 we get the longitudinal covariance (in the direction of the tilt) as a function of the
separation ξ = d :

Bα(d, 0) = 0.097
(
λ

r0

)5/3(λ
d

)1/3

(3.9)

For ξ = 0, we get the lateral or transverse covariance (in a direction perpendicular to the tilt) as a
function of the separation η = d :

Bα(0, d) = 0.145
(
λ

r0

)5/3(λ
d

)1/3

(3.10)

The transverse covariance is exactly 1.5 times larger than the longitudinal covariance and both
decrease as the −1/3 power of the separation. This was well confirmed experimentally by Borgnino
et al. (1978). These expressions are valid only within the inertial range of the Kolmogorov spectrum.
The divergence at the origin is clearly not physical. In practice, the value at the origin is limited by
aperture averaging and is given by the expression for the variance of image motion derived by Fried
(1965, 1975), and Tatarski (1971), (within a factor of two since we consider motion in one direction
only) :

Bα(0, 0) = 0.179
(
λ

r0

)5/3( λ

D

)1/3

(3.11)
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where D is the diameter of the apertures through which tilts are measured. Because of the slow
decrease of the covariance as the−1/3 power of the distanced in 3.9 and 3.10, aperture averaging does
not noticeably modify the covariance function as soon as the distance exceeds twice the aperture
diameter, as shown below. The variance σ2(d) of the differential image motion observed over a
distance d is given by :

σ2(d) = 2
[
B(0)−B(d)

]
(3.12)

Putting 3.9 and 3.11 into 3.12 gives an approximate expression for the variance σ2
l of the differential

longitudinal motion for d ≥ 2D :

σ2
l = 2λ2r

−5/3
0

[
0.179D−1/3 − 0.0968d−1/3

]
(3.13)

whereas putting 3.10 and 3.11 into 3.12 gives an approximate expression for the variance σ2
t , of the

differential transverse motion for d ≥ 2D :

σ2
l = 2λ2r

−5/3
0

[
0.179D−1/3 − 0.145d−1/3

]
(3.14)

These variances can be expressed in terms of the total variance for 2-dimensional motion through a
single aperture of diameter D :

σ2 = 2Bα(0, 0) = 0.358
(
λ

r0

)5/3( λ

D

)1/3

(3.15)

Putting 3.15 into 3.13 and 3.14 with S = d/D gives :

σ2
l =

[
1− 0.541S−1/3

]
σ2

σ2
t =

[
1− 0.811S−1/3

]
σ2

The above equations are the basis of the DIMM method.

3.1.2 Hartmann-DIMM

The H-DIMM method for measuring the astronomical seeing is a modification of the ESO-DIMM.
So all the theory mentioned until now, applies to both methods equally. In the H-DIMM the two
images are produced by a simpple out of focus hartmann mask, with no prism. So here i will tell
only for the influnce of the defocusing of the telescope, since for the calculation of the seeing value
through the differential image motion, the same equations are used.

Elimination of the image separation prisms is possible because the depth of field of the sub-
apertures is much larger than that of the parent optical system. For an aperture diameter D,
wavelength λ and focal length f , the depth of field is given by :

2∆Z = 1.22λ
(
f

D

)2

(3.16)
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Therefore, if the imaging CCD is displaced from best focus by an amount < ∆Z (either inside
focus or outside focus), then the point spread function produced by each sub-aperture will be
indistinguishable from perfectly focused subaperture images. However, the images produced by
sub-apertures separated by a distance d become well separated when :

∆z > 1.22λ
(
f

d

)2

(3.17)

When the detector is located at a distance Z from the focal plane of the imaging telescope, where
∆z < Z < ∆Z, all images of a star produced by subapertures separated by more than d from each
other will be well separated in the image plane, and will be in perfect focus. Under these circum-
stances, the differential image motion is easy to determine from the fluctuations in the centroids of
each image from one exposure to the next.

An optimal ratio of image separation to diameter is achieved by locating the detector at Z ≈ ∆Z
from best focus.

3.2 Air Mass And Wavelength Dependence

In a previous paragraph we saw that there is a dependence of air mass with the altitude (zenith
angle) is by the equation 1.2. So as the air mass changes so seeing will do. From theoretical
consideration one can derive that the seeing S is proportional to the 0.6th power of the airmass a :

S = S0 · a0.6 (3.18)

Where S0 is the value of seeing at zenith. Equation 3.1 is used to correct DIMM data from different
altitudes and is essential so the data to be self-consistent.

The seeing also varies with the wavelength according to the fowllowing equation :

S = S0 · λ−0.2 (3.19)

Where λ is the wavelength. Seeing is defined as the image size (FWHM) in arcsec on a long exposure
limited by the atmosphere (ie. telescope without optical aberrations nor dome/mirror seeing) as
observed at zenith and at wavelength 0.5 micron. So when DIMM data are collected a correction of
these two effects must be done. An extapolation to the zenith and to 0.5 micron wavelenqth.

3.3 Exposure Time Dependence

Seeing is caused by turbulent cells in the atmosphere as it is analysed in previous paragraphs.
According to the Kolmogorov theory, these cells come in various sizes. Thus, the turbulence-
induced phase fluctuation occur at various frequencies, mainly depending on the size of the cells
and the windspeed. The important question to be addressed is whether differential image motion
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measurements probe the complete frequency power spectrum of the seeing: The images have to
“freeze” the image motion, i.e. the exposure time of the images has to be sufficiently lower than
the time needed for the air cell to move across the line of sight. If this is not the case, then the
seeing caused by the high part of the frequency power spectrum is not measured since high-frequency
contributions to the differential image motion are averaged out.

It is thought that much of the seeing is caused by phase fluctuations with frequencies less than
a 100Hz. Therefore, an exposure time of 10ms should suffice to obtain seeing measurements using
differential image motion. Since there is a contribution of phase fluctuation with frequencies between
50Hz and 100Hz, it is likely that there is also a contribution with frequencies above 100Hz. the
problem is that 10ms is the smallest possible exposure time (for technical reasons), so we cannot
probe this part of the spectrum. However, considering how well-behaved the power spectrum is up
to 100Hz, one can expect that it is easily possible to scale the seeing measurements of the Dimm
to the real seeing by using a single scaling factor.

