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Abstract

In this thesis project is presented an estimation of the angular and spa-
tial two-point correlation function of dark matter halos for three different
cosmological models, the ΛCDM, SUCDM and RPCDM. I use the cor-
responding dark matter halo catalogue from the DEUS simulation light-
cones, which were constructed from N-body simulations with boxlength
2592 [Mpc/h], consisting of 10243 dark matter particles. Subsequently,
I fit an evolution relation, between the correlation length r0(z) and the
growth factor D(z) taking into account also the bias evolution b(z), for
the corresponding data of the ΛCDM model. The aim of the latter pro-
cedure is to investigate which value of the modified index (n+2) of the
growth factor corresponds better to the evolution of the halo correlation
function at different redshifts.
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1 The Morphology of the Large Scale Structure

A huge progress in the field of Large-Scale structure has been realized after the
construction of redshift surveys of galaxies and cluster of galaxies; providing the spatial
distribution of large regions of the sky and 3-dimensional maps containing thousand of
galaxies (e.g The Sloan Digital Sky Survey (SDSS), or the Two-Degree Field Galaxy
Redshift Survey (2dFGRS)) and Two Micron All-sky Survey (2MASS), see [24], [25]
and [26] for the original papers).

Figure 1: Slices through the three-dimensional map of the distribution of galaxies from the
Sloan Digital Sky Survey (SDSS)

The distribution of galaxies on the sky is not uniform or random, but rather they form
pairs, groups and clusters of galaxies with large (almost spherical) voids between them.
Furthermore clusters of galaxies themselves are not distributed uniformly in the space,
but their positions are correlated , grouped together to form even larger structures
(superclusters) in the form of filaments, walls etc.

Even though these redshift surveys revealed that the universe is not homogeneous in
scales of tens Megaparsecs, there is no evidence of structures with linear dimensions
greater than a few hundred Megaparsecs. So, the universe can be considered
homogeneous if averaged over scales of the latter scales. This property of the universe is
fundamental and it is referred in the literature as the Cosmological principle, which
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states that the universe is spatially homogeneous and isotropic on Large-Scales.
Homogeneity implies that all comoving observers see identical properties, while isotropy
implies that there is no preferred direction in the universe.

The most unquestionable proof that the universe is homogenous and isotropic was the
discovery of the highly isotropic Cosmic Microwave Background radiation (CMB).
Since this radiation dates from the epoch of decoupling (z ∼ 1100) it constitutes direct
evidence that the universe was homogeneous up to that epoch. However, even in the
Cosmic Microwave Background ,with the emergence of high resolution data (especially
from WMAP and later on from Planck satellites), there is a clear evidence of
temperature fluctuations with a relative amplitude of ∆T/T ∼ 10−5.

1.1 The Origin of the primordial Density fluctuations

The morphology of the Cosmic Web, as we know it today, represents the evolution of
the primordial density fluctuation observed in the CMB ( since fluctuations in density
are proportional to temperature fluctuations when referred to the epoch of z∼ 1100).
The origin of such fluctuations is not yet fully understood but it can be explained in the
framework of inflationary models. In general inflation is a time period in the evolution
of the universe, when a rapid expansion occurred ( an exponential expansion within a
time period measured in Planck time units). The Large-Scale Structure of the universe
today should correspond to microscopic scales during the inflation period. In these tiny
regions quantum zero point fluctuations occurred, which eventually generated the
observable universe (see [2]).

In an abstract way the origin of the fluctuations can be explained as follows: During
inflation, at each point in space the inflation field (inflaton) has a value. As inflation
proceeds, quantum fluctuations of the inflaton are dragged from microscopic to
macroscopic scales, during the exponential expansion of the universe. The result of this
process, is the generation of the observable fluctuations in the CMB.

1.2 Gravitational instability of Density fluctuations

As discussed above the anisotropy in the CMB suggests that the spatial density
fluctuations (inhomogeneities) must have had very small amplitudes at the epoch of
recombination. On the other hand, numerous observations show that the universe (in
the present epoch) in small-scales is highly inhomogeneous.
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Figure 2: ’The Hubble Deep Field’ image with the Wide Field camera 3 taken from the
Hubble Telescope

The above picture of the Hubble Telescope clearly shows these density inhomogeneities.
Obviously, during the evolution of the universe the latter became more and more
inhomogeneous. The density fluctuation field at a region of the universe (with r being
the comoving position of that region) in relation to the mean cosmic matter density at
time (t) is given by:

δ(r, t) =
ρ(r, t)− ρ̃(t)

ρ̃(t)
(1)

The dynamics of the expanding cosmos is controlled by the gravitational field of the
average matter density, while the density fluctuations can be considered to generate an
additional gravitational field. Considering a slightly overdense region of the universe ( in
a fixed time ), where ρ > ρ̃ and proportionally δ > 0, it is obvious that the gravitational
field produced by that region is stronger than the average gravitational field. Therefore
this region will expand slower than the average Hubble expansion and the difference in
the expanding pace will cause the density to decrease slower than the average density of
the universe. So, as time progresses the slightly overdense regions become ever more
overdense due to their self-gravity. The opposite situation occurs in the underdense
regions, where the density contrast decreases with time. Of course, since the minimum
value of the density is zero, the condition δ ≥ −1 holds for δ. This scenario is called
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gravitational instability and is considered to be the cause of the creation of the
Large-Scale Structure from the primordial density fluctuations. The galaxies and cluster
of galaxies represent the overdense regions of this scenario, while the underdense regions
correspond to the large, nearly empty, voids in the universe (see also [1],[3] and [4]).

1.3 Liner Perturbation Theory

The evolution of structure in the universe can be understood in the framework of the
above mechanism. A quantitatively description of this model requires some physical
approximations in order to be done. This description will be concentrated in
length-scales ,which are substantially smaller than the Hubble radius1 in order for the
Newtonian approximation to be valid (for fluctuations of length-scale L ∼ 2π/k & RH ,
Newtonian perturbation theory is not valid). For simplicity, it is assumed that the
universe consists of dust only, in order for the fluid approximation to be valid. The
equations in the comoving coordinates2 x (r = α(t) x) are given below:

The velocity field (v) can be written in the form:

v(r, t) =
α̇

α
r + u(x, t) (2)

where the first term represents the homogeneous Hubble expansion, whereas the last
term describes the deviations from the latter and for this reason in called ’peculiar’
velocity.

