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Introduction

One of the most radical predictions of General Relativity is the existence of black
holes. Black holes have been studied extensively, especially since the 1960’s. A
great deal has been learnt during the last decades, from the stability of black
holes to black-hole thermodynamics and linear perturbation theory. Recently
the study of the latter has excited great interest because it seems to reveal
certain quantum properties of the black hole.

A perturbation of a black hole can be either electromagnetic or gravita-
tional (or scalar in general). For example the field that accompanies a particle
of a certain mass falling along a geodesic of the Schwarzschild geometry, pro-
duced by the black hole, can be considered as a perturbation on the background
Schwarzschild geometry.

The mathematical treatment of the black hole perturbation theory was first
originated by Regge and Wheeler and later was continued by Zerilli. In a first
order of approximation, these perturbations are analyzed into normal modes of
harmonic oscillations. It is surprising the fact that these oscillations are not
carried only by the horizon of the black hole, but also by the spacetime outside
the horizon. This is something to be expected: the horizon is just a noetic
structure, black holes are actually intriguing shapes of spacetime.

The frequencies of those oscillations are called quasinormal, instead of nor-
mal, since they are complex numbers. The real part of such a mode represents
the frequency of the oscillation, while the imaginary part represents the damp-
ing. They are of great importance because they are associated directly with
specific properties of the black hole, such as the mass. That is, a black hole can
oscillate at frequencies that are characteristic for the black hole itself.

A remarkable property of those modes, for the case of the Schwarzschild
black hole, is that in the large damping limit (large n) the real part of their
frequencies ωR becomes a non-zero constant, with value that approximately
equals the following quantity

TH ln 3.

Here TH = 1/8πM is the Hawking temperature of the black hole. This conjec-
ture was made by Hod and proved analytically by Motl. Hod’s conjecture was
the reason for a new approach for calculating by Dreyer the Barbero-Immirzi
parameter γ that appears as a proportionality constant in the black hole entropy
calculations in the contexts of Loop Quantum Gravity.



Loop Quantum Gravity is an attempt to quantize the gravitational field
itself starting from the classical field equations and in the past years it has
become a strong candidate for a non-perturbative quantum theory of gravity.
The Barbero-Immirzi parameter is an unknown constant and it parameterizes
an ambiguity in the choice of canonically conjugate variables that are to be
quantized. One way to fix this parameter is to use the result from the LQG for
the black hole entropy and adjust it to the Bekenstein-Hawking result

S = A/4

where S is the entropy and A the area of the horizon.
The new approach, however, seems to be very attractive since it uses very

little information about LQG. Hod considered a black hole as a quantum system
and based on the limiting behavior of the quasinormal frequencies he assumed
that the quantum of energy that a black hole can emit or absorb is ∆M = ~ωasy.
Using Bekenstein-Hawking formula for the entropy he found an equally spaced
black hole area spectrum. This pioneer conjecture was later also used by Dreyer
to fix the Barbero-Immirzi parameter.

In my thesis I present a qualitative and quantitative analysis of all the above
stated topics. The analysis is presented as follows: The first chapter is devoted
to the perturbations of the Schwarzschild black hole. There are two ways of
approach to the study of these perturbations. One can study, directly, the
perturbations in the metric coefficients via the Einstein equations linearized
about the unperturbed space-time; or, one can study the perturbations in the
Weyl scalars via the equations of the Newman-Penrose formalism. Although
the latter way appears more suitable to the study of perturbations of the space-
time around Schwarzschild black holes, in my thesis I follow the first avenue,
since I find it easier to understand. The second chapter is dedicated in the
determination of the quasinormal mode frequencies I present various techniques
from the bibliography for calculating numerically the frequencies of these modes.
For two of those techniques the determination of the quasinormal frequencies
reduces to a simple eigenvalue problem with certain boundary conditions, such
as in the case of the WKB semianalytic method or in the evaluation of a continue
fraction such as in the case of Nollert’s analytical approach. The asymptotic
spectrum is also presented both for the large-n limit and for the large-l limit.

In the third, and last, chapter I present the application of quasinormal modes
in quantum gravity. Before any reference to that topic, I find plausible to outline
the basic concepts of modern black hole thermodynamics. Black hole thermody-
namics constitutes a first substantial step to quantum gravity, by emerging the
purely quantum properties of black holes. Notions from black hole thermody-
namics, Loop Gravity attempts to assimilate and incorporate in its mathemati-
cal and physical formulation through Hod’s conjecture and Dreyer’s method for
calculating the Barbero-Immirzi parameter. This is the last part of the analysis.
Finally, I complete with some general remarks and conclusion, regarding the role
of the asymptotic spectrum of other solutions for static spacetimes (Reissner-
Nordstöm and Kerr black holes) in Hod’s conjecture and the significance of the
whole endeavor in the foundations of the final theory for quantum gravity.
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Chapter 1

Perturbation theory of
Schwarzschild Black Holes

1.1 Linear perturbations of Schwarzschild space-
time

The starting point of our analysis of black hole perturbations will be the unper-
turbed Schwarzschild line element

ds2 =
◦
g µνdxµdxν = −

(
1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2dΩ2 (1.1)

where the
◦
gdenotes the unperturbed metric, dΩ = dθ2+sin2 θdφ2, r is the radius

and θ, φ are the colatitude and azimuthal angle.This line element describes the
spacetime outside a static and spherical symmetric black hole. We now introduce
small perturbations hµν and the new perturbed metric will be regarded as a sum
of the unperturbed background metric1

◦
g µν and the perturbation hµν , which is

called the metric perturbation,

g̃µν =
◦
gµν +hµν , |hµν | << 1 (1.2)

1The background metric can be any solution of the field equations; it does not have to be
the Minkowski metric.
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The linearized Einstein equations are obtained by inserting (1.2) into the
field equations is vacuum, δRµν = 0 and expanding it to first order terms in
hµν . In our analysis for the Schwarzschild solution we consider the case where
the black hole is subjected to a small initial perturbation, e.g. a test particle
thrown towards the black hole, which is investigated up to terms of the first
order in the departure from sphericity. In order to do this we calculate first the
perturbed Cristoffel symbols Γ̃κ

µν . We use the background metric to rise and
lower indices, i.e.,

hµν =
◦
g µα

◦
g κνhακ (1.3)

The perturbation of
◦
g µν with rased indices is written as follows:

g̃µν =
◦
g µν − hµν + O(h2). (1.4)

The perturbed Cristoffel symbols are given by

Γ̃κ
µν =

1
2
g̃κα(g̃αν,µ + g̃αµ,ν − g̃νµ,α)