The temporal averaging of the variance of the differential motion with a finite exposure time T
depends both on the average velocity V0 and on the direction of the displacement of the wavefront
corrugations with respect to the DIMM apertures. The exact computation of this effect (Martin et
al.,1987) for a typical experimental setup (distance of the apertures equal to twice their diameter
d) and typical operating conditions (1 < V0T/d < 5) shows that the differential tilt variance σ2

presents in all cases an exponential dependency on the exposure time T of the type :

σ2(T ) = σ2(0)e−αT (3.20)

where the coefficient α is of course unknown and depends on atmospheric conditions. However,
performing two simultaneous measurements with exposure times T1 and T2 such that T2 = 2T1, the
coefficient α can be eliminated and the bias can be removed by computing :

σ2(0) =

[
σ2(T1)

]2

σ2(T2)
(3.21)

In practice the two variances are calculated over two interlaced time series (Sarazin, 1997) or, when
possible, on a single time series by rebinning the individual exposures (Ziad et al., 2000). The
amount of correction is naturally site-dependent but often not to be neglected. It was noted by
Giovanelli et al. (2001) that, at the northern Chile high-altitude sites, the median values of the 0
ms seeing vary between 0.65 and 0.76 arcsec, those of the 10 ms seeing between 0.56 and 0.65 arcsec
while those of the 20 ms seeing between 0.48 and 0.56 arcsec.



Chapter 4

Developement of a New H-DIMM

Unit

4.1 Why a new H-DIMM Unit?

4.1.1 Required Characteristics.

1. To be intepented from camera and telescope equipment. This will allow us actually to measure
seeing everywhere, using standard amature equipment.

2. Adequacy of Astronomical Equipment: A telescope, both refractor or reflector at least 6
inch wide, with motor drive for the hour angle and a CCD camera (and NOT a Web-Cam,
various Digital Cameras, single frames from Video-Cams etc) is to be considered as adequate
astronomical equipment. Variations from the above mentioned equipment (especially Web-
Cams) are currently being tested to find out if they can be used in this project. Finally, a
special mask (cardboard-made or plastic), which anyone can make, and of course a PC are
also needed.

3. Because the data reduction requires special software, which has been written in the Observa-
tory for this specific purpose, the data send by each amateur astronomer should have some
consistency, thus limiting the error possibility and enabling the software to run without prob-
lems.

4.1.2 The Seeing-GR Project.

The Seeing-GR is an ambitious new project aiming in measuring and calculating a median value
of the true astronomical seeing in Greece. The H-DIMM method is used because it is easy to
implemented by anyone. Because the collection of data from all over Greece cannot be undertaken
from one person alone or even a single group Seeing-GR is mostly addressed to amateur astronomers
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inhabiting both remote places and the metropolitan centers (even in Athens and Thessaloniki), as
well. This project (measuring the seeing of a whole country) is unique and has never been done
before. Greece is one of the privileged countries as clear skies can be found throughout the year in
most places, but also (and most importantly) because it has many well-grounded and adequately
equipped amateur astronomers. The data for the project will be gathered from amateur astronomers
exclusively and will afterwards be reduced. For these reasons participation in Seeing-GR will ONLY
be allowed to amateurs who meet some basic requirements:

4.2 Aquisition Software Development.

The acquisition software for the project was righten in Visual Basic. This programming languange
was chosen because a Windows program needed, in order to be used by anyone. It uses the Windows
API interface as well as the ASCOM drivers to comunicate with MaximDL. MaximDL is a CCD
camera control software and is used to control the camera and to download the data to the computer.

4.2.1 The Program’s Interface

The program’s interface is quite simple, so even a person with no astronomical knowledge can use
it. It has three (3) buttons.

• The ”Start DIMM Measurements” button
This is the main button of the program .With this one we can take DIMM measurements by
just pressing it!!

• The ”Star’s Information” button
With this one we enter the star’s information, meaning the star’s name and coordinates. You
can’t take measurements if you don’t enter any information about the star you are observing.

• The ”Exit” button
By pressing this one you quit the program!!

The main body of the program also contains a number of boxes. There are two information boxes,
used to display varius information, a box with the download rate, a box with the download time and
a box that contains the star that you have selected with the ”Star Information” button. In figure
4.2 it is shown the Star details interface. Here you must enter at least the name of the star you
are going to observe. If no coordinates entered then this name will be used to find the Ra and Dec
from the official catalogs. Of course you are encouraged for you to enter the celestial coordinates
since this will greatly simplify the reduction procces.

Apart from the information concerning the star, there is a button called ”New Lat/Lon”. This
button is ment to be used only if you are observing in a location other than your home location.
Your home location is the place you specified in the registracion form. So if you are going to observe
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Figure 4.1: The Program’s Interface.

Figure 4.2: The Star Details Interface.

in different place please enter here the coordinates. If you don’t know them or you can’t find them
please enter in all fields ”00” and when you will send us the data please attach a file or send us an
e-mail giving us detailed information about the place you observed (eg. 20Km south of Lamia, near
the village Krania. . . ) so we will be able to find them. In figure 4.3 it is shown the User information
dialog. This dialog appears when you run the program for the very first time. Here you must enter
the same information as those in the registrasion form. Please have in mind that a cross-check of
these information is run automaticaly. If information entered in the ”User info Dialog” are different
from those in the registration form then the data will not be analysed and you will be contacted to
sort this out.

The user inforamtion dialog can be also accesed from the menu ”Change”. Please change this
information only if it is nececery to do so. Also if you change them please inform us with an e-mail.
Remember that such changes must not be frequent!!!

4.2.2 Taking Measurements

To take DIMM measurements you must first enter the information of the star that you will be
observing, meaning the star’s name and its coordinates. If you don’t know the exact coordinates,
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Figure 4.3: The User Info Dialog.

enter only the star’s name, and we will find its coordinates, but it would generally help us if you fill
the coordinates yourself. Keep in mind that you MUST enter the star’s name, before you can start
taking measurments. After entering the information needed, it’s time to press the ”Take DIMM
Measurements” button. Only two things are left for you to enter, for the program to run properly.The
first thing is the ambient temperature, meaning the temperature of the environment. We need this
value for the program to regulate the chip temperature low enough to take measurements. Accepted
values are from -20 to +40 Celsius. After you have entered the temperature you must wait until
the camera’s temperature regulates. A dialog box will appear. If you entered a wrong temperature
in the previous step and the camera cannot reach the setpoint, you can correct it here. If you enter
nothing, every time you press OK or Cancel you can see how many degrees are left to reach setpoint
in the main body of the program. When the setpoint is reached then the next time you press OK
you will continue to the next step.

The second thing is the time you want to observe. Here you must enter from 30 min to 10
hours. We have entered this limitation because measurements below 30 min will not be statistically
correct. Information boxes will appear, before the actual measurements begin, to tell you what
exactly is done with your camera. Nothing else needs to be entered for the program to take DIMM
measurements. Trough the whole procedure you can see exactly what the program is doing and how
many time is left to complete the run. If you want to run the program again you don’t have to close
and restart, just press the ”Take measurments” button once more.