The perturbed continuity equation, which expresses that matter is conserved :

∂δ

∂t
+

1

α
∇ · [(1 + δ) u] = 0 (3)

with the gravitational potential Φ takes the following form:

Φ(r, t) =
2π

3
G ρ̃(t)|r|2 + φ(x, t) (4)

The relation between the density field and the gravitational potential φ is established
through the Poisson-Newton equation,

∇2φ(x, t) = 4πGα2(t)ρ̃(t) δ(x, t) =
3

2
H2

0 Ωm
δ(x, t)

α(t)
(5)

While the Euler equation is given below,

1Physical interactions can take place only on scales that are smaller than the Hubble radius RH
2Considering a homogeneous universe which is radially expanding, we choose a point at time t = t0

and introduce a coordinate system x with it’s origin located in the center of the sphere. Now a particle
inside the sphere with r(t0) = x will be located at some other time t at the position r(t), due to the
expansion of the sphere.
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∂u

∂t
+

u · ∇
α

u +
α̇

α
u = − 1

ρ̃α
∇P − 1

α
∇φ (6)

In the linear regime ( as long as the condition |δ| << 1 holds), with the approximation
that the universe contains only dust (thus P = 0), from the linearization of the above
equations results the differential equation for the evolution of the density contrast δ,
which allows the tracking of the growth of density perturbations, and takes the form:

∂2δ

∂t2
+

2α̇

α

∂δ

∂t
= 4πGρ̃ δ (7)

The solution to the above equation takes the following form,

δ(x, t) = D+(t)δ̃(x) +D−(t)δ̃(x) (8)

which indicates that the spatial shape of the density fluctuations is frozen in the
comoving coordinates, only their amplitude increases. The solution D−(t) decreases
with time and supposing that both functional dependences were present, at some early
time, the increasing solution will dominate at later times, thus the term D−(t) can be
neglected and consider only the growing solution.3

δ(x, t) = D+(t)δ̃(x) (9)

The linear growth factor of density perturbations can be computed,

D(α) =
5 Ωm,0H

2
0

2
H(α)

∫ α

0

dα′

α′2H3(α′)
(10)

However this approximation implies that the distribution of density fluctuations δ0(x)
today, would be homogeneous which is not valid. If the condition |δ| � 1 does not hold
the terms which were neglected in the linear approximation, must be included in the
analysis (see [1] and [3]).

The non-linear structures, observed today, can not be interpreted by the growth of
baryonic density fluctuations only. This contradiction can be resolved by taking dark
matter, which is the dominant component of matter, into account. Perturbations of
dark matter started in the Radiation Epoch (but mostly after equipartition) and by the
time baryonic matter decoupled from radiation (Recombination Epoch) , dark matter
had already formed potential wells in which baryonic matter ’fell’.

This observation is crucial to the understanding of the Large-Scale structure formation.
In the current accepted cosmological model, the ’Concordance’ or ΛCDM model,
ordinary matter accounts for only 4.5 percent of the total matter in the universe. Thus
the dynamics of the cosmic structure formation follows the dominant non-baryonic, cold
dark matter (CDM) component. The nature of the cold dark matter particle is yet

3the growth factor D(t) is usually normalized such as D(t0) = 1
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unknown, but there is a plethora of weakly-interacting massive particles candidates.
’Cold’ means that these particles have rather small thermal velocities, which allows the
formation of very small structures and is consistent with the hierarchy of structure
formation. The latter means that dark matter halos form hierarchically by the
aggregation, via gravitational interactions, of small collapsed structures that merge to
form larger one, eventually forming clusters of galaxies. The existence of dark matter
has been proven by many observational methods and it is also necessary in order to
form cosmic structures without violating the observed amplitude of the CMB
temperature fluctuations.
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2 The Two-Point correlation Function

2.1 General description of what the correlation function
represents

The previous sections develop the ideas of the transition from a homogeneous universe
to a universe which consist of large inhomogeneities. The current section examines the
question of how to describe an inhomogeneous universe quantitatively. Such a
description can only be statistical in nature, since the primordial density field was a
stochastic Gaussian random field (i.e it is impossible to predict that in a certain
distance from our galaxy, another elliptical galaxy would form, it the framework of a
cosmological model) That is why the analysis is focused on the statistical properties of
the universe, which can be computed for every cosmological model and derive a
conclusion about which model best describes the observed universe.

Such a statistical methodology for the study of the Large-scale distribution of objects in
the universe, is provided by the Two-point Correlation Function.

As mentioned, large redshift surveys have revealed a wealth of information regarding
the clustering of matter. The conclusions for studying these surveys suggest that
galaxies and cluster of galaxies are not randomly distributed in space, but rather they
are strongly correlated. This means that the possibility of finding a galaxy in the
vicinity of another is larger, than on average.

This phenomenon can be described as follows: Suppose that galaxies are distributed
uniformly through space and n̄ is the average number density of the galaxies, then the
probability of finding a galaxy in the volume element dV around a point x is,

δP1 = n̄ dV (11)

which is independent of x, with the assumption that the universe is statistically
homogeneous.

Now assuming that x and y are the coordinate terms of two volume elements dV1 and
dV2 respectively, then the possibility of finding a galaxy at the location x and at the
same time a galaxy exists in the location y can be expressed as the following:

δP2 = n̄2dV1dV2 [1 + ξg(x,y)] , (12)

with ξg(x,y) the two-point correlation function defined as the joint probability of
finding an object (e.g. a galaxy) in each of the two volume elements dV1 and dV2. The
correlation function can also be defined as the conditional probability of finding an
object in the volume element δV , considering than another object has been randomly
selected from the ensemble

δP = n̄ dV [1 + ξ(r)]
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If the distribution of objects is uncorrelated then the latter possibility would be
δP = n̄2 dV1dV2 = δP1 · δP2

Since the universe is considered to be statistically homogeneous then the functional form
of the correlation function ξg(x,y) can only depend on the modulus of the separation
r = |x− y| and not of the direction of r = x− y, because the universe is also isotropic.

The definition of the process of finding the correlation function, in which a discrete
ensemble of objects is assumed, is called a Point Process. It should be noted that if
ξ(r) > 0 the objects in the distribution are considered to be correlated, conversely if
ξ(r) < 0 then they are considered anticorrelatd.

In angular space (i.e. the projection of the distribution of galaxies in the unit sphere)
the clustering of objects is described by the so-called angular two-point correlation
function which is defined as the conditional propability:

δP = N [1 + w(θ)]dΩ (13)

, where N is the surface density and w(θ) the excess probability over random of finding
an object in a solid angle dΩ under the condition that an object already been selected.

Another way to define the two-point correlation function is by the use of a continuous
density field ρ(x), Poisson model. Defining the average density as ρ̃ = 〈ρ(x)〉 and the
density contrast δ(x) as,

δ(x) =
ρ(x)− ρ̃

ρ̃
(14)

Then the correlation function is defined as:

ξ(r) = 〈δ(x)δ(x + r)〉 =

〈(
ρ(x)− ρ̃

ρ̃

)
·
(
ρ(x + r)− ρ̃

ρ̃

)〉

=
〈ρ(x)ρ(x + r)〉 − ρ̃〈ρ(x)〉 − ρ̃〈ρ(x + r)〉+ ρ̃ 2

ρ̃ 2

=
〈ρ(x)ρ(x + r)〉 − ρ̃ 2

ρ̃ 2
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2.2 Method for calculating ξ(r) or w(θ)

Estimating the correlation function is not always an easy task, since several survey
boundary effects must be taken into account as well as other observable systematics,
which are introduced by the very nature of the redshift surveys and human biases.