=
1
2
(
◦
g κα − hκα)(g̃αν,µ + g̃αµ,ν − g̃νµ,α)

=
1
2

◦
g κα(g̃αν,µ + g̃αµ,ν − g̃νµ,α)− 1

2
hκα(g̃αν,µ + g̃αµ,ν − g̃νµ,α) (1.5)

By replacing the expressions for the first-order derivatives of gµν and keeping
terms linear in h, we find

Γ̃κ
µν =

1
2

◦
g κα(

◦
g αν,µ+

◦
g αµ,ν−

◦
g νµ,α) +

1
2

◦
g κα(hαν,µ + hαµ,ν − hνµ,α)

− 1
2
hκα(

◦
g αν,µ+

◦
g αµ,ν−

◦
g νµ,α)− 1

2
hκα(hαν,µ + hαµ,ν − hνµ,α) (1.6)

The last term of (1.6) is consisted of second order terms of h, so we can omit
it. We also observe that the term hκα can be rewritten as hκα =

◦
g αβ

◦
g κλhβλ.

That is,

1
2

◦
g αβ ◦

g κλhβλ(
◦
g αν,µ+

◦
g αµ,ν−

◦
g νµ,α) =

◦
g κλhβλ

◦
Γβ

µν =
◦
g καhβα

◦
Γβ

µν

We finally obtain the following compact form of the perturbed Cristoffel sym-
bols,

Γ̃κ
µν =

◦
Γκ

µν + δΓκ
µν (1.7)

where the term δΓκ
µν = 1

2

◦
g κα(hαν,µ + hαµ,ν − hνµ,α)− ◦

g καhβα

◦
Γ β

µν represents
the variation of the Cristoffel symbols. It can be shown that the variation of
the Christoffel symbols equals with the following quantity

δΓκ
µν =

1
2

◦
g κα(hαν;µ + hαµ;ν − hνµ;α) (1.8)

which forms a tensor, although the unperturbed Christoffel symbols do not.
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It is not difficult now to derive the expression for the Ricci tensor that
corresponds to the perturbed metric

◦
g µν + hµν . By simply substituting (1.7)

into the definition of Rµν , we get

R̃µν = Γ̃α
µν,α − Γ̃α

µα,ν + Γ̃α
βαΓ̃β

µν − Γ̃α
βν Γ̃β

µα

=
◦
Γα

µν,α−
◦
Γα

µα,ν+
◦
Γα

βα

◦
Γβ

µν−
◦
Γα

βν

◦
Γβ

µα + δΓα
µα,ν − δΓα

µν,α + δΓβ
µα

◦
Γα

νβ

+
◦
Γβ

µαδΓα
νβ − δΓβ

µν

◦
Γα

αβ−
◦
Γβ

µνδΓα
αβ

=
◦
Γα

µν,α−
◦
Γα

µα,ν+
◦
Γα

βα

◦
Γβ

µν−
◦
Γα

βν

◦
Γβ

µα + δΓα
µα;ν − δΓα

µν;α ⇒
R̃µν =

◦
Rµν +δRµν . (1.9)

where δRµν = δΓα
µα;ν−δΓα

µν;α. Regard now our background to be the simply
vacuum, and the equations (1.9) take the form

δRµν = 0, (1.10)

or as a function of the covariant derivatives of the Christoffel symbols

δΓα
µα;ν − δΓα

µν;α = 0. (1.11)

The physical meaning of the equations δRµν = 0 is that the perturbed
space is also empty of matter or energy. Indeed these equations form a system
of ten uncoupled differential equations linear in the perturbation h. As we
shall see later this system can be decoupled into a system of equations that
describe separately the dependence on the angular coordinates θ and φ and the
dependence on the radial coordinate r and the time t, a mathematical treatment
that is usual in systems with spherical symmetry. The system of equations must
decouple in the sense that they can be considered independently of each other.
We shall find that this is indeed the case.

1.2 Analysis into spherical harmonics

An important constraint is possed by Birkoff’s theorem: Let the geometry of
a given region of spacetime be spherically symmetric, and be a solution to the
Einstein field equations in vacuum. Then that geometry is necessarily a piece
of the Schwarzschild geometry. The external field of any electrically neutral,
spherical star satisfies the conditions of Birkhoff’s theorem, whether the star is
static, oscillating, or collapsing. We consider an equilibrium configuration that
is unstable under gravitation collapse, such as a collapsing star, and has the
Schwarzschild geometry as its external gravitational field. We perturb this con-
figuration in a spherical symmetric way, so that it begins to collapse radially.
The perturbation and subsequent collapse cannot effect the external gravita-
tional field so long as spherical symmetry is maintained. There is no possible
way for any gravitational influence of the radial collapse to propagate outward.
Thus, spherically symmetric black holes can only be perturbed by nonradial
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perturbations and this forces us to study separately the angular part of the
perturbation equations after decoupling them into a product of four separate
parts each being a function of one coordinate (t, r, θ and φ) only. This approach
is very helpful since it simplifies also the mathematical treatment a lot.

The best way to achieve this decomposition is to expand the angular part
of the perturbing tensor hµν(t, r, θ, φ) into tensor spherical harmonics, having
always in mind that the problem is unchanged under rotations around the origin.
The functions describing the radial dependence will, of course, be unaffected by
this decomposition in the same way that the radial wavefunction of an electron
in a central field is independent of the quantum number m and orbital angular
momentum l. The general expression that corresponds to the expansion of a
second rank symmetric tensor hµν is the following

hµν(t, r, θ, φ) =
∞∑

l=0

l∑

m=−l

10∑
n=1

cn(t, r)(Y n
lm)µν(θ, φ)

In our case the ten independent components of hµν do not transform all in the

Nonradial oscillations

The simplest oscillation a star can undergo is a radial one. In that case,
the star expands and contracts radially and spherically symmetry is preserved
during the oscillation cycle. From a mathematical point of view,the differential
equation describing the radial displacement is of the Sturm-Liouville type and
thus allows eigensolutions that correspont to an infinitely countable amount of
eigenfrequencies. The smallest frequency corresponds to the fundamental radial
radial oscillation mode. The period of this mode is inversely proportional to the
square root of the mean density of the star. Radial oscillations are characterized
by the radial wavenumber n: the number of nodes of the eigenfunctions between
the center and the surface of the star. Well known radial oscillators are the
Cepheids, RR Lyrae stars and Red Giants.