4.2.3 The Output Data

The output data is a series of “FIT” images. You can view these images with programs like MaximDL
or CCDOPS, but be careful not to change them in any way! Teasing the contrast or brightness or
anything else so that the frame looks nice, will affect the quality of the data!! Apart from the
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frames, three other files will be created: one is a statistic of the download time versus time. This
file is for us to know if anything went wrong during the download of the frames from the camera to
the computer. The second file is the actual log that contains all the information needed to reduce
the data and extract the seeing value and the third is information about your equipment and the
location you observed. So when you send the data to the Observatory make sure that these three
files will be sended as well. The files have extensions “.dat” and “.jbn”. All the “.FIT” frames the
“.dat” and the “.jbn” files are stored every time you run the programm in a folder like this one :

"c:\dimm\data\xx_x_xxxx_x_xx"

where the x directory is the date and time you run the script. So every time you run it, a different
folder of this type is created. If you run the script five times in a single night then you will have five
different folders in your data folder. You will be sending us all these folders for every time you run
the program.

4.2.4 Possible Error Messages

There are some errors that you might encounter while running the program. One of those errors
is entering a letter when a number is asked. When you make this mistake a dialog will appear
informing you of that and telling you that you must start from the beginning. If you have entered
the star’s information you don’t have to re-enter them, just press the ”Take Measurements” button
again. Some errors occur when you enter a value that it’s not within acceptable limits. This type of
errors includes observation duration and temperature. The limits for the ambient temperature are
from -20 to +40 Celsius. The limits for the observation duration are from 30 minutes to 10 hours.
If you enter a value outside these limits a warning will appear, and you must then re-enter a correct
value. Other errors include selecting a wrong camera model in the MaximDL list. If that is the
case just enter the correct model of your CCD in MaximDL. If your camera does not exist, send an
e-mail to the seeing-gr analysis group and tell us about that. We will try to make it work. In case
of other errors a dialog box will appear and inform you what to do. In all error cases a fault log is
created in the programs folder. If an error persists, please send us an e-mail explaing exactly what
you did and came to this difficult position. You should also send us the ”fault.log” file mentioned
above.

4.3 Reduction Software Development.

For the acquired data to be analyzed new code must be written. This was done in Linux using
C-Shell programming, Fortran and Starlink routines such as Photom, Figaro and Kappa.



Chapter 5

Scintilation Measurments with the

H-DIMM

”Twinkle Twinkle Litle Star. . . ”

Scintillation is an important factor in measurements requiring high precision photometry (extra-solar
planet detection), astrometry, and of objects with very fast intensity changes (astroseismology).
Bellow are presented scintilation measurments made in mount Xolomon in Chalkidiki Greece. I
present the theory of the method used. As a by-product of the scintilation mesurments an estimate
of the isoplanatic angle is done for the same observing site.

The “amount” of scintillation can be measured by the variance σ2
i of the relative fluctuations

in intensity I, σi being the root-mean-square value of (I − 〈I〉) = ∆I/ 〈I〉 where 〈〉 denotes time
average. In the literature, σ2

i is often called the ”scintillation index” (although that expression has
been used also for the rms modulation of I itself). To avoid ambiguity, for σ2

i we will use the
term ‘intensity variance.’ The ‘rate’ of scintillation can be measured by the width of the temporal
correlation function or, equivalently, by its Fourier transform, the power spectrum. Especially in
older literature, the ”frequency” of scintillation expresses how often the fluctuating intensity crosses
its average value.

The values for intensity variance σ2
i refer to the variance of the linear quantity. In some pub-

lications, the variance is instead given for the logarithm of intensity, the relation being σ2
i =

[exp(σ2
ln(i)) − 1]. For small scintilation amplitudes the difference is negligible. A refractive-index

undulation in the atmosphere acts as a lens, focusing the starlight. The illumination of a screen
(pupil plane) at some distance from such a lens varies from place to place because alternate sections
of the lens are converging and diverging. Scintillation involves a geometrical ”lever-arm” effect,
since the wave front wiggles must be sufficiently distant to produce brightness changes. Scintillation
is normally dominated by turbulence at high altitudes (many kilometers), while seeing often has
significant components originating close to the telescope.
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When the turbulence causing the refractive fluctuations is at a great distance from the tele-
scope, the irradiance becomes variable in both space and time. This intensity modulation can be
observed in short-exposure images of a telescope mirror illuminated by a bright star, as a system of
rapidly moving “shadows”. With the unaided eye, such “flying shadows” can be glimpsed during
the moments before and after a total solar eclipse, when an uneclipsed solar crescent acts as the
light source. Then the ‘shadows’ appear as elongated ‘bands’ because of the anisotropic brightness
distribution of the solar crescent.

Their motions are determined by wind components at various contributing altitudes. However,
in contrast to solar eclipse phenomena, shadow patterns from stars are statistically isotropic. Scin-
tillation may be studied either by measuring the fluctuations in image intensity, or by measuring the
shadow pattern directly.The intensity of the telescopic image depends upon the sample of the shadow
pattern selected by the telescope at any instant. Temporal variations occur for two main reasons.
Firstly, the shadow pattern moves across the detector as the region of atmosphere producing the
pattern is carried by the wind.

Most modeling indeed assumes that this pattern can be regarded as frozen in the atmosphere
(Taylor’s approximation), merely swept by winds across the telescope aperture. However, fluctua-
tions also occur when the structure of the shadow pattern varies due to changes in the turbulence,
or due to the relative motion of different regions of the atmosphere. Detailed studies of the spatio-
temporal properties of scintillation for single and binary stars can be used to deduce quite detailed
information about the often layered structure in the upper atmosphere. In order to ‘fully’ resolve the
atmospheric effects, it is necessary to limit the size of the telescope pupil, the spectral bandwidth
of the detector, and the sample time of the processing equipment. Aperture averaging will reduce
the vari-ance unless the telescope aperture is significantly smaller than the smallest feature size in
the shadow pattern.

Thus a measure of the variance as a function of aperture size gives an estimate of these feature
sizes. Different extents of the sampling aperture, and of the temporal integration, preferentially
‘filter’ out differently distant turbulence elements. For example, naked-eye twinkling (v 5mm
aperture, a cutoff for frequencies above 15Hz), arises mostly from turbulence within 1km of the
ground.

5.1 Measurement Technique

In theory, the fluctuations of the normal logarithm of the light intensity is the quantity to compute.
So, if x and y are the intensities in two apertures, the normal scintillation index sx, sy and the
differential index sxy should be computed as :

sx =
〈(

log x− log x
)2

〉

sy =
〈(

log y − log y
)2

〉
(5.1)
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and
sxy =

〈(
log(x/y)− log(x/y)

)2
〉

(5.2)

In fact, the calculations are done by different formulae that replace logarithms with ratios. These
”linear” formulae are better suited for the subtraction of photon noise because the latter can be
evaluated theoretically. The photon noise can be quite large, so the use of logarithmic formulae for
index calculation seems problematic. The linear one are :

sx =
〈(
x/x

)2
〉
− 1

sy =
〈(
y/y

)2
〉
− 1 (5.3)

and
sxy =

〈(
x/x− y/y

)2
〉

(5.4)

The above equations are used in the reduction software to calculate the various scintilation indexes.
For the measurments of the intesity of light in the two apertures, packages from Starlink are used
such as Photom and Extractror. The reduction code is in the addendum.