• The most important feature of sky catalogues is that they do not cover the whole
region of the sky mainly due the limited capabilities of the research equipment or
due to galactic absorption at low latitudes (i.e. the huge amount of dust of the
galactic disk causes the absorption of the light originating from distant galaxies
along the line-of-sight of the disk). For this reason objects near the boundaries of
the surveys will not have the same number of neighbors at some angular or spatial
separations (i.e. since the region of any survey does not correspond usually to the
whole sky, the objects located near the survey boundaries all have less neighboring
objects than they would have in a whole sky survey) , which causes biases to the
average correlation function.

• Another feature which appears in three dimensional catalogues is the lack of
objects as we move to higher distances (redshifts), due to the limiting magnitude
of the survey.

One method of overcoming the boundary effects for a given separation is to use only a
portion of the data sets, which includes objects that have a distance from the boundaries
less than the specific separation. But, decreasing the amount of data used in the
analysis may lead to low significance results. However using an adequately constructed
random catalogue of points, based on Monte-Carlo simulations, one can overcome the
above mentioned problems while using all the available data. This works as follows:

If in a volume V, the total number of objects is N, then

N = n̄ · V

where n̄ in the average number of objects per unit volume while the expected number of
objects in the element volume dVi, when the distribution is clustered, is given by:

ni = n̄[1 + ξ(r)]dVi →

→ ξ(r) + 1 =
ni
n̄dVi

=
niV

NdVi

The calculation of ξ(r) for a particular separation r (i.e. r − δr/2 < |r| < r + δr/2) is
performed as follows,

ξ(r) + 1 =

V
N

N∑
i=1

ni

N∑
i=1

dVi
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and due to the fact that survey boundaries are complex, thus
∑
dV = N〈 dV 〉 the

above equation takes the following form,

ξ(r) + 1 =
2n0V

N2〈 dV 〉
(15)

In the latter equation n0 stands for the number of pairs for the particular separation
range. Supposing Nr points are randomly placed in the same sample volume V, then by
definition ξ(r) = 0 since the distribution of random points is uniform.

Taking into account these conditions , and supposing now that nr is the number of
random pairs for the same separation range ,the above equation is reduced to,

〈 dV 〉 =
2nrV

N2
r

and by substituting the latter into (12), we obtain:

ξ(r) + 1 =
n0

N2

N2
r

nr
(16)

The above formula can be used to derive the spatial correlation function from a data set
by computing the number of data and random pairs for a certain common range of
separations. N and Nr is the number of data and random points of the corresponding
samples, respectively4

It should be noted that this is the crudest estimation of the 2-point correlation function.
In the literature there are a variety of estimators such as (16) which give significantly
better results and will be examined later (see [8] and [9]).

4Choosing the number of data and random points to be equal the formula (16) takes the form,

ξ(r) + 1 =
n0
nr
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3 Evolution of Clustering

Extragalactic objects (i.e. galaxies and cluster of galaxies) trace the underlying dark
matter distribution in a way that is typically described with a multiplicative linear
factor known as the bias b(z). Such a biasing is considered to be statistical in nature,
with galaxies and clusters being identified as high peaks of an underlying, initially
Gaussian, random density field (see [12]). The linear and scale independent bias factor
is defined as the ratio of the mass-tracer fluctuations δh ( in this section dark matter
haloes are used as a tracer), to those of the underlying mass δm.

δh = b δm (17)

where the bias factor in considered to be a function of redshift b = b(z).

Since the two-point correlation function in a continuous density field is defined as,

ξh(r, z) = 〈δh(x, z) δh(x + r, z)〉 (18)

Then by inserting equation (17) into the latter,

ξh(r, z) = b2〈δm(x, z) δm(x + r, z)〉 (19)

As a result of the solution of the second-order differential equation for the density
contrast (8), the latter can be written as a proportionality of the growth factor with the
density perturbations.

δm(x, z) ∝ D(z)

δm(x, 0) ∝ D(0)

which results to the equation,

δm(x, z) =
D(z)

D(0)
δm(x, 0) (20)

From equation (17) the density contrast of the dark matter halos can be expressed in
terms of the bias factor and the density contrast of the mass,

δh(x, z) = b(z) δm(x, z)

δh(x, 0) = b(0) δm(x, 0)

So,
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δh(x, z) = b(z) δm(x, z)

=
D(z)

D(0)
b(z) δm(x, 0)

=
D(z)

D(0)

b(z)

b(0)
δh(x, 0)

Then from equation (19) the redshift evolution of the correlation function with respect
to the correlation function at the present time, is presented by the formula below .

ξh(r, z) =

(
D(z)

D(0)

)2 (
b(z)

b(0)

)2

ξh(r, 0) (21)

Substituting the functional form of the correlation function ξ(r, z) = rγ0 (z) r−γ(z) , in
the above equation:

r0(z) =

[(
D(z)

D(0)

)2 (
b(z)

b(0)

)2
]1/γ

r0(0) (22)

The growth factor of density perturbations D(z) in the above equation has been
computed in the linear regime, however the scales involved in the estimation of the
two-point correlation function are at least in the mildly non-linear regime and thus we
expect a modification of the above formula (see Peackock book).

The modification of the formula, in order to be valid in the mildly non-linear regime of
the evolution of the growth factor, is the following,

r0(z) =

[(
D(z)

D(0)

)2+n (
b(z)

b(0)

)2
]1/γ

r0(0) (23)

In the above formula the growth factor of the density perturbations with respect to the
redshift has the form,

D(z) =
5

2
Ωm E(z)

∞∫
z

1 + z′

E3(z′)
dz′ (24)

The function E(z) depends on the Hubble constant in the present epoch H0, as well as
on the Hubble function H(z) (see [11]) and for a flar cosmology Ωk = 0 it takes the form:

E(z) =
[
Ωm,0(1 + z)3 + ΩΛ

]1/2
(25)
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where Ωi = ρi/ρc are the parameterized ’fluid’ densities with respect to the total density
of the universe (Ωm for the total matter and ΩΛ for the Cosmological constant).

For the evolution of the bias factor, the formula used is (see [9] for more information):

b(z) = 1 +
b0 + 1

D(z)
+ C2

J(z)

D(z)
(26)

where,

J(z) =

z∫
0

1 + z′

E(z′)dz′
(27)

and with the constants being functions of the halo mass (see [10])

b0(Mh) = Cb

[
1 +

(
Mh

1 + 1014h−1M�

)B]
, Cb = 0, 857± 0.021, B = 0.55± 0.06

and ,

C2(Mh) = Cµ

[
Mh

1014h−1M�

]µ
Cµ = 1.105± 0.018, µ = 0, 255± 0.005
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4 A brief review of the Cosmological simulations

4.1 An introduction to N-body simulations

Observations reveal that the present universe is populated by large structures such as
galaxies and clusters of galaxies. The current picture of structure formation suggests
that these non-linear structures are formed from small fluctuations in the density field,
via gravitational instability (i.e. gravitational amplification of the small perturbations,
which existed in the early universe). In the non-linear regime the lack of analytic
methods for tracking down the growth of fluctuations, has led to the development of
N-body simulations which study the clustering of matter and the formation of galaxies.