If transverse motions occur in addition to radial motions, one uses the term

non-radial oscillation. The oscillation modes are then not only characterized

by a radial wavenumber n, but also by non-radial wavenumbers l and m. The

latter numbers correspond to the degree and the azimuthal number of the

spherical harmonic Ylm(θ, φ) that represents the dependance of the modes

on the angular variables θ and φ for a star with a spherically symmetric

equilibrium configuration. The degree l represents the number of surface nodal

lines, while the azimuthal number m denotes the number of such lines that pass

through the rotation axis of the star. The surface pattern of some nonradial

oscillations is graphically depicted in Figure (1.1).
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Figure 1.1: Different examples of non-radial oscillations. The velocity field of
a non-radial oscillator is represented by a spherical harmonic Ylm. The mean-
ing of the spherical wavenumbers (l,m) is visualized. The z axis indicates the
symmetry axis of the oscillation, which corresponds to the rotation axis of the
star. The coloring denotes the Doppler shift in an observed spectrum due to the
oscillation, i.e., at this particular instance, the red parts are moving towards the
stellar center (thus away from the observer) and therefore shift the spectrum to
longer wavelengths (redshift) while the blue parts are moving outwards (towards
the observer) and result in a shift to shorter wavelengths (blueshift).

same way, when we study rotations on the 2-sphere2. That is, the components
h00, h01, h11 transform like scalars, the components h02, h03, h12, h13 transform
like 2 vectors and finally the components h33, h34, h44 like the components of a
2×2 tensor,

hµν =




S S V

S S V

V V T




Since not all the components of hµν transform like scalars, we need to introduce
the generalized spherical harmonics for scalars, vectors and tensors (see Figure
1.1 and 1.2 for a schematic representation of the scalar and vector harmonics).
The tensorial nature of the spherical harmonics refers to the unit 2-sphere. The
analysis procedure is well treated in [1] and we shall follow from now own the
same path.

2The angular momentum that is defined here by the index l is investigated by studying
rotations on a 2-dimensional manifold (t = constant, r = constant).
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The procedure of constructing vectors and tensors from scalar quantities is
trivial. According to the expansion theorem any scalar function of t, r, θ and φ
may be expanded in the form

S(t, r, θ, φ) =
∞∑

l

l∑

m=−l

alm(t, r)Y m
l (θ, φ) (1.12)

The spherical harmonics are defined as

Ylm(θ, φ) =

√
(2l + 1)

4π

(l −m)!
(l + m)!

(−1)meimφPlm(cosθ)

where Plm(cos θ) are the associated Legendre functions of degree l and order m.
Based on that form we can construct the two types of vector components of hµν

as follows:

(V 1
lm)µ = (Slm);µ = const.

∂

∂xµ
Ylm (1.13)

(V 2
lm)µ = εν

µ(Sm
l );µ = const.γναεµα

∂

∂xν
Ylm (1.14)

while the three types of tensor are the following:

(T 1
lm)µν = const.Y m

l ;µν (1.15)

(T 2
lm)µν = const.γµνYlm (1.16)

(T 3
lm)µν = const.

1
2
[ελ

µ(T 1
lm)λν + ελ

ν (T 1
lm)λµ] (1.17)

where the indices α, µ and ν run from 2 to 3. We use the metric tensor on the
unit 2-sphere

γµν =
(

1 0
0 sin2θ

)

and the totally antisymmetric tensor ε

εµν

(
0 −sinθ

sinθ 0

)

to raise and lower indices. All tensorial operations (including covariant differen-
tiation) are referred to this metric. Furthermore all the above quantities carry
an angular momentum l with a projection on the z axis equal to m. However,
they are not characterized by the same parity. When we study inversion in
space, in order to formalize a mathematical description of them, we introduce
the parity operator P whose rule of operator is to reflect x → −x. Thus, for a
function ψ(x), the action of that operator gives

Pψ(x) = ψ(−x)
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The effect of that operation depends on the type of the function. For an even
function we have

Pψ(x) = ψ(x)

and for an odd function

Pψ(x) = −ψ(x)

An attempt to generalize the act of the parity operator in relativistic pertur-
bation theory leads to the conclusion that vector and tensor spherical harmonics
are classified into two different types as well. For example, in the case of a 2×2
tensor spherical harmonic we can consider an operator that produces the fol-
lowing parity transformation

P [Ylm(θ, φ)]µν → [Ỹlm(π − θ, π + φ)]µν

Under this action, i.e., inversion on a 2-sphere, the behavior of a tensor spher-
ical harmonic comes in two distinct types: the even parity harmonic for which
Ỹµν = (−1)lYµν and the odd parity harmonic for which Ỹµν = (−1)l+1Yµν

3. The
classification is exactly the same for the vector harmonics and it is reflected also
on the metric perturbations (even and odd parity perturbations).

In practice, from the group of ten independent harmonics Sm
l , (Vm

l )1, (Tm
l )1,

and (Tm
l )2 are multiplied by the factor (−1)l under parity transformations,

while (Vm
l )2 and (Tm

l )3 are multiplied by the factor (−1)l+1. This result is
based on the fact that the gradient of a scalar preserves parity, while the mul-
tiplication with the totally antisymmetric tensor ε inverts it. Thus, we have
finally the following set of scalar, vector and tensor spherical harmonics:

• Scalars

S1,2,3
lm = Ylm, parity (−1)l (1.18)

• Vectors

V 1
lm = [∂θYlm, ∂φYlm] , parity (−1)l (1.19)

V 2
lm =

[
1

sin θ
∂θYlm, sin θ∂φYlm

]
, parity (−1)l+1 (1.20)

3According to the quantum mechanical formalism, the spherical harmonics are normalized
eigenfunctions of angular momentum. Since angular momentum commutes with parity, the
spherical harmonics are eigenfunctions of parity as well. Furthermore, evenness and odd-
ness are properties that are time independent, which means that they can be considered as
constants of the motion.
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Terminology First three Last seven
Parity (−1)l+1 (−1)l

Number of such
tensorial harmonics 3 7
Regge and Wheeler [1] Odd parity Even parity
Thorne and Campolattaro Odd or Magnetic Even or Electric
Zerilli [2] Electric Magnetic
Chandrasekhar [3] Axial Polar

Table 1.1: Correlation between the terminology used in various papers (borrowed
from Zerilli, [2]).