5.1.1 Correcting for Zenith-Distance

Stars near the horizon scintillate with greater amplitude but more slowly than stars near zenith this
causes the low-frequency naked-eye twinkling to become prominent near the horizon. This zenith
distance dependence has been measured by Bufton and Genatt (1971), Darchiya (1966), Diamant et
al.(1969). Although the scintillation increases away from zenith, the increase does not continue until
the very horizon. Typically, the amplitude increases until around Z=60o or 70o, where it saturates
(or even decreases). The saturation angle depends on the airmass traversed, and may differ between
low and high altitude sites. Only a few studies at extreme zenith distances seem to exist, e.g. Butler
(1952) who recorded scintillation at an elevation of only 1o above the horizon. More subtle effects
include the aperture-size dependence for the saturation angle, being closer to zenith for smaller
telescope apertures. Further, the validity of a log-normal distribution seems to become weaker with
increasing zenith distance.

Theories have been developed in the wave-optical treatment by Tatarski (1961), and in the
geometrical optics one by Reiger (1963). Although different in other aspects, these agree on the
zenith angle dependence, (secZ)3, for large apertures. The concepts are discussed by Bufton (1973)
and Parry et al. (1979). In the case of wave-optics (small apertures) a dependence σ2

i ∝ (secZ)11/6,
and in the geometrical optics case (large apertures) σ2

i ∝ (secZ)3. To account for saturation at
large zenith angles, Young (1969, 1970a, b) showed how effects of seeing and color dispersion cause
deviations from this (secZ)3 dependence, light traversing large airmasses is spread out laterally,
thus providing spatial averaging. The zenith distance dependence of the scintillation index σ2

i can
be numerically modeled under certain assumptions. The results show how σ2

i increases until some
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Figure 5.1: Scintillation amplitudes and time scales increase with zenith distance. Upper curve for
large aperture and down for small aperture. Measured with a 22cm aperture.

zenith angle, then saturates and finally decreases near the horizon. Here of course because of the
small aperture telescopes used the asumption is σ2

i ∝ (secZ)11/6.

5.2 Estimate Of The Isoplanatic Angle Through the Scintilation

Index

Almost all modern large telescopes are now being equipped with Adaptive Optics (AO) systems to
compensate turbulence and to push the resolution to the diffraction limit at least at near-infrared
wavelengths (Roddier, 1999). Good atmospheric seeing is even more critical to the AO operation
than it is for classical seeing-limited observing. Moreover, atmospheric time constant τ0 and isopla-
natic patch size θ0 are additional parameters which need to be known. Ideally, the vertical turbulence
profile should also be monitored to assist AO operation. The time constant can be calculated with
the theory presented in 2.1.2

The isoplanatic angle θ0 can be estimated from the fluctuations of stellar flux received by the
DIMM subapertures and caused by scintillations. It has been noted already by Loos & Hogge (1979)
that the scintillation index in a 10-cm aperture can lead to an approximate estimation of θ0. Again,
because of the too long exposure time of current DIMMs, the scintillation index is generally reduced
by time averaging. However, this bias can be calculated providing that one has some real-time
knowledge of the temporal spectrum of the scintillation.

Scintillation index s is defined as a variance of the natural logarithm of the light intensity
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received by an aperture of the instrument. A theory of light propagation through atmosphere
(Roddier, 1981) in the limit of faint perturbations relates the index to the vertical profile of the
refractive index structure constant C2

n(h) :

s =
∫ Zmax

0
C2

n(z)W (z)dz (5.5)

where the integration over range z = h cos γ is performed from the aperture (z = 0) to the maximum
distance of turbulence, Zmax. The weighting function W (z) depends on turbulence spectrum,
wavelength λ, and aperture shape. For finite exposure time τ , W (z) is modified, because the
”effective” aperture is extended in the wind direction by V (h)τ , where V (h) is the horizontal wind
velocity at the altitude h above the obsevring site. Thus, a finite exposure time introduces the bias
R(τ) = s(τ) = s(0) in the measured scintillation index, which can be computed from the vertical
profiles C2

n(h) and V (h) (Tokovinin, 2001). The isoplanatic angle θ0 at zenith (Fried, 1982) is defined
as :

θ
−5/3
0 = 2.91(2π/λ)2

∫ Hmax

0
h5/3C2

n(h) (5.6)

Loos & Hogge (1979) noted the similarity of equation 5.6 with equation 5.5, and suggested that θ0
can be derived from the scintillation index if the weighting function is roughly proportional to h5/3.
For an aperture of about 10 cm in diameter and for λ = 0.5µm the approximation W (z) ∝ z5/3

holds well at altitudes around 10 km, which mostly contribute to scintillation. We calculate the
isoplanatic angle (at zenith and at 0.5µm) from the scintillation index s measured at zenith angle
γ by the equation :

θ0 = As−3/5(cos γ)−8/5 (5.7)

It is not clear, however, which value of the ratio W (z) = z5/3 should be selected to compute the
calibration constant A, and how this constant depends on λ in an analytical manner. From various
observations that M. Sarazin, & A. Tokovinin performed, calculated a value of A = 0.182′′ for a
wavelength λ = 0.5µm and this value is used here.



Chapter 6

Observations And Results On

Mt.Holomon

“Observing is Like Christmas . . .Most of the Time is Cold and at the Same

Time Like Home!!!”

Below follows all the observations that were contacted by me from 2004 to 2006 concerning Seeing,
Scintilation and Isoplanatic Angle measurments. All observations were made with a 8-inch Vixen
Visac telescope equiped with a hartmann mask and an SBIG ST4 CCD camera. The Hartmann
mask had two holes of 5cm each with a separation of 10cm between them. This System along with
the ESO control and reduction software is the first H-DIMM unit of the Aristotle University of
Thessloniki. A picture of the complete setup is shown at figure 6.1. Also at table 6.1 the properties
of the SBIG ST4 CCD camera is shown.

The reduction of the data was made with new software that developed for this purpose. It
is writen in C-shell and Fortran. The data was airmass corrected. Also this software made the
statistical analysis. The diagrams were then produced with the help of Origin in the Windows

Characteristic Value
A/D Converter 8 bits
A/D Gain 150e−/ADU
Read Noise 150e−/RMS

Pixel Digitization Rate 100 kHz
Pixel Size 13.75 x 16 microns
Dark Current 250e−/pixel/sec at 0oC
Pixel Array 192 x 164 pixels, 2.6 x 2.6 mm

Table 6.1: SBIG ST4 CCD Camera Characteristics
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Figure 6.1: The Vixen Telescope Along with the ST4 CCD Camera.

operating system. For the scintilation measurments in the data obtained by the SSO DIMM, the
values of intensity were computed by the camera control and aquisition software. This of course is
not a problem, since i don’t use absolute values but only relative.