Our understanding of the universe has substantially increased over the past years with
the use of Cosmological N-body simulations, which model the growth of structure in the
universe deeply within the non-linear regime of growth interactions. These cosmological
simulations are an essential tool to study the gravitational instability in the expanding
background as well as the formation of large-scale structures we observe today. A
characteristic feature of such simulations, is driven from the fact that the universe is
very large and can not be incorporated as a whole in the simulation. That is the reason
why large chunks of it are simulated using the appropriate periodic boundary conditions
to model the universe.

Since dark matter is dominant in terms of abundance over the baryonic matter, the
dynamics of the universe is governed by it . It is known that fluctuations on small scales
in the collisionless dark matter component grows via gravitational instability from the
Radiation epoch, unlike fluctuations in the baryonic component, which start to grow
only after the decoupling of radiation and baryonic matter (i.e. Recombination Epoch).
The baryonic matter after the recombination Epoch “falls” in the potential wells of
dark matter, which will govern in the evolution of fluctuations. This is the reason why
dark matter particles are used in almost all cosmological simulations, which model the
formation of the Large-Scale structure.

Another feature suggested by observations is that the universe is not dominated by
relativistic matter. This property can allow the fluid approximation of the dark matter
particles to take place in the simulation and therefore the motion of the dark matter
particles can be described by the Newtonian equations. These equations can be written,
for scales that are smaller than the Hubble radius (� dh = c/H0) and are valid for
non-relativistic matter (u� c):

δ(r, t) =
ρ(r, t)− ρ̃(t)

ρ̃(t)

∇2φ = 4πGρ̃(t)α2(t)δDM =
3

2
H2

0 Ω0
δ

α

ẍ + 2
α̈

α
ẋ = − 1

α2
∇φ
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The N-body codes consist of two basic modules: one part computes the force field for a
given configuration of particles and the other one moves the particles according to this
force field. These two are called in each step of the simulation in order to ensure that
the force field and the particle trajectories evolve in a self consistent manner. The other
basic feature of every simulation is the set of initial conditions.

Figure 3 : Zooming into the Dark Energy Universe Simulation (DEUS consortium) of the
ΛCDM model simulation with 10243 particles and 162h−1Mpc cubic length (at z=0)

In every N-body simulation the particles populate a specific region of volume (V ) and
assuming that Np particles are being used for the description of the density field then
the following statements are the physical requirements that must be taken into account
in the development of any N-body code (see [13],[14],[15],[16]):

• Any simulation cube of volume (V ) is just a portion of the whole universe and
cannot be treated as an isolated region. Hypothetically the space outside the
simulation cube represents the rest of the universe (which is true of course), so the
influence exerted in the cube must be incorporated in the simulation. The only
viable solution are the periodic boundary condition (i.e. the walls of the periodic
cub satisfy the boundary conditions of the simulation).2

• Another requirement is that the average density of the cube must be equal to the
average density of the universe (i.e. averaged over the length of the cube the
density must equal the average density of the universe). Regardless of the

2The periodicity of the boundary condition implies that the universe is homogeneous if averaged over
large scales, so the gravitational force from all directions is the same. Without the boundary conditions
the particles would collapse in the center of the cube, in that case the simulation studies a different
procedure (thus i can not be considered as a Cosmological Simulation)
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cosmological model, this requirement ensures that perturbations averaged over the
boxlength will be negligible.

• The mass of each particle of the simulation depends on the mass of the structure
of interest and must be significantly less than the mass of the latter. It results that
the minimum number of particles, required for the study of a specific structure is:

N &
Mstructure

Mparticle

• For every cosmological simulation, each N-body particle represents a collection of
a very large number of particles in the real universe as we would like to simulate
the evolution of structures at scales that cosmology is interested. Therefore an
essential property of the N-body particles is that the interaction between them is
collisioless.

4.1.1 Particle-Mesh Method (PM)

In the analysis that will follow (in section 5.) the halo catalogues are from the DEUS
light-cone simulation. In these simulations the evolution of the dark matter particles is
computed using a Particle-Mesh (PM) code with an Adaptive Mesh Refinement
(AMR) grid.

The basic concept of this method is to convert the system of particles into a grid of
density values and then solve the potential for this density grid and apply forces to each
dark matter particle based on which cell it is in and where this cell lies on the grid.
Since the Poisson equation is a simple algebraic equation in Fourier space
Φ̂ = −4π Gρ̂/k2 ,where ~k is the comoving wavenumber and the hats denote Fourier
transform, the solution of this equation is trivial with the Fast Fourier Transform (FFT)
method. This method is faster than computing all the forces extracted to each particle
from the others in the simulating cube, basically because the grid cells are less than the
number of particles and also the transformation to a Fourier space (in which the
number of operations required for computing the Fourier transform scales with NlogN)
is so fast that makes the computation of the forces in the Fourier space more efficient.

The advantages of this method are:

• It is the fastest compared to any other method used in cosmological simulations,
but at the expense of small-scale accuracy.

• It allows the use of very large numbers of particles, which is essential in simulation
like these.

The use of the (PM) method has the disadvantage of providing low resolution results.
However, the addition of an Adaptive Mesh Refinement (AMR) grid mostly overcomes
the limits in resolution inherent to the (PM) methods
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4.2 Light-cone Cosmological Simulations

As it has already been mentioned above, modern galaxy redshift surveys (e.g. Sloan
Digital Sky Survey, 2-degree Field Galaxy Redshift Survey, Two Micron All-sky Survey)
have contributed vastly in the development of modern cosmology, by providing details
of the LLS and constraining the cosmological model. To this end it was instrumental
the construction of ’mock’ galaxy catalogues, which also mimic the selection effects in
real galaxy surveys. Mock catalogues can be obtained also from light-cone simulations,
which are constructed during the run of N-body simulations.

Figure 4: Light-cone in 2D plus a
time dimension

A light-cone is the path that a light ray, (produced
during a single event and then traveled in all
directions) will follow in spacetime (it is also called
the region of causal connection, as it describes all
the possible locations light can ever reach from a
single source, due to the constant value of the light
speed). Events occur4ing outside the light-cone
of an observer can not influence him because
they do not have sufficient time to reach him.

Lightcone halo mock catalogues are constructed
based on the above assumption, by using dark
matter particles in a cubic N-body simulation.
For an observer fixed in a position, a dark matter
halo is placed in the lightcone to the epoch at
which it first crossed the observer’s past light cone.
Because only then ( supposing the halo emits
light ) the light emitted from it’s location has just
enough time to reach the observer and thus incorporate the evolution of structure with
the cosmic time.