• Tensors

T 1
lm =

[
∂2

θθ
1
2Xm

l

∗ (∂2
φφ − cos θ sin θ∂θ)

]
Ylm, parity (−1)l (1.21)

T 2
lm =

[
1 0
0 sin2 θ

]
Ylm, parity (−1)l (1.22)

T 3
lm =

[
− 1

2
1

sin θ Xlm
1
2 sin θWlm

∗ (sin θ∂2
φφ − cos θ)

]
Ylm, parity (−1)l+1(1.23)

where Wlm = (∂2
θθ − cot θ∂θ − 1/ sin2 θ∂2

φφ) = [l(l + 1) + 2∂2
θθ] and Xlm =

2(∂2
θφ − cot θ∂φ).
The set of ten spherical harmonics that we have defined so far are not nor-

malized; the normalization is not necessary since the constants in equations
(1.12)-(1.17) disappear during the mathematical analysis. However, we list the
complete set of normalized tensor spherical harmonics in Appendix A. Finally, it
is worth mentioning the terminology that is used to describe these two families
of harmonics (see Table 1.1). Zerilli [2] uses the notation electric and magnetic
perturbations type, while Chandrasekhar [3] uses the terms axial and polar.
Chandrasekhar’s terminology is justified by the fact that the former induce a
dragging of the inertial frame and induce a rotation to the black hole while
the latter impart no such rotation. In this essay, from now own we shall use
Chandrasekhar’s terminology to describe the metric perturbations.

So far we have constructed the generalized form of spherical harmonics for
scalars, vectors and 2×2 tensors and studied the behavior of those under parity
transformation, namely the division into axial and polar harmonics. This divi-
sion into two subsets is, as we earlier mentioned, reflected also on the metric
perturbations. Due to the spherical symmetry of the background the equations
for polar and axial perturbations are totally decoupled from each other. Hence,
the metric perturbation can be thereby written as follows

hµν = haxial
µν + hpolar

µν
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Figure 1.2: The Vector Spherical Harmonics are angular vectors with Real and
Imaginary part. Here we can see a schematic representation for the l = 2,
m = 2 vectorial harmonic field.

We now list below separately the straightforward expressions for the com-
ponents of those parts analytically (in each case summation over l and m is
implied):

• Axial perturbations

haxial
µν : htt = htr = hrr = 0 (1.24)

htθ = −h0a(t, r)
1

sin θ
∂φYlm (1.25)

htφ = h0a(t, r) sin θ∂θYlm (1.26)

hrθ = −h1a(t, r)
1

sin θ
∂φYlm (1.27)

hrφ = h1a(t, r)(sin θ∂θYlm (1.28)

hθθ = h2a(t, r)
1

sin θ
(∂2

φθ −
cos θ

sin2θ
∂φ)Ylm (1.29)

hθφ =
1
2
h2a(t, r)

1
sin θ

(∂2
φφ + cos θ∂θ − sin θ∂2

θθ)Ylm (1.30)

hθθ = −h2a(t, r)(∂2
θφ − cos θ∂φ)Ylm (1.31)
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where the missing components are fixed by the symmetry hµν = hνµ, i.e.,

htθ = hθt, hθr = hrθ, htφ = hφt, hφr = hrφ, hφθ = hθφ

• Polar perturbations:

hpolar
µν : htt =

(
1− 2M

r

)
H0(t, r)Ylm (1.32)

htr = H1(t, r)Ylm (1.33)

htθ = hθt = h0p(t, r)∂θYlm (1.34)

htφ = h0p(t, r)∂φYlm (1.35)

hrt = H1(t, r)Ylm (1.36)

hrr =
(

1− 2M

r

)−1

H2(t, r)Ylm (1.37)

hrθ = hθr = h1p(t, r)∂θYlm (1.38)

hrφ = h1p(t, r)∂φYlm (1.39)

hθθ = r2[K(t, r) + G(t, r)∂2
θθ]Ylm (1.40)

hθφ = hφθ = r2G(t, r)(∂2
θφ − tan θ∂φ)Ylm (1.41)

hφφ = r2[K(t, r) sin2 θ + G(t, r)(∂2
φφ + sin θ cos θ∂θ)]Ylm(1.42)

The unknown coefficient functions h0a, h1a, h2a, H0, H1, H2, h0p, h1p, G and
K that we have introduced in the above listed components are not independent
between each other and are different for different values of l and m (we have
omitted the indices l and m). Some of them we shall have the freedom to annul
after the choice of a suitable gauge transformation, something that it will help
us to simplify the rather lengthy expressions of the components.

1.3 Proper gauge transformation

In the preceding sections no restrictions were made concerning the choice of
coordinate frame. The choice of coordinates in our mathematical analysis and
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interpretation of physical phenomena is arbitrary. Every choice is equivalent
to any other choice (provided the mapping is one-to-one and differentiable),
since complete invariance is ensured. By careful choice of coordinates the so-
lutions of the perturbation equations are simplified sufficiently. The ten equa-
tions δRµν = 0 cannot determine hµν uniquely because their values could be
changed by changing the coordinate system, without changing the geometry. In
(1.2) we assumed a coordinate system in which the metric takes the form of
Schwarzschild spacetime (or any solution of the field equations) and hµν is an
unknown perturbation of it. However, that assumption does not uniquely fix
the coordinates.

Let us consider an infinitesimal coordinate transformation of the form:

x′α = xα − ξα(x)

where the displacements ξα transform like a vector, whose components are func-
tions of position. We have demanded ξα to be infinitesimal, meaning that
ξα ¿ xα (or if we operate with a gradient, |ξα

;β | ¿ 1). Such a transformation,
as we will thereupon see, preserves the form of (1.2) but change the functional
form of the hµν .

In the new coordinate system we shall have

g̃′µν(x′) =
∂xκ

∂x′µ
∂xλ

∂x′ν
g̃κλ(x− ξ(x)) (1.43)

According to the transformation that we introduced and considering the fact
that ξα ¿ xα, we take for the partial derivative,

∂xα

∂x′β
=

∂x′α

∂x′β
− ∂ξβ

∂x′β
= δα

β −
∂ξα

∂x′β
' δα

β −
∂ξα

∂xβ
(1.44)

By substituting the form of the partial derivative in (1.43) we take

g̃′µν =
(

δκ
µ −

∂ξκ

∂xµ

)(
δλ
ν −

∂ξλ

∂xν

)
g̃κλ(x− ξ(x))

=
(

δκ
µδλ

ν − δκ
µ

∂ξλ

∂xν
− δλ

ν

∂ξκ

∂xµ
+

∂ξκ

∂xµ

∂ξλ

∂xν

)(
g̃(x)κλ − ξα ∂g̃κλ

∂xα
+ . . .