6.1 Seeing, Scintilation and Isoplanatic Angle Curves

Below it is presented all the observations that are made to mount Xolomon by me, for this project,
for the period of 2004 to 2006. For every night it is presented three diagrams, one for seeing, one
for scintilation and one for isoplanatic angle. Also it is given statistical values for every night, like
mean values St. Deviation, median value and the value for weach the 75% of the observations are
better from the total sample (P75).
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Figure 6.2: Diagrams of Seeing and Scintilation for the night of 29/02/2004

Figure 6.3: Diagram of Isoplanatic Angle for the night of 29/02/2004

Here it is presented the night of 29/02/2004. In figure 6.2 it is shown the diagrams of seeing and
scintilation and in figure 6.3 is the diagram of isoplanatic angle. For this night the statistics are :

Mean St. Deviation P75 Median

Seeing (arcsec) 1.35 0.41 1.65 1.54
Scintilation (mag) 0.098 0.11 0.15 0.053
Isoplanatic Angle (arcsec) 27.99 39.64 33.6 12.9

This particular night was not very good for seeing and neither for scintilation.
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Figure 6.4: Diagrams of Seeing and Scintilation for the night of 01/03/2004

Figure 6.5: Diagram of Isoplanatic Angle for the night of 01/03/2004

Here it is presented the night of 01/03/2004. In figure 6.4 it is shown the diagrams of seeing and
scintilation and in figure 6.5 is the diagram of isoplanatic angle. For this night the statistics are :

Mean St. Deviation P75 Median

Seeing (arcsec) 0.86 0.16 0.97 0.81
Scintilation (mag) 0.054 0.036 0.082 0.057
Isoplanatic Angle (arcsec) 12.51 19.09 11.11 5.18
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Figure 6.6: Diagrams of Seeing and Scintilation for the night of 01/07/2004

Figure 6.7: Diagram of Isoplanatic Angle for the night of 01/07/2004

Here it is presented the night of 01/07/2004. In figure 6.6 it is shown the diagrams of seeing and
scintilation and in figure 6.7 is the diagram of isoplanatic angle. For this night the statistics are :

Mean St. Deviation P75 Median

Seeing (arcsec) 0.71 0.08 0.78 0.7
Scintilation (mag) 0.094 0.071 0.13 0.09
Isoplanatic Angle (arcsec) 17.09 32.5 9.7 3.62

A typical night of good seeing for Xolomon.
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Figure 6.8: Diagrams of Seeing and Scintilation for the night of 02/07/2004

Figure 6.9: Diagram of Isoplanatic Angle for the night of 02/07/2004

Here it is presented the night of 02/07/2004. In figure 6.8 it is shown the diagrams of seeing and
scintilation and in figure 6.9 is the diagram of isoplanatic angle. For this night the statistics are :

Mean St. Deviation P75 Median

Seeing (arcsec) 0.63 0.09 0.7 0.6
Scintilation (mag) 0.058 0.04 0.079 0.06
Isoplanatic Angle (arcsec) 14.45 22.13 9.22 5.07
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Figure 6.10: Diagrams of Seeing and Scintilation for the night of 14/07/2004

Figure 6.11: Diagram of Isoplanatic Angle for the night of 14/07/2004

Here it is presented the night of 14/07/2004. In figure 6.10 it is shown the diagrams of seeing
and scintilation and in figure 6.11 is the diagram of isoplanatic angle. For this night the statistics
are :

Mean St. Deviation P75 Median

Seeing (arcsec) 1.07 0.17 1.25 1.01
Scintilation (mag) 0.14 0.15 0.27 0.04
Isoplanatic Angle (arcsec) 13.77 18.39 20.88 3.97

This night had not very good seeing and neither scintilation.
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Figure 6.12: Diagrams of Seeing and Scintilation for the night of 17/07/2004

Figure 6.13: Diagram of Isoplanatic Angle for the night of 17/07/2004

Here it is presented the night of 17/07/2004. In figure 6.12 it is shown the diagrams of seeing
and scintilation and in figure 6.13 is the diagram of isoplanatic angle. For this night the statistics
are :

Mean St. Deviation P75 Median

Seeing (arcsec) 0.76 0.1 0.84 0.74
Scintilation (mag) 0.059 0.073 0.03 0.027
Isoplanatic Angle (arcsec) 77.54 169 43.65 22.78
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Figure 6.14: Diagrams of Seeing and Scintilation for the night of 18/07/2004

Figure 6.15: Diagram of Isoplanatic Angle for the night of 18/07/2004

Here it is presented the night of 18/07/2004. In figure 6.14 it is shown the diagrams of seeing
and scintilation and in figure 6.15 is the diagram of isoplanatic angle. For this night the statistics
are :

Mean St. Deviation P75 Median

Seeing (arcsec) 0.84 0.1 0.91 0.82
Scintilation (mag) 0.03 0.02 0.053 0.039
Isoplanatic Angle (arcsec) 83.54 192 49.63 18.86
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Figure 6.16: Diagrams of Seeing and Scintilation for the night of 19/07/2004

Figure 6.17: Diagram of Isoplanatic Angle for the night of 19/07/2004

Here it is presented the night of 19/07/2004. In figure 6.16 it is shown the diagrams of seeing
and scintilation and in figure 6.17 is the diagram of isoplanatic angle. For this night the statistics
are :

Mean St. Deviation P75 Median

Seeing (arcsec) 0.94 0.15 0.99 0.95
Scintilation (mag) 0.1 0.06 0.16 0.098
Isoplanatic Angle (arcsec) 14.22 18.86 21.53 1.76

In this too there are too few points to conclude safely about seeing behaviour.
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Figure 6.18: Diagrams of Seeing and Scintilation for the night of 20/07/2004

Figure 6.19: Diagram of Isoplanatic Angle for the night of 20/07/2004

Here it is presented the night of 20/07/2004. In figure 6.18 it is shown the diagrams of seeing
and scintilation and in figure 6.19 is the diagram of isoplanatic angle. For this night the statistics
are :

Mean St. Deviation P75 Median

Seeing (arcsec) 1.07 0.66 0.84 0.83
Scintilation (mag) 0.086 0.083 0.099 0.074
Isoplanatic Angle (arcsec) 26.24 24.66 35.36 14.01

In this night there are too few observations to safely conclude about the behaviour of seeing.
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Figure 6.20: Diagrams of Seeing and Scintilation for the night of 12/08/2004

Figure 6.21: Diagram of Isoplanatic Angle for the night of 12/08/2004

Here it is presented the night of 12/08/2004. In figure 6.20 it is shown the diagrams of seeing
and scintilation and in figure 6.21 is the diagram of isoplanatic angle. For this night the statistics
are :

Mean St. Deviation P75 Median

Seeing (arcsec) 0.75 0.13 0.80 0.69
Scintilation (mag) 0.029 0.033 0.042 0.015
Isoplanatic Angle (arcsec) 11.37 24.91 9.55 3.74
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Figure 6.22: Diagrams of Seeing and Scintilation for the night of 13/08/2004