The ever growing volume size of galaxy surveys, have created a demand for simulations
with boxes of sufficient size to match the volumes of these surveys. On the other hand,
the lack of computing power means that a compromise must be made between the size
of the simulating cube and the resolution at which the simulation is carried out. Then,
in order to generate sufficient cosmological volumes the latter usually consists of
replicants of the original simulating cube. The number of replicants per axis (nrep), that
need to be stacked in order to produce a large cosmological volume is,

nrep =

[
rmax
Lbox

]
+ 1

where rmax is the maximum comoving radial distance that the final mock catalogue
should have. The Cartesian coordinate system, (X̂, Ŷ , Ẑ), of the combination of
replicats is translated so that the observer is located at the origin.
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Figure 5: Haloes whose position vectors r =
r(X̂, Ŷ , Ẑ) is offset from the Ẑ′ axis by an angle
θ′ > θr are excluded from the lightcone

The disadvantage of this method of
producing a sufficient large cosmological
cube, is that structures may appear
repeatedly in the final volume. This
method may cause contamination of the
generated mock catalogues, which is then
translated into falsely clustering statistics.
Therefore this method of producing
lightcone catalogues is not recommended.

The orientation of the observer is such,
as to be looking down the Ẑ′ axis. This
axis defines the central axis of the conical
volume of the lightcone and points to the
center of the field of the lightcone. The
angle θ′r represents the angular extend
of the field-of-view of the lightcone.
Therefore the orientation of the observer is translated into the dependence of the Ẑ′

axis from the Cartesian coordinates Ẑ′ = Ẑ′(X̂, Ŷ , Ẑ)( for more information about
lightcones see [17] and for the evolution of dark matter haloes [19],[20])

4.2.1 Friends-of-Friends (FoF) method for halo identification

Dark matter halos have been identified from the particles in the light-cone using the
Friends-of-Friends (FoF) method, which is the simplest method to identify clusters
of objects in simulations.

Figure 6: Two particles are considered to be
friends if the distance between them is less than
ε. In the figure A is friend with B but it is not
friend with D. But since A can reach D through
intermediate steps of the friend procedure then
A and D are considered to be friend-of-friend

The FoF algorithm is based on the
notion of the ’friend’, which means that
two particles are friends if they are within
a distance ε of each other. Moreover
two particles are friend-of-friend if they
are either direct friends or they can be
reached through a series of intermediate
friend relations. Imagining that
each particle is surrounded by a sphere
of radius ε = bd/2, where d represents
the mean distance between particles
and b is a linking parameter ( which
has the value b=0.2 in the current DEUS
simulation), then the algorithm computes
the distances and all particles and those
connected by a friend-of-friend relation
belong to the same halo (or cluster, depending on the simulation).
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5 Simulation Halo Data Analysis

5.1 Introduction

The halo data are of three different DEUS light-cone cosmological simulations. The
three comologies are a standard ΛCDM model calibrated to WMAP-5, a Ratra-Peebles
quintessence model and SUGRA model both calibrated to WMAP-5 as well. The exact
model parameter values (for a flat universe, ΩΛ = 1− Ωm) are represented in the
following table:

Table 1: Some of the cosmological parameters for the three cosmological models: ΛCDM, RPCDM and
SUCDM

Parameters ΛCDM RPCDM SUCDM
Ωm 0.26 0.23 0.25

Ωbh
2 0.02273 0.02273 0.2273

α 0 0.5 1
λ(eV ) 2.4 · 10−3 4.9 2.1 · 103

w0 -1 -0.87 -0.94

These are narrow light-cones covering an area of ∼ 160deg2 and a maximum redshift
zmax = 2.3, which have been constructed during the run of N-body simulations with
boxlength of 2592 Mpc/h and 10243 particles corresponding to a mass resolution of
1012 M�. From the particles in the light-cones, halos have been identified with at least
100 particles (which means that the minimum halo mass is ∼ 1014M�) using
FoF(b = 0.2) (see [23]) for the parameters of the models presented in Table 1).

The halo catalogue files consist of:

• Halo-ID

• Halo-Mass [M�/h]

• Halo’s observed Redshift (which includes the peculiar velocity of the halo)

• Azimuthal-angle [degrees]

• Polar-angle [degrees]

• Peculiar velocity (along the line-of-sight) [km/s]

• Cosmic Distance [Mpc/h]

5.1.1 Presenting the cosmological models

The data-sets I used in the following analysis are generated with the Dark Energy
Universe Simulation Series (DEUSS), the largest dark energy simulation conducted so
far in terms of spatial dynamics. As mentioned above these sets correspond to three
different realistic dark energy cosmological models, which hopefully probe the formation
of the cosmic structure.
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Figure 7 : The figure illustrates the projected density maps from the DEUSS simulation for
the three cosmologies: ΛCDM (red), Sugra (green) and RPCDM (blue). The differences
between the models are not clear on large scales but when zooming onto a halo ( non-linear
scales) the discrepancies between the models start to appear

Namely these cosmologies are the standard ΛCDM , the quintessence models of Ratra-Peebles
(RPCDM) and Sugra (SUCDM) potentials, all calibrated on the latest SNIa and CMB (from
WMAP-5) data. Quintessence is a hypothetical form of dark energy, introduced to describe
the late acceleration of the universe. It is described by a slowly evolving, inhomogeneous and
canonical scalar field φ, which can explain the acceleration of the universe by rolling down the
potential V (φ), similar to the idea of inflation theory. Equation of state parameter, in the
context of quintessence is given by,

w0 =
Pφ
ρφ

=
φ̇2/2− V (φ)

φ̇2/2 + V (φ)

where Pφ and ρφ are the pressure and energy density of the quintessence, respectively (more
information for quintessence models can be found [22] and for the SUGRA and Ratra-Peebles
models in [23])

The quintessence field is assumed to be a neutral scalar field φ(η), where η is the conformal
time, with a self-interaction potential V (φ) which couples to ordinary matter only through its
gravitational influence. The evolution of the system is completely determined by specifying
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the form of the quintessence potential, which are the RP inverse power law and the SUGRA
model which is also an inverse power-law potential with supergravity corrections included:

VRP (φ) =
λ4+α

mα
Plφ

α

VSU (φ) =
λ4+α

mα
Plφ

α
e4πφ2

where α,λ are free parameters characterizing the slope and amplitude of the scalar
self-interaction, respectively and mPl is the Planck mass. (These derived parameters are
presented in Table 1).

5.1.2 Comparing the model redshift distributions

Here we make the first comparison of the different models. We investigate whether the halo
redshift distribution, are distinct. The figure below represents the three different redshift
distribution, which corresponds to each cosmology.
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Figure 8: The graph shows the redshift frequency distributions for the ΛCDM-model (green),
the RPCDM- model (blue) and the SUCDM-model (red) in the redshift interval
z = (0.024, 2.311)

After deriving the redshift frequency distributions for the halo data for all the three
cosmologies, the Kolmogorov-Smirnov (K-S) two-sample test is applied to them in order to
compare them. This comparison aims to probe whether the N(z) can be considered as being
drawn from different parent distribution.