)

︸ ︷︷ ︸
taylor expansion

= δκ
µδλ

ν g̃κλ − δκ
µg̃κλ

∂ξλ

∂xν
− δλ

ν g̃κλ
∂ξκ

∂xµ
− δκ

µδλ
ν ξα ∂g̃κλ

∂xα
+ O(|ξ|2)

' g̃µν − g̃µλ
∂ξλ

∂xν︸ ︷︷ ︸
λ→κ

−g̃κν
∂ξκ

∂xµ
− ξα ∂g̃µν

∂xα︸ ︷︷ ︸
α→κ

=
◦
gµν +hµν − g̃µκ

∂ξκ

∂xν
− g̃κν

∂ξκ

∂xµ
− ξκ ∂g̃µν

∂xκ

=
◦
gµν +hµν − ∂

∂xν
(g̃µκξκ) + ξκ ∂g̃µκ

∂xν
− ∂

∂xµ
(g̃κνξκ) + ξκ ∂g̃κν

∂xµ
− ξκ ∂g̃µν

∂xκ
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Linearized Perturbation theory Electromagnetism

Basic potentials Linearized metric perturbation Vector and scalar potentials
hµν(x) Φ(t, x),A(t, x)

Field quantities Linearized Ricci tensor Electric and Magnetic fields
δRµν E(t, x),B(t, x)

Gauge
transformation hµν → hµν − ξµ;ν − ξν;µ A → A +∇Λ

Φ → Φ− ∂tΛ
Examples of
gauge condition h2(t, r) = 0 ∇ ·A + ∂tΦ = 0

Table 1.2: Gauge transformations in Linearized Perturbation theory of Schwarzschild
black holes and the theory of Electromagnetism

=
◦
gµν +hµν − ∂

∂xν
(g̃µκξκ)− ∂

∂xµ
(g̃κνξκ) + ξκ

(
∂g̃µκ

∂xν
+

∂g̃κν

∂xµ
− ∂g̃µν

∂xκ

)
(1.45)

Now the last term of the last equation reminds readily the definition of the
Cristoffel symbols, while the gradient of g̃µνξµ, keeping first orders in ξ, simply
gives

◦
gµν ξµ. Thus, we have

g̃′µν =
◦
gµν +hµν − ∂

∂xν
(
◦
gµκ ξκ)− ∂

∂xµ
(
◦
gκν ξκ) + 2ξκΓκµν

=
◦
gµν +hµν − ∂ξµ

∂xν
− ∂ξν

∂xµ
+ 2ξκ ◦

gκα Γα
µν

=
◦
gµν +hµν − ∂ξµ

∂xν
− ∂ξν

∂xµ
+ 2ξαΓα

µν (1.46)

from which we obtain the simple form

g̃′µν =
◦
gµν +hµν + ξµ;ν + ξν;µ =

◦
gµν +h′µν (1.47)

meaning that the metric of the form (1.2) transforms into a metric of the same
form but with a perturbation that has to be defined again as,

hnew
µν → hold

µν + ξµ;ν + ξν;µ (1.48)

which is called gauge field. If all |ξα
,β | are small then the new defined hµν is small

as well, that is, we remain in an acceptable coordinate system. The above coor-
dinate transformation is called gauge transformation and the vector ξα, gauge
vector and it is strong related to the gauge transformations in Electromagnetism.

The freedom of choosing coordinates in our equations means that we can
choose arbitrarily that vector ξα, that simplifies our equations the most. How-
ever, we have to be careful since the gauge transformation must respect the
decomposition of the perturbation tensor into tensor spherical harmonics, as
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well as the dissociation into axial and polar perturbations. This requirement
imposes directly a first constraint concerning the form of ξα: it’s components
have to be functions of vector spherical harmonics of the same l and m as the
part of the perturbation hµν that we concern and it has to be different for axial
and polar perturbations. We will define separately those vectors during our
analysis.

1.4 Exploring the Axial Perturbations

In the case of the axial perturbations we use the following gauge vector:

ξµ = [0, 0, Λ(t, r)
1

sin θ
∂φYlm, Λ(t, r) sin θ∂θYlm] (1.49)

where we have introduced an arbitrary function Λ(t, r) that will allow us later
to annul the radial factor h2(t, r). This gauge vector, as we will directly see,
simplifies substantially the form of the perturbation tensor hµν .

As we saw earlier the perturbation tensor in the gauge that we used is written
as

hnew
µν = hold

µν + ξµ;ν + ξν;µ

Its components can be explicitly derived; by simply substituting the co-
variant derivatives4 of quantity ξ in the above formula we obtain the following
expressions for the components of the axial perturbation hnew

µν :

hnew
tt = hnew

tr = hnew
rr = 0 (1.50)

hnew
rθ = [h1 + r2∂rΛ(t, r)]

1
sin θ

∂φYlm (1.51)

hnew
rφ = [h1 + r2 sin2 θ∂rΛ(t, r)] sin θ∂θYlm (1.52)

hnew
θθ =

[
−h2 + 2r2 1

sin2 θ
Λ(t, r)

]
1

sin θ
∂2

θφYlm +
[
h2

cot θ

sin2 θ
− 2r2Λ(t, r) cot θ

]
×

× 1
sin θ

∂φYlm (1.53)

hnew
θφ = −1

2
[
h2 + 2r2Λ(r, t) sin2 θ

]
sin θ∂2

θθYlm +
1
2

[
h2 − 2r2Λ(r, t)

]
∂2

φφYlm +

+
1
2
[h2 cot θ∂θ − 2r2Λ(r, t) sin2 θ cos θ∂φ]Ylm (1.54)

hnew
θt = −[h0Ylm + r2∂tΛ(t, r)]

1
sin θ

∂φYlm (1.55)

hnew
φφ = −

[
1
2
h2 − 2r2 sin2 θΛ(t, r)

]
sin θ∂2

θφYlm +
[
1
2
h2 − 2r2Λ(t, r)

]
×

× cot θ sin θ∂φYlm (1.56)
hnew

φt = [h0 + r2 sin2 θ∂tΛ(t, r)] sin θ∂θYlm (1.57)
4In order to calculate the covariant derivatives of ξ we use the unperturbed Christoffel

symbols, as they have been defined in (1.7).
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which they have, according to equations (1.24)-(1.31), the correct general form
of an axial perturbation.