Figure 6.23: Diagram of Isoplanatic Angle for the night of 13/08/2004

Here it is presented the night of 13/08/2004. In figure 6.22 it is shown the diagrams of seeing
and scintilation and in figure 6.23 is the diagram of isoplanatic angle. For this night the statistics
are :

Mean St. Deviation P75 Median

Seeing (arcsec) 0.75 0.13 0.83 0.73
Scintilation (mag) 0.079 0.16 0.078 0.039
Isoplanatic Angle (arcsec) 23.67 47.16 15.88 4.98
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Figure 6.24: Diagrams of Seeing and Scintilation for the night of 09/10/2004

Figure 6.25: Diagram of Isoplanatic Angle for the night of 09/10/2004

Here it is presented the night of 09/10/2004. In figure 6.24 it is shown the diagrams of seeing
and scintilation and in figure 6.25 is the diagram of isoplanatic angle. For this night the statistics
are :

Mean St. Deviation P75 Median

Seeing (arcsec) 0.78 0.1 0.84 0.78
Scintilation (mag) 0.043 0.05 0.05 0.02
Isoplanatic Angle (arcsec) 41.13 110.3 33.26 10.73

This night was just good and nothing more as far seeing.
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Figure 6.26: Diagrams of Seeing and Scintilation for the night of 10/10/2004

Figure 6.27: Diagram of Isoplanatic Angle for the night of 10/10/2004

Here it is presented the night of 10/10/2004. In figure 6.26 it is shown the diagrams of seeing
and scintilation and in figure 6.27 is the diagram of isoplanatic angle. For this night the statistics
are :

Mean St. Deviation P75 Median

Seeing (arcsec) 0.98 0.18 1.09 0.96
Scintilation (mag) 0.072 0.1 0.08 0.04
Isoplanatic Angle (arcsec) 30.49 100.21 13.9 7.33

This night was not good for the standards of Xolomon, with an increasing tendecy during the
night. Even scintilation was not so good.
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Figure 6.28: Diagrams of Seeing and Scintilation for the night of 04/11/2004

Figure 6.29: Diagram of Isoplanatic Angle for the night of 04/11/2004

Here it is presented the night of 04/11/2004. In figure 6.28 it is shown the diagrams of seeing
and scintilation and in figure 6.29 is the diagram of isoplanatic angle. For this night the statistics
are :

Mean St. Deviation P75 Median

Seeing (arcsec) 1.05 0.12 1.13 1.03
Scintilation (mag) 0.007 0.068 0.082 0.058
Isoplanatic Angle (arcsec) 14.44 19.5 13.29 9.29

Unfortunately in this night there are not too many observations and that’s why we can not have
safe statistical conclusions.
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Figure 6.30: Diagrams of Seeing and Scintilation for the night of 25/11/2004

Figure 6.31: Diagram of Isoplanatic Angle for the night of 25/11/2004

Here it is presented the night of 25/11/2004. In figure 6.30 it is shown the diagrams of seeing
and scintilation and in figure 6.31 is the diagram of isoplanatic angle. For this night the statistics
are :

Mean St. Deviation P75 Median

Seeing (arcsec) 1.13 0.25 1.32 1.08
Scintilation (mag) 0.04 0.083 0.043 0.013
Isoplanatic Angle (arcsec) 11.14 19.53 9.26 4.17

This night had nothing good to offer to us, with various changes. Scintilations remains in it’s
usual values.
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Figure 6.32: Diagrams of Seeing and Scintilation for the night of 26/11/2004

Figure 6.33: Diagram of Isoplanatic Angle for the night of 26/11/2004

Here it is presented the night of 26/11/2004. In figure 6.32 it is shown the diagrams of seeing
and scintilation and in figure 6.33 is the diagram of isoplanatic angle. For this night the statistics
are :

Mean St. Deviation P75 Median

Seeing (arcsec) 1.04 0.18 1.14 1.02
Scintilation (mag) 0.019 0.03 0.022 0.008
Isoplanatic Angle (arcsec) 25.11 186.0 9.31 5.25
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Figure 6.34: Diagrams of Seeing and Scintilation for the night of 19/02/2005

Figure 6.35: Diagram of Isoplanatic Angle for the night of 19/02/2005

Here it is presented the night of 19/02/2005. In figure 6.34 it is shown the diagrams of seeing
and scintilation and in figure 6.35 is the diagram of isoplanatic angle. For this night the statistics
are :

Mean St. Deviation P75 Median

Seeing (arcsec) 0.52 0.096 0.56 0.52
Scintilation (mag) 0.059 0.12 0.061 0.039
Isoplanatic Angle (arcsec) 23.95 46.2 19.22 7.29

This night was excelent with very small St. Deviation of seeing and also good scintilation.
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Figure 6.36: Diagrams of Seeing and Scintilation for the night of 11/03/2005

Figure 6.37: Diagram of Isoplanatic Angle for the night of 11/03/2005

Here it is presented the night of 11/03/2005. In figure 6.36 it is shown the diagrams of seeing
and scintilation and in figure 6.37 is the diagram of isoplanatic angle. For this night the statistics
are :

Mean St. Deviation P75 Median

Seeing (arcsec) 0.72 0.079 0.78 0.72
Scintilation (mag) 0.027 0.024 0.034 0.025
Isoplanatic Angle (arcsec) 22.33 57.35 11.37 5.4

The night of 11/03/2005 was very good, since seeing was under the average, also St.Deviation
was small. This means that seeing was quite stable during the night.
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Figure 6.38: Diagrams of Seeing and Scintilation for the night of 12/03/2005

Figure 6.39: Diagram of Isoplanatic Angle for the night of 12/03/2005

Here it is presented the night of 12/03/2005. In figure 6.38 it is shown the diagrams of seeing
and scintilation and in figure 6.39 is the diagram of isoplanatic angle. For this night the statistics
are :

Mean St. Deviation P75 Median

Seeing (arcsec) 0.71 0.14 0.81 0.69
Scintilation (mag) 0.042 0.045 0.062 0.03
Isoplanatic Angle (arcsec) 158.8 323.8 74.9 16.03

A typical night for observation in Xolomon.
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Figure 6.40: Diagrams of Seeing and Scintilation for the night of 04/07/2006

Figure 6.41: Diagram of Isoplanatic Angle for the night of 04/07/2006

Here it is presented the night of 04/07/2006. In figure 6.40 it is shown the diagrams of seeing
and scintilation and in figure 6.41 is the diagram of isoplanatic angle. For this night the statistics
are :

Mean St. Deviation P75 Median

Seeing (arcsec) 0.63 0.15 0.71 0.59
Scintilation (mag) 0.055 0.074 0.059 0.035
Isoplanatic Angle (arcsec) 12.29 20.71 10.22 4.84