The K-S two-sampe test can be applied to unbinned distributions that are functions of a
single independent variable (i.e. redshift ). In this case the data points can be converted to an
unbiased estimator SN (x) of the cumulative distribution function of the probability
distribution from which is was drawn. All cumulative distribution functions have a same
property i.e. the smallest value that they can take is zero while the largest is one. The
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difference between cumulative distribution functions, is the statistic used. These differences
can be measured by the maximum value of the absolute difference between two cumulative
distributions D, which is defined as:

D = max
−∞<x<∞

|SN1(x)− SN2(x)|

The K-S statistic enables the calculation of its distribution in the case of the null hypothesis
(i.e. data sets are drawn from the same distribution).Then the significance level of the value D
(i.e. the disproof that the distributions are the same) can be evaluated and is denoted as Pprob
(see [21]).

Applying the K-S two sample test on the above redshift distributions,

Table 2: The maximum value of the absolute difference between two cumulative distributions D and the
significance level of it.

Parameters ΛCDM-RPCDM RPCDM-SUCDM SUCDM-ΛCDM
D 0.12400889 0.08986493 0.0417648554
Pprob 7.78404424·10−11 2.99471285·10−5 2.81944238·10−2

From the resulting values of the K-S test statistics it is rigorously implied that there is a huge
difference between the redshift distributions of the different dark energy models. We find that
this difference is smaller when comparing the ΛCDM with the SUCDM model with respect
to the other model pairs, but still not significant enough (of the order of ∼ 0.03%).

5.2 Computing the angular Two-point Correlation function

As a first test of the clustering we measure the two-point correlation function in angular
space, which is derived from the halo catalogues using three different estimators. The choice of
the estimators in based on the published papper (see [6]), in which the Landy & Szalay and
Hamilton Estimators yield almost identical results and both of them significantly outperforms
the rest of the estimators. For comparison the Natural Estimator is also included in the
following procedure. The correlation functions in two-dimensions based on the three different
estimators are given below for the Natural, Hamilton and Landy & Szalay respectively:

1 + w(θ) =
DD(θ)

RR(θ)
(28)

1 + w(θ) =
DD(θ) ·RR(θ)

DR2(θ)
(29)

1 + w(θ) =
DD(θ)− 2DR(θ) +RR(θ)

RR(θ)
(30)

The meaning of the symbols DD(θ),RR(θ) and DR(θ) will be further explained below.

In order to compute the correlation function, a random distribution of points must be
generated. The random distribution must have the same spatial boundary conditions as the
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real point distribution. Since the angular coordinates are between 5o <Azimuthianl-angle< 29o

and −75o <Polar-angle< −55o, the region that they cover is far from the equator , therfore is
not a perfect square. This property can be visualized throught the following figure:

Figure 9: The graph shows the distribution of points in the Right-ascension Declination
space for the three cosmologies (red-ΛCDM, blue-RPCDM and green-SUCDM).

The same property must be satisfied by the random point distribution, so during the selection
of the random point, the curvature of the unit sphere must be taken into account. To encode
this property a random distribution of points is generated in the Cartesian space {x,y,z} and
the value of each coordinate ranges in the interval [-1,1]. To derive the angular coordinates, a
transformation to spherical coordinates is applied.
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φ = tan−1
(y
x

)
θ = sin−1

(z
r

)
and the points, which satisfies the conditions 5o < φ < 25o, −75o < θ < −55o and
r =

√
(x2 + y2 + z2) ≤ 1 constitute the random distribution.

The next step is to count the data pairs within a certain range of separations as long as the
random and the data-random pairs are within the same range. The mathematical
interpretation of this process is being explained below.

Consider x and y as points in the angular space.

PDR(θ) =
∑
x∈D

∑
y∈R

Φθ(x,y) (31)

Here the summation runs over the angular coordinates of points in the data set D and points
in the set R of randomly distributed points, respectively. The definition for Φ is that
Φθ(x,y) = [θ ≤ d(x,y) ≤ θ + ∆θ], where d(x,y) is the angular separation of two points of the
respective set

d(x,y) = arccos [sin(θ1) sin(θ2) + cos(θ1) cos(θ2) cos(φ1 − φ2)] (32)

and the condition in the brackets equals 1 when the condition holds and 0 otherwise.
Analogously, if both x and y are from the data set or the randomly distributed points (under
the restriction that x 6= y) then PDD and PRR are defined, respectively. This method can be
visualized as creating a histogram of angular separations (where the maximum and minimum
value of the angular separation may vary), with a binewidth of ∆θ and the value of w(θ)
corresponding to the center of each bin. The value of ∆θ depends on the number of θ-bins ( N
) and the maximum and minimum value of the angular seperation:

∆θ =
Θmax −Θmin

N

For computing the two-point correlation function the normalized counts are being used, which
are presented below:

DD(θ) =
PDD(θ)

N(N − 1)

RR(θ) =
PRR(θ)

NR(NR − 1)

DR(θ) =
PDR(θ)

NRN
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with N and NR being the total number of data and random points in the survey volume,
respectively.

The w(θ) uncertainty in each θ-bin is given by (see [26]):

σw =
1 + w(θ)√
DD(θ)

After deriving the points of the two-point correlation function (in two-dimensions) w(θ),we
apply the χ2-minimization method in order to fit the functional form of the correlation
function in the data points. The functional form of the angular correlation function is (Peebles
1980):

w(θ) = A θ1−γ (33)

Therefore the χ2 Minimization method (see [21]):

χ2 =
∑
N

(w(θ)− wd(θ))2

σ2
w

(34)

where the wd(θ) are the data points of the measured correlation function and w(θ) is the
two-parameter power law function, which is fitted to the data points. The summation runs
over the number of bins N or a portion of them (in this case the fitting is done for points with
θ ≤ 1o) and in the range where a rough power-law is observed (usually we exclude the first few
bins) and computes the χ2. The values of A and γ corresponding to the minimum value of χ2,
gives the best fit functional form of the angular two-point correlation function.

The following figures shows the 2-D Angular correlation functions generated with the use of
three Estimators in the different Cosmological models. The contour plots present the 1,2 and
3σ range in the fitted (A, γ) parameter space:
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Figure 10: The graph shows the angular two-point correlation function for three different
Estimators in the ΛCDM-cosmology (red-Natural, blue-Hamilton and green-L&Szalay).
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Table 3: The parameters of the correlation function for each Estimator in ΛCDM-Cosmology

Parameters Natural Estimator Hamilton Estimator Landy & Szalay Estimator
A 0.078+0.003

−0.003 0.039+0.002
−0.002 0.040+0.002

−0.002

γ 1.4+0.08
−0.05 2.0+0.07

−0.06 2.0+0.07
−0.08
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Figure 11: The graph shows the angular two-point correlation function for three different
Estimators in the RPCDM-cosmology (red-Natural, blue-Hamilton and green-L&Szalay).