We will now proceed to the simplification of the components of hµν by using
the freedom to choose a proper gauge. We introduce the Regge-Wheeler gauge
which was first introduced by Regge and Wheeler [1] in the context of a stability
analysis of the Schwarzschild black hole. The Regge-Wheeler gauge is complete
in the sense that it does not allow for additional gauge transformations. Fur-
thermore, in this gauge all the highest derivatives in the angles (θ, φ) have been
eliminated. We achieve this by setting the function Λ(t, r) as

Λ(t, r) = −1
2
h2(t, r)

In this gauge we have the freedom to annul the coefficient h2(t, r) and conse-
quently all the contributions of the highest derivatives in the angles (θ, φ). In
this gauge the axial metric perturbation takes the simplified form

hµν =




0 0 −h0
1

sin θ ∂φ h0 sin θ∂θ

∗ 0 −h1
1

sin θ ∂φ h1 sin θ∂θ

∗ ∗ 0 0
∗ ∗ ∗ 0


Ylm (1.58)

Since we have simplified the form of our perturbation significantly, we can now
substitute the expression (1.83) into the variation of the Einstein field equations

δRµν = δΓα
µα;ν − δΓα

µν;α = 0 (1.59)

The expressions for the equations δRµν = 0 although rather lengthy, are
listed below:

δRtt = δRtr = δRrr = 0

δRrθ =
1

2r3 sin θ(1− cos2 θ)(1− 2M/r)
×

× [−h1r∂
3
φφφYlm − 2h1r∂φYlm + 2h1r cos2 θ∂φYlm + 2h1M∂3

φφφYlm

− h1r∂
3
φθθYlm + h1r cos2 θ∂3

φθθYlm + 2r2∂th0∂φYlm − 2r2 cos2 θ∂th0∂φYlm

− r3∂2
trh0∂φYlm − r3 cos2 θ∂2

trh0∂φYlm + r3∂2
tth1∂φYlm − r3 cos2 θ∂2

tth1∂φYlm

+ 4h1M∂φYlm − 4h1M cos2 θ∂φYlm − h1r cos θ sin θ∂2
φθYlm

+ 2h1M cos θ sin θ∂2
φθYlm + 2h1M∂2

θθYlm − 2h1∂
2
θθYlm] (1.60)
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δRrφ =
1

2r3(1− cos2 θ)(1− 2M/r)
×

× [h1 sin θr∂θYlm − 2h1 sin θr cos2 θ∂θYlm

− 2h1M sin θ∂θYlm + 4h1M sin θ cos2 θ∂θYlm + h1 sin θr∂3
φφθYlm

+ h1 sin θr∂3
θθθYlm − h1 sin θr cos2 θ∂3

θθθYlm − 2h1r cos θ∂2
φφYlm

− 2r2 sin θ∂th0∂θYlm + 2r2 cos2 θ sin θ∂th0∂θYlm + r3 sin θ∂θYlm∂2
rth0

− r3 cos2 θ sin θ∂θYlm∂2
trh0 − r3 sin θ∂2

tth1∂θYlm + r3 cos2 θ sin θ∂2
tth1∂θYlm

+ h1r cos θ∂2
θθYlm − h1r cos3 θ∂2

θθYlm − 2h1M cos θ∂2
θθYlm

+ 2h1M cos3 θ∂2
θθYlm − 2h1M sin θ∂3

θθθYlm

+ 4h1M cos θ∂2
φφYlm] (1.61)

δRθθ = − 1
2r3(1− cos2 θ)(1− 2M/r)

×

× [(−2h1Mr + 4h1M
2 − ∂rh1r

3 + 4r3M∂rh1 − 4rM2∂rh1 + r3∂th0)
× (sin θ∂2

φθYlm − cos θ∂φYlm)] (1.62)

δRθφ =
1

2r3 sin θ(1− 2M/r)
×

× [(−2h1rM + 4h1M
2 − r3∂rh1 + 4r2M∂rh1 − 4rM2∂rh1 + r3∂th0)

× (−∂2
θθYlm + cos2 θ∂2

θθYlm + cos θ sin θ∂θYlm + ∂2
φφYlm)] (1.63)

δRθt =
1

2r3(cos2 θ − 1) sin θ
×

× [−2∂φYlm∂th1r
2 + 2∂φYlm∂th1r

2 cos2 θ + 4∂φYlm∂th1Mr

− 4∂φYlm∂th1Mr cos2 θ + 4∂φYlmh0M − 4∂φYlmh0M cos2 θ

+ 2∂φYlm∂2
rth1Mr2 − 2∂φYlm∂2

rth1Mr2 cos2 θ − 2∂φYlm∂2
rrh0Mr2

+ 2∂φYlm∂2
rrh0Mr2 cos2 θ − ∂φYlm∂2

rth1r
3 + ∂φYlm∂2

rth1r
3 cos2 θ

+ ∂φYlm∂2
rrh0r

3 − ∂φYlm∂2
rrh0r

3 cos2 θ + h0r∂
3
φφφYlm

+ h0 cos θr∂2
φθYlm sin θ + h0∂

2
φθθYlmr − h0∂

2
φθθYlmr cos2 θ] (1.64)

δRφφ =
1

r3(1− 2M/r)
×

× [(−2h1Mr + 4h1M
2 − ∂rh1r

3 + 4∂rh1r
2M − 4r∂rh1M

2 + ∂th0r
3)

× (−∂φYlm cos θ + ∂2
φθYlm sin θ)] (1.65)
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δRφt = − 1
2r3(1− cos2 θ)

×

× [2 sin θ∂θYlm∂th1r
2 − 2 sin θ∂θYlm∂th1r

2 cos2 θ − 4 sin θ∂θYlm∂th1rM

+ 4 sin θ∂θYlm∂th1rM cos2 θ − 4h0∂θYlm sin θM + 4h0∂θYlm sin θM cos2 θ

− 2 sin θr2∂θYlm∂2
rth1M+ 2 sin θr2∂θYlm∂2

rth1M cos2 θ+ 2 sin θr2∂θYlm∂2
rrh0M

− 2 sin θr2∂θYlm∂2
rrh0M cos2 θ+sin θr3∂θYlm∂2

rth1−sin θr3∂θYlm∂2
rth1 cos2 θ

− sin θr3∂θYlm∂2
rrh0 + sin θr3∂θYlm∂2

rrh0 cos2 θ − h0r sin θ∂3
φφθYlm

+ h0r sin θ∂θYlm − h0r∂
2
θθYlm cos θ + h0r∂

2
θθYlm cos3 θ

− h0r sin θ∂3
θθθYlm + h0r sin θ∂3

θθθYlm cos2 θ

+ 2h0 cos θr∂2
φφYlm] (1.66)

By setting the above listed equations equal to zero we obtain the equations
governing the perturbed spherically symmetric vacuum spacetime. Out of the
ten Einstein equations three are satisfied trivially (δRtt = δRtr = δRrr = 0),
while the rest seven are satisfied only under specific conditions, namely for
m = 0. The reductions can be further facilitated by noting that, besides being
simpler, Einstein’s equations in the Regge-Wheeler gauge are independent of m,
which can therefore set to be zero. This is something that is allowable due to
the spherical symmetry of the background. Thus, after replacing the definition
for the spherical harmonics functions

Ylm(θ, φ) =

√
2l + 1

4π

(l −m)!
(l + m)!