Here we have a strange and rare shape of the sseing curve. This variations it appears only in
seeing and not in scintilation.
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Figure 6.42: Diagrams of Seeing and Scintilation for the night of 06/07/2006

Figure 6.43: Diagram of Isoplanatic Angle for the night of 06/07/2006

Here it is presented the night of 06/07/2006. In figure 6.42 it is shown the diagrams of seeing
and scintilation and in figure 6.43 is the diagram of isoplanatic angle. For this night the statistics
are :

Mean St. Deviation P75 Median

Seeing (arcsec) 0.66 0.06 0.71 0.66
Scintilation (mag) 0.045 0.051 0.06 0.034
Isoplanatic Angle (arcsec) 14.34 25.17 14.23 5.92

In this particular night seeing was stable and with small St. Deviation of it’s values. The same
thing applies for scintilation also.
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Figure 6.44: Diagrams of Seeing and Scintilation for the night of 07/07/2006

Figure 6.45: Diagram of Isoplanatic Angle for the night of 07/07/2006

Here it is presented the night of 07/07/2006. In figure 6.44 it is shown the diagrams of seeing
and scintilation and in figure 6.45 is the diagram of isoplanatic angle. For this night the statistics
are :

Mean St. Deviation P75 Median

Seeing (arcsec) 0.88 0.13 0.96 0.85
Scintilation (mag) 0.045 0.035 0.06 0.035
Isoplanatic Angle (arcsec) 50.5 200.41 38.1 12.28

Seeing was changing is this night too. Scintilation is typical again.



6.1 Seeing, Scintilation and Isoplanatic Angle Curves 138

Figure 6.46: Diagrams of Seeing and Scintilation for the night of 08/07/2006

Figure 6.47: Diagram of Isoplanatic Angle for the night of 08/07/2006

Here it is presented the night of 08/07/2006. In figure 6.46 it is shown the diagrams of seeing
and scintilation and in figure 6.47 is the diagram of isoplanatic angle. For this night the statistics
are :

Mean St. Deviation P75 Median

Seeing (arcsec) 2.3 0.23 2.48 2.27
Scintilation (mag) 0.14 0.18 0.089 0.056
Isoplanatic Angle (arcsec) 22.5 20.41 38.14 13.28

This unfortunately there aren’t many data. But we can see that this is one of the worst nights
ever recorded at Xolomon. Even scintilation is worser than usual, this means that the atmosphere
was turbulent in most of her layers.
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Figure 6.48: Diagrams of Seeing and Scintilation for the night of 09/07/2006.

Figure 6.49: Diagram of Isoplanatic Angle for the night of 09/07/2006

Here it is presented the night of 09/07/2006. In figure 6.48 it is shown the diagrams of seeing
and scintilation and in figure 6.49 is the diagram of isoplanatic angle. For this night the statistics
are :

Mean St. Deviation P75 Median

Seeing (arcsec) 0.74 0.11 0.81 0.75
Scintilation (mag) 0.058 0.039 0.078 0.048
Isoplanatic Angle (arcsec) 36.07 68.9 20.05 12.06

This night also is typical without something to notice about.
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Figure 6.50: Diagrams of Seeing and Scintilation for the night of 11/07/2006

Figure 6.51: Diagram of Isoplanatic Angle for the night of 11/07/2006

Here it is presented the night of 11/07/2006. In figure 6.50 it is shown the diagrams of seeing
and scintilation and in figure 6.51 is the diagram of isoplanatic angle. For this night the statistics
are :

Mean St. Deviation P75 Median

Seeing (arcsec) 1.54 0.24 1.68 1.53
Scintilation (mag) 0.055 0.048 0.07 0.041
Isoplanatic Angle (arcsec) 56.9 201.68 23.43 9.56

This particular night the conditions were not very good. Seeing was big and constatly changing.
Worth mentioning is that scintilation is typical and intepented from seeing.
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Figure 6.52: Diagrams of Seeing and Scintilation for the night of 12/07/2006

Figure 6.53: Diagram of Isoplanatic Angle for the night of 12/07/2006

Here it is presented the night of 12/07/2006. In figure 6.52 it is shown the diagrams of seeing
and scintilation and in figure 6.53 is the diagram of isoplanatic angle. For this night the statistics
are :

Mean St. Deviation P75 Median

Seeing (arcsec) 0.75 0.14 0.84 0.77
Scintilation (mag) 0.036 0.035 0.051 0.025
Isoplanatic Angle (arcsec) 106.9 327.33 26.91 10.9

We can see that in this night seeing was not so stable, in fact towards the end of the observations
it’s value droped. Scintilation was stable and it’s value was typical.
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Figure 6.54: Diagrams of Seeing and Scintilation for the night of 13/07/2006

Figure 6.55: Diagram of Isoplanatic Angle for the night of 13/07/2006

Here it is presented the night of 13/07/2006. In figure 6.54 it is shown the diagrams of seeing
and scintilation and in figure 6.55 is the diagram of isoplanatic angle. For this night the statistics
are :

Mean St. Deviation P75 Median

Seeing (arcsec) 0.71 0.087 0.76 0.7
Scintilation (mag) 0.071 0.085 0.085 0.049
Isoplanatic Angle (arcsec) 29.04 165.85 8.3 4.09

It is obvious that this particular night was stable with small values of scintilation, making it
photometric.
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Figure 6.56: Diagrams of Seeing and Scintilation for the night of 14/07/2006

Figure 6.57: Diagram of Isoplanatic Angle for the night of 14/07/2006

Here it is presented the night of 14/07/2006. In figure 6.56 it is shown the diagrams of seeing
and scintilation and in figure 6.57 is the diagram of isoplanatic angle. For this night the statistics
are :

Mean St. Deviation P75 Median

Seeing (arcsec) 0.97 0.12 1.05 0.96
Scintilation (mag) 0.066 0.098 0.076 0.037
Isoplanatic Angle (arcsec) 1.12 0.59 1.25 0.93



6.1 Seeing, Scintilation and Isoplanatic Angle Curves 144

Figure 6.58: Diagrams of Seeing and Scintilation for the night of 15/07/2006

Figure 6.59: Diagram of Isoplanatic Angle for the night of 15/07/2006

Here it is presented the night of 15/07/2006. In figure 6.58 it is shown the diagrams of seeing
and scintilation and in figure 6.59 is the diagram of isoplanatic angle. For this night the statistics
are :

Mean St. Deviation P75 Median

Seeing (arcsec) 0.78 0.11 0.84 0.75
Scintilation (mag) 0.078 0.1 0.084 0.048
Isoplanatic Angle (arcsec) 54.54 179.24 36.51 11.24

This night did not begin with the best values but later on got better, seeing droped and stayed
stable trough the end of the night.
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Figure 6.60: Diagrams of Seeing and Scintilation for the night of 30/06/2006

Figure 6.61: Diagram of Isoplanatic Angle for the night of 30/06/2006

Here it is presented the night of 30/06/2006. In figure 6.60 it is shown the diagrams of seeing
and scintilation and in figure 6.61 is the diagram of isoplanatic angle. For this night the statistics
are :

Mean St. Deviation P75 Median

Seeing (arcsec) 0.72 0.09 0.8 0.71
Scintilation (mag) 0.038 0.032 0.047 0.027
Isoplanatic Angle (arcsec) 85.52 496.8 20.34 9.04

This night is typical concerning seeing, but scintilation is much better, confirming the theory
that wants seeing and scintilations caused by different layers in the atmosphere.
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6.1.1 Confirmation of the No-Corelation of Seeing and Scintilation

In this section a confirmation of the theory was done concerning the no correlation of seeing and
scintilation. As it is already been said seeing and scintilation are caused by different layers in
the atmosphere, with seeing produced by cells in the lower and scintilation by cells in the upper
atmosphere.