Table 4: The parameters of the correlation function for each Estimator in RPCDM-Cosmology

Parameters Natural Estimator Hamilton Estimator Landy & Szalay Estimator
A 0.088+0.010

−0.009 0.055+0.007
−0.007 0.056+0.007

−0.008

γ 1.6+0.16
−0.15 2.0+0.14

−0.14 2.0+0.12
−0.16
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Figure 12: The graph shows the angular two-point correlation function for three different
Estimators in the SUCDM-cosmology (red-Natural, blue-Hamilton and green-L&Szalay).
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Table 5: The parameters of the correlation function for each Estimator in SUCDM-Cosmology

Parameters Natural Estimator Hamilton Estimator Landy & Szalay Estimator
A 0.098+0.006

−0.006 0.048+0.004
−0.004 0.053+0.004

−0.005

γ 1.3+0.08
−0.12 1.8+0.08

−0.13 1.7+0.11
−0.10

We see that in all three models the Natural Estimator produce significantly different results
with respect to the more robust Hamilton and Landy & Szalay estimators. Furthermore we
see that in the ΛCDM and SUCDM models the w(θ)′s are consistent to each other both in
amplitude and slope. The RPCDM ’s w(θ) however has a significant difference from both the
other two models.

5.3 Computing the spatial Two-point Correlation function

After generating the 2-D Angular two-point correlation function, a similar procedure is
followed to derive the correlation function, now in Three Dimensions. The point process,
described by the formula (4), is the same except that x and y are points in the 3-Dimensional
Cartesian space. The distance between two points in the 3-D cartesian space in given by:

d(x,y) =
√

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2 (35)

Another important feature must be taken into account, before computing the 3-D correlation
function. When generating the random distribution in 2-D, the random points ought to have
the same angular survey boundaries. In addition, the randomly distributed points in three
dimensions, besides keeping the same angular survey boundaries, there should also have the
same redshift distribution (or similarly the same Cosmic distance distribution in z-space).
This is achieved by assigning randomly a halo distance to each random pointn in such a way
so that no halo distance is selected more than once. In this way, both the data and random
points have the same redshift distribution.

Furthermore, in the case of the 3-D correlation function, its functional form is:

ξ(r) =
(r0

r

)γ
(36)

which has to be incorporated in the formula (7), and apply the χ2-minimization method to
derive the parameters r0 and γ of the correlation function in three dimensions.

Analogously the ξ(r) uncertainty in each r-bin is given by (Peebles 1980):

σξ =
1 + ξ(r)√
DD(r)

and the χ2 correspondence method has the form:

χ2 =
∑
N

(ξ(r)− ξd(r))2

σ2
ξ

(37)
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Again in this case the fitting for the functional form of the correlation function ξ(r) is done for
points with r ≤ 90(Mpc/h), because for r > 90Mpc h−1 a small peak is observed which
corresponds to the baryonic acoustic oscillation (BAO) scale, which breaks the power-law
nature of ξ(r).

The following figures shows the 3-D correlation functions generated with the use of three
Estimators for all three Cosmological models. The contour plots present the 1,2 and 3σ range
in the fitted (r0, γ) parameter space:
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Figure 13: The graph shows the 3-D two-point correlation function for three different
Estimators in the ΛCDM-cosmology (red-Natural, blue-Hamilton and green-L&Szalay). The

BAO signal is evident at r ∼ 120h−1Mpc

Table 6: The parameters of the correlation function for each Estimator in ΛCDM-Cosmology

Parameters Natural Estimator Hamilton Estimator Landy & Szalay Estimator

r0 17.1+0.33
−0.32 16.5+0.33

−0.38 17.7+0.38
−0.31

γ 1.31+0.022
−0.021 2.03+0.059

−0.050 2.05+0.049
−0.055
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Figure 14: The graph shows the 3-D two-point correlation function for three different
Estimators in the RPCDM-cosmology (red-Natural, blue-Hamilton and green-L&Szalay). The

ξ(r) is quite noisy and the BAO signal is not that clear

Table 7: The parameters of the correlation function for each Estimator in RPCDM-Cosmology

Parameters Natural Estimator Hamilton Estimator Landy & Szalay Estimator
r0 20.9+0.78

−0.79 18.9+0.74
−0.78 20.6+0.77

−0.72

γ 1.50+0.067
−0.064 2.39+0.1903

−0.1653 2.47+0.1943
−0.1649
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Figure 15: The graph shows the 3-D two-point correlation function for three different
Estimators in the SUCDM-cosmology (red-Natural, blue-Hamilton and green-L&Szalay).

32



Table 8: The parameters of the correlation function for each Estimator in SUCDM-Cosmology

Parameters Natural Estimator Hamilton Estimator Landy & Szalay Estimator
r0 16.4+0.48

−0.47 15.9+0.50
−0.55 17.0+0.51

−0.51

γ 1.35+0.034
−0.033 2.05+0.092

−0.075 2.07+0.083
−0.077

The summarization of the Estimators for ΛCDM,RPCDM and SUCDM cosmologies
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Figure 16: The graph shows the 3-D two-point correlation function for three different
Estimators in the SUCDM-cosmology (red-Natural, blue-Hamilton and green-L&Szalay).

As general result we see that the ΛCDM , SUCDM models provide very similar ξ(r), while
the RPCDM significantly differ in the angular and spatial correlation function.

5.4 Evaluating the index of the growth factor (n+ 2)

In the introductory chapters the growth factor of density perturbations was computed in the
linear regime. Later on, with the use of the growth factor and the evolution of bias with
redshift, the formula for the dependence of the correlation length with the redshift was
introduced. Since this formula is only valid in the linear phases of structure formation, a
modification of the formula for the correlation length was introduced, based on the
expectation of the quasilinear regime of the growth factor (A. Peacock 2002).

The procedure, in order to evaluate the correlation length r0 for different redshifts, is the
following: The initial data set of the dark matter halos is separated into three new sets of data
according to their redshift values as follows:

• N1 = 1023, Data points in the redshift interval z ∈ [0.024, 0.548]

• N2 = 1023, Data points in the redshift interval z ∈ [0.548, 0.845]

• N3 = 1025, Data points in the redshift interval z ∈ [0.845, 2.310]
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The limits of the redshifts are chosen by requiring that in each redshift bin to have the same
number of haloes, in order to have similar uncertainties.

Now for each of these sets of data, the corresponding correlation function ξ(r) = (r0/r)
γ is

evaluated ( using only the Landy & Szalay Estimator, in order to compute the correlation
length in each of the three redshift intervals.)
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Figure 17: The graph shows the spatial correlation function computed in the three different
redshift intervals using only the Landy & Szalay Estimator. The blue line corresponds to a

fixed value for the index γ = 1.8, while in the green line the γ parameter was left free.