(−1)meimφPlm(cosθ),

we obtain the following three equations

δRrφ = −
(

2l + 1
π

)1/2 1
4r3(cos2 θ − 1)(1− 2M/r)

×

× [−h1 sin θr∂θPl + 2h1 sin θr cos2 θ∂θPl + 2 sin θ∂θPlh1M

− 4h1 sin θ cos2 θ∂θPlM − h1 sin θr∂3
θθθPl + h1 sin θr∂3

θθθPl cos2 θ

+ 2 sin θ∂θPl∂th0r
2 − 2 sin θ∂θPl∂th0r

2 cos2 θ − sin θ∂θPl∂
2
rtr

3h0

+ sin θ∂θPl∂
2
rtr

3h0 cos2 θ + sin θ∂θPlr
3∂2

tth1 − sin θ∂θPlr
3∂2

tth1 cos2 θ

− h1r cos θ∂2
θθPl + h1r cos3 θ∂2

θθPl + 2h1 cos θ∂2
θθPlM

− 2h1 cos3 θ∂2
θθPlM + 2 sin θh1∂

3
θθθPlM − 2 sin θh1∂

3
θθθPlM cos2 θ](1.67)

δRθφ = −
(

2l + 1
π

)1/2 1
4r3 sin θ(1− 2M/r)

×

× [(−2h1Mr + 4h1M
2 − ∂rh1r

3 + 4∂rh1r
2M − 4r∂rh1M

2 + ∂th0r
3)

× (cos θ∂θPl sin θ − ∂2
θθPl + ∂2

θθPl cos2 θ)] (1.68)
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δRtφ =
(

2l + 1
π

)1/2 1
4r3(cos2 θ − 1)(1− 2M/r)

×

× [2 sin θ∂θPl∂th1r
2 − 2 sin θ∂θPl∂th1r

2 cos2 θ − 4 sin θ∂θPl∂th1rM

+ 4 sin θ∂θPl∂th1rM cos θ2 − 4h0∂θPl sin θM + 4h0M∂θPl sin θ cos2 θ

− 2 sin θr2∂θPl∂
2
rth1M + 2 sin θr2∂θPl∂

2
rth1M cos2 θ + 2 sin θr2∂θPl∂

2
rrh0M

− 2 sin θr2∂θPl∂
2
rrh0M cos2 θ + sin θr3∂θPl∂

2
rth1 − sin θr3∂θPl∂

2
rth1 cos2 θ

− sin θr3∂θPl∂
2
rrh0 + sin θr3∂θPl∂

2
rrh0 cos2 θ + h0r sin θ∂θPl − h0r cos θ∂2

θθPl

+ h0r cos3 θ∂2
θθPl − h0r sin θ∂3

θθθPl + h0r sin θ∂3
θθθPl cos2 θ] (1.69)

The required reductions can be simplified by noting that the eigenvalue
problem for the angular momentum in Quantum mechanics can be formulated
explicitly as follows:

L2Ylm = −
[

1
sin2 θ

∂2
φφ +

1
sin θ

(∂θ sin θ∂θ)
]

Ylm = l(l + 1)Ylm (1.70)

In each case we can analyze the three differential equations into an angular and
a non-vanishing angle part. Such an analyzation, for the Schwarzschild metric,
yields to the following set of nontrivial differential equations:

δRθφ = 0 ⇒
(

1
1− 2M

r

)
∂th0 − ∂r

(
1− 2M

r

)
h1 = 0 (1.71)

δRrφ = 0 ⇒
(

1
1− 2M

r

)−1 (
∂2

tth1 − ∂2
trh0 +

2
r
∂th0

)
+

1
r2

[l(l + 1)− 2]h1 = 0 (1.72)

δRtφ = 0 ⇒
1
r2

[
r∂r

(
1

1− 2M
r

)
− 1

2
l(l + 1)

]
h0 +

(
1

1− 2M
r

) (
∂2

rrh0 − ∂2
trh1 − 2

r
∂th1

)
= 0

(1.73)

where the last equation is a consequence of the other two. The only unknown
functions here are h0(t, r) and h1(t, r).

It is useful now to introduce a new function of t and r defined as follows

Q(t, r) =
1
r

(
1− 2M

r

)
h1(t, r) (1.74)

From the above definition we take for the equation (1.71)

∂th0 =
(

1− 2M

r

)
∂r(rQ) (1.75)
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which, if we substitute in (1.72) we take the following differential equation

(
1− 2M

r

)−1/2

∂2
tt(rQ)− ∂r

[
rQ

(
1− 2M

r

) ]
+

2
r

(
1− 2M

r

)
∂r(rQ)

+
1
r
[l(l + 1)− 2]Q = 0 (1.76)

It is now time to introduce another auxiliary coordinate transformation, or
better a new radial coordinate, the so called tortoise coordinate x which is
expressible in the form:

x ≡ r + 2Mln
( r

2M
− 1

)

It is quite easy to show that it stands

dx

dr
=

(
1− 2M

r

)−1

From that expression we derive for the partial derivative ∂r:

∂

∂r
=

∂

∂x

∂x

∂r
=

(
1− 2M

r

)−1
∂

∂x
(1.77)

Under this coordinate transformation our differential equation takes the final
form:

∂2
ttQ(t, x)− ∂2

xxQ(t, x) +
(

1− 2M

r

) [
l(l + 1)

r2
− 6M

r3

]
Q(t, x) = 0 (1.78)

where r is thought of as function of x. This equation is known as the Regge-
Wheeler equation and it can be considered as a one-dimension wave equation
in a scattering potential barrier V (−)(r)

V (−)(r) ≡
(

1− 2M

r

)[
l(l + 1)

r2
− 6M

r3

]
(1.79)

which is called Regge-Wheeler potential, namely

∂2
ttQ(t, x)− ∂2

xxQ(t, x) + V (−)(r)Q(t, x) = 0 (1.80)

The presented analysis was carried out having assumed only gravitational
perturbations. However, the followed analysis can also be applied to electro-
magnetic perturbations or perturbations of any scalar field. The form of the
equations remains the same for every kind of perturbations. The only difference
is the appearance of parameter τ that distinguishes the type of perturbation
into the potential. That is,