Here silmutanious observations of seeing and scintilation were made with the H-DIMM unit in
mount Xolomon. The obervations are the same with the ones that are already presented, so here
only a simple comparison is made. The night of 04/07/2006 was taken for this comparison. In
this particular night it is very evident the non correlation of seeing and scintilation. Of course the
conclusions is universal despite the example of only one night. The same characteristics are evident
in most of the nights, but for artistic reasons and availiable space only one night is chosen.

For a certain corelation, a combined diagrams technic is used. This technic is working by fitting
with least squears of seeing and scintilation as it is shown at figure 6.62. Then we take these two
diagrams and combined them to one. If the angle that is formed is small or zero then it means that
the values are correlated. If the angle is 90o or even bigger then it means that they are un-correlated.
The result is shown in figure 6.63. The angle here is larger than 90o. So it is obvious that Seeing

Figure 6.62: Diagram of Seeing - Scintilation and Scintilation - Seeing.

and Scintilation do not correlate in any way and thus they are indepented. This is a way to prove
that seeing and scintilation are actually caused by different layers in the atmosphere.
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Figure 6.63: Correlation Diagram of Seeing and Scintilation.

6.2 Conclusions

For the neccesary explanation of the results, various histograms were made, also a statistical analysis
was done. The left histogram of figure 6.64 is seeing and ata the right is scintilation. It is clear
that the seeing has a distribution that looks like a gausian with a maximum at the value of 0, 86
arcsec1. Also it is obvious that the distribution is slightly moved to the left. This is caused by the
dependece of the observed seeing value by the exposure time we use during the observations. As the
exposure time increses, the relative displacement of the two idols produced by the two subapertures is
smoothed out, the result is that the value of seeing gets smaller. The correction for this phenomenon
was not done here and thats why there is a small underassumption of seeing in the order of ≈ 0.1
arcsec.

The St. Deviation of seeing is 0, 31 arcsec. This particular value is not bad but it can not show
us how stable the nights really was. To conclude some safe conclusions about this parameter we
must have a look at all the indivitiual St. deviation of the observed nights, or else we must find
the mean value of St. Deviation of all nights. In the present work this was not done and is left for
future analysis.

A quick conclusion i can make is that by watching the St. Deviation of many nights, the typical
value is 0.1 arcsec and not 0, 31 arcsec. Some nights even have values of ≈ 0, 05 arcsec. This means
that Xolomon is an exceptional place for astronomical observations, that can be one of the best
worldwide with the help of an Adaptive Optics unit. This unit will have great results because of the
stabilty of the nights Xolomon has. This is reinforced by the values of the isoplanatic angle, weach

1Full statistics for all the observations are in tables 6.2 and 6.3
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Figure 6.64: Histograms of Seeing and Scintilation for all the Observations that are Made in Xolomon
until now.

Mean St. Deviation Median
Seeing (arcsec) 0.86 0.31 0.79
Scintilation (mag) 0.049 0.074 0.031
Isoplanatic Angle (arcsec) 45.32 193.26 6.86

Table 6.2: Total Statistics of the Observations

they are big enough so to help AO systems very much. From table 6.3 it is clear that the 80% of the
observations are better than 1 arcsec. This fact is an increrible result if we think the low altitude
the observations were made.

In the left of figure 6.64, it si the histogram of scintilation. From this figure and table 6.3 i
conclude that the values of scintilation are low, with the 90% of the observations to be better than
0.1 mag. This fact is great if we think the potential for accurate and fast photometry.

In figure 6.65 it is the pie-diagram for seeing. Also in figure 6.66 is the histogram of the isoplanatic
angle for all the observations that have been done in Xolomon. At tables 6.2 and 6.3 are the results
of the statistical analysis fo the data. As it is shown in figure 6.66 and in table 6.3, the 50% of the
observations for the isoplanatic angle are better than ≈ 18 arcsec. This fact is great and it can help
the effectiveness of AO systems.

This fact in combination with the very low values of scintilation, can help in the discovery of new
supernova but also in projects that involve high speed photometry with instruments as Ultra-Cam.
The high mean value of the isoplanatic angle should not be wory as because no filter was applied
for the rejection of noise, and as a result very high and unnatural values are taken in mind to the
calculations of mean value. Of course St. Deviation is also afected.



6.2 Conclusions 149

Figure 6.65: Precentage of Observations in a Pie-Diagram

Seeing (arcsec) Scintilation (mag) Isoplanatic Angle (arcsec)
P100 2.79 1.27 4319
P90 1.28 0.1 70.12
P80 1.04 0.071 27.25
P75 0.98 0.061 18.7
P50 0.79 0.031 6.86
P25 0.66 0.013 3.55
P10 0.56 0.003 1.95

Table 6.3: Presentage of Observations

As a final result i must say that the place that the observations took place was not ideal from
an astronomical point of view. The altitude was about 800 m, very low. Also the observations were
made in the facilities of the agricultural division near a tavern that usually a fire place was oper-
ational. This of course affected the observations and probably is responsible for some unnaturally
big values, and in result affected the mean value observed. So probably the real behaviour of the
place is even better from the observed. This is very important if we think of the very nice behaviour
already.
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Figure 6.66: Histogram of Isoplanatic Angle for all the Observatons until now.

6.2.1 Possible Future Work

As a possible future development of the presented work about the astronomical properties of the
atmosphere in Xolomon could be:

• Re-analyse the data for better accurasy, from correcting the exposure time bias. This will
permit us for even safer conclusion concerning the absolute value of seeing in Xolomon.

• A better statistical analysis of the results. The mean value of St. Deviation of every night
should be computed, for all the parameters of course, and not just the St. Deviation of the
observations. This must be done so we can safely have our conclusions, about the stability of
the parameters during the duration of a night.

• Also in the future a comparison at the same time of the atmospheric parameters that interests
astronomy, with meteorological data, so we can see if their is any correlation between them.
This will help the posible prediction of seeing just from the meteorological data. Of course
for a more better study of this posibility the Seeing-GR project will help very much. It will
add the neccesery statistical security over many different conditions, both meteorological and
geographical.
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