Table 9: The parameters of the correlation function’s r0,γ for each redshift, as well as the correlation
length r0 for γ = 1.8

Parameters z1 = 0.286 z2 = 0.696 z3 = 1.578
r0(Mpc/h) 11.69 19.39 22.0

γ 1.57 1.84 2.619
r0(Mpc/h)[γ = 1.8] 13.05 19.22 18.75

However in the previous analysis we have at each different redshift a different fraction of the
halo masses and therefore a mixing of the resulting correlation function’s ( which as it has
already been discussed, depends on the mass of the halo). So the resulting correlation length
can not be used for the evaluation of the slope of the growing mode of perturbations (n
index), because there is a strong dependence in the halo masses of the resulting ξ(r). In the
last redshift interval the simulated universe has almost half of it’s current age. Some of the
halos are not yet viriallized and the corresponding halo masses are smaller compared to the
halo masses of the first redshift interval, where they had sufficient time to virialize.

This property can be visualized in the next figure, where the corresponding mass histograms
reveals that in lower redshifts there is a smaller abundance in low halo masses compared to
higher redshift where low halo masses dominate the histogram.
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Halo Mass Distribution
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Figure 18: The distributions of the halo mass in each redshift interval

To eliminate the dependence on the variations of the halo masses in the different redshift
intervals, we have chosen to reproduce the same mix of halo masses in each redshift bin. This
is performed by the following routine:

• As the first step the, the number of halos in each M-bin and in every redshift interval is
computed and the value which corresponds to the minimum number of halos in each
M-bin for the three redshift intervals is determined

• The same number of halos (i.e. corresponding to the minimum value that the same
M-bin will have in every redshift interval) is collected from every M-bin, in a random
way, so that the resulting histograms from this process will be identical. The resulting
halo data sets are independent of the halo mass

• This process is repeated five times and for every realization the spatial correlation
function is generated.

• The value of the correlation function in every seperation-bin is the average value of the
five realization, which is then used to derive the corresponding correlation length for
every redshift interval (which is independent of the mass distribution the halo masses)

This process can be visualized in the following figure, where the different colours denote the
five different realizations of the random process.
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Figure 19: Black points denote the average correlation function 〈ξ(r)〉, while the other colous
the different realizations of the random process
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The table below summarizes the computed parameters for the average correlation function as
well as the average correlation length and slope of the five realization of the random process.

Table 10: The values of the Parameters

Parameters z1 = 0.286 z2 = 0.696 z3 = 1.578

〈r0〉(Mpc/h) 9.88± 0.93 18.54± 1.078 20.86± 1.256

〈r0〉(Mpc/h)[γ = 1.8] 11.64± 0.708 18.79± 0.992 17.86± 1.098

〈γ〉 1.52±0.113 1.75± 0.089 2.59± 0.256

For the mean value of 〈ξ(r)〉

r0(Mpc/h) 10.0 18.7 21.4

〈r0〉(Mpc/h)[γ = 1.8] 11.71 18.88 18.3
γ 1.52 1.76 2.61

〈Mh〉[10−14M� h] 1.2579302 1.2271066 1.2154511

The dependance of the correlation length r0 and index γ with redshift
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Figure 20: The orange points represents the original values of the correlation length r0 and
index γ in which the dependence on the different halo mass mix is still present. The green
points are the mean values of the above parameters derived from the five realizations
discussed in the text. Finally the blue points are the parameter values of the 〈ξ(r)〉.

As it has already been mentioned the evolution of the correlation length can not be
interpreted by eq. (20), since the evolution of the density perturbation (22) is not valid in the
mildly non-linear regime. That is why a modification of the above formula, by introducing a
new index n, was necessary (A. Peacock 2002).

Since the value of the correlation length is not known in the present time r0(0), eq. (20) is
normalized with respect to the value of the correlation length of redshift z1. This can be done
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by dividing the value of the correlation length of z2 with the value of it redshift z1. Using eq.
(22) we can divide the value of r0 at some redshift zi, with respect to it’s value at a redshift z1.

r0(zi) =

[(
D(zi)

D(z1)

)2+n ( b(zi)
b(z1)

)2
]1/γ

r0(z1) (38)

It should be noted that the index γ must be the same in all redshifts in order to use the
simplified formula (38), thus the values of correlation lengths which are going to be used are
the ones corresponding to a fixed slope γ = 1.8.

The last step of the process, for computing the index (n), is to apply the χ2-minimization
method as follows:

χ2 =

3∑
i=1

(r0,i − r0(zi))
2

σ2
r0,i

The resulting value of n, which corresponds to the minimum of χ2, is n = 0.9 and it’s
corresponding evolution can be seen in the figure below as the red curve.

The whole process, that have been followed in this section, can be visualized in the next figure:

The dependance of the correlation length r0 with redshift
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Figure 9: (The first figure is the same as in the previous and has been added for surveillant
reasons. The second figure shows the dependence of the correlation length having the value of
γ index fixed (γ=1.8). The black points corresponds the mean correlation legth computed
from the five realization while the grey points are computed for the mean 〈ξ(r)〉. Finally in
the last figure the green and black points are the mean values of the correlation length having
the value of the γ index not-fixed and fixed respectively. The red line is the one which arise
from equation (36) after substituting the value n = 0.9 in the modified index.)
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As we see the red line in the previous figure, which represents the theoritical evolution of the
correlation length with redshift, is an increasing function. However the evolution of the
estimated halo correlation length does not satisfy well the theoritical relation. This maybe
attributed to an inadequacy of the functional form of the bias factor, b(z), to trace the large
redshifts or to the large redshift range covered by the last bin ( implying an artificial mixing of
different evolutionary phases in the development of the haloes ). We plan to investigate this
issue by taking smaller redshift intervals at lower redshift and repeating the process.

6 Conclusions

Several conclusions have been derived during the procedure of the analysis.

1) We have a clear difference between the correlation function estimated using the Landy
& Szalay and or Hamilton (which exhibit almost identical results) and the natural
Estimators. Previous research has shown that the first two estimators outperform the
rest of the existing estimators (see [6]), among which is also the natural estimator. This
result has also been confirmed in our analysis.

2) We find a relative good agreement between the halo redshift distribution, as well as the
correlation length among the ΛCDM and SUCDM models. On the other hand, the
RPCDM model have very different results from the other two models regarding the halo
redshift distribution and the correlation length and slope (e.g computed using the
Landy & Szalay estimator), which are clearly visible as follows: r0 = (17.7, 20.6, 17.0)
and γ = (2.05, 2.47, 2.07) for the ΛCDM , RPCDM and SUCDM , respectively.

3) From the analysis of the evolution of the correlation function for the ΛCDM model in
the different redshift intervals we find that indeed the correlation length increases with
increasing redshift. This analysis has taken into account the different halo mass
distributions that arise in every different redshift interval.

4) The investigation of the correlation length with redshift, in the framework of ΛCDM
cosmology, has yield for the mildly non-linear regime the value of n = 0.9 for the
modified slope of the growth of density perturbations. As seen from (A. Peacock 2002)
the value of this index should be around n ∼ 1.3. This difference can be attributed to
the lack of sufficient redshift intervals to trace down the evolution of the correlation
length in our analysis. We plan to investigate the issue further in the future.
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