V (−)(r) =
(

1− 2M

r

)[
l(l + 1)

r2
+

2Mσ

r3

]
(1.81)
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Tortoise coordinates

The problem with our current coordinates is that dt/dr → ∞ along ra-
dial null geodesics which approach r = 2M . The equation that governs the
radial null geodesics is

dt

dr
= ±

(
1− 2M

r

)−1

and it comes from the demand that

ds2 = 0 = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2

We see that progress in the r direction becomes slower and slower with respect
to the coordinate time t. We can try to fix this problem by replacing t with
a coordinate which moves more slowly along null geodesics. First we have to
notice that we can explicitly solve the condition characterizing radial null curves
to obtain

t = ±x + constant

where the tortoise coordinate is

x = r + 2Mln
( r

2M
− 1

)

The tortoise coordinate is only sensibly related to r when r ≥ 2M . The price
we pay, however, is that the surface at r = 2M has been pushed to ∞:

x → −∞ as r → 2M+ and x → r as r →∞

τ =

{ +1 scalar field
0 electromagnetic field

−3 gravitational field

The value of the parameter τ derives from the expression τ = 1− s2, where
s = 0, 1, 2 is the spin of the perturbed field.

1.5 Exploring the Polar Perturbations

The mathematical analysis is exactly the same for the polar perturbations.
However, the components of the various tensors over exceeds the purpose of
our mathematical interpretation. We will limit our outline only to the basic
equations and constraints governing the polar perturbations.

We will start with the choice of the polar gauge vector. We choose the
following form

ξµ =
[
M0(t, r)Ylm, M1(t, r)Ylm, M(t, r)∂θYlm, M(t, r)

1
sin2 θ

Ylm

]
(1.82)
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Figure 1.3: The Regge-Wheeler and Zerilli potentials for l = 2 and l = 3.

where the unknown radial functions M0, M1 and M are chosen in such a way so
they annul the functions G, h0 and h1. Under the introduction of such a gauge
vector, we obtain for the polar perturbation tensor the following form

hµν =




(
1− 2M

r

)
H0 H1 0 0

∗ (
1− 2M

r

)
H20 0 0

∗ ∗ r2K 0
∗ ∗ ∗ r2 sin2 θK


 Ylm (1.83)

Following the same procedure, we linearize the field equations for polar per-
turbations and we obtain again a one-dimension wave equation of the form

∂2
ttZ(t, x)− ∂2

xxZ(t, x) + V (+)(r)Z(t, x) = 0 (1.84)

where the corresponding scattering potential, called Zerilli potential, is

V (−)(x) ≡
(

1− 2M

r

) [
72M3

r5λ2
− 12M

r3λ2
(l − 1)(l + 2)

(
1− 3M

r

)
+

+
l(l − 1)(l + 2)(l + 1)

r2λ

]
(1.85)

Here λ = l(l + 1) + 6M/r − 2 and r is thought of as a function of the tortoise
coordinate x. The Regge-Wheeler and Zerilli potentials V (∓) governing the
axial and polar perturbations, in spite of appearance, are complete equivalent.
Indeed, as shown by Chandrasekhar, the two potential are given by the following
expression

V (±) = ±6M
df

dx
+ (6M)2f2 + κf (1.86)
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where
f =

r − 2M

r2(µ2r + 6M)

κ = µ2(µ2 + 2) and µ2 = (l − 1)(l + 2). The two potentials can be considered
totally equivalent, in a sense that the frequencies corresponding to the solutions
of the wave equations that they govern, are identical. Thus, when we later
attempt to study the solutions of the perturbed equations, we shall concentrate
only into the axial equations since they have simpler analytical expressions.
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Chapter 2

Quasinormal Modes of
Schwarzschild Black Hole

2.1 Definition of Quasinormal Modes

In the preceding chapter we found that the radial component of an axial or polar
perturbation of the Schwarzschild metric outside of the event horizon satisfies
the following master differential equation:

∂2
xxQ(t, x)− [∂2

tt + V ]Q(t, x) = 0 −∞ < x < +∞ (2.1)

So far we have not made any assumption concerning the nature of the pertur-
bation. A black hole can be perturbed in a variety of ways. By the incidence of
gravitational waves, by an object falling into it, or by the accretion of matter
surrounding it. However, the analysis that we followed was independent of the
form of the perturbation; we demanded only to be infinitesimal. We now as-
sume that our perturbation has an harmonic time dependence, namely we seek
harmonic solutions of the form

Qωn(t, x) = eiωntΨ(x), (2.2)

where ωn denotes a discrete spectrum of, n in number, oscillation frequencies
(normal modes) and is a complex number of the type

ωn = ω(re)
n + iω(im)

n , n = 0, 1, 2 . . . (2.3)
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the real part of the complex frequency determines the oscillation frequency
(f = ω(re)/2π) and the imaginary parts determines the rate at which each mode
is damped as a result of the emission of radiation (τ = 1/ω(im)). For a given kind
of physical perturbation that radiation can be gravitational, electromagnetic or
in general radiation of any scalar field.

Inserting (2.2) into the one-dimensional wave equation (2.1) yields to

Ψ′′ + [ω2 − V ]Ψ = 0, (2.4)

where the prime denotes differentiation with respect to x. The solutions of
the above equation defines the quasinormal modes of the black hole while the
associated frequencies to those modes, quasinormal frequencies [4]. We may de-
scribe the quasinormal modes as the pure tones of a black hole. A characteristic
sound, namely a selected superposition of complex modes that represents the
response to any external excitation. The term “normal” refers to the normal
modes of compact classical linear oscillating systems, while the nomenclature
“quasi” is justified mainly by the fact that the frequencies are complex, thus
they show strong damping. Finally, we must say that the two potentials V (±)

that correspond to the potential of (2.4) are, though quite different, as we have
already stated, totally equivalent, meaning that for the Schwarzschild black hole
the axial and polar perturbations are isospectral. Thus, for the analysis that
follows we will concentrate only on axial perturbations, since the Regge-Wheeler
potential V (−) has an analytical form which is simpler to handle.

2.2 Stability of the Schwarzschild Black Hole

If we take the existence of black hole for granted, then we can assume in no way
that as astrophysical object are isolated and inactive. In ordinary astrophysical
systems that host a black hole it is customary matter to be fitted into the black
hole continually. Thus, the black hole are perturbed all the time by accreting
mass. But what is the dynamical response to that physical perturbations? Is it
stable of unstable? To unveil this, let us recall some properties of fundamental
physical systems. Consider an harmonically oscillating system that is subject
to a small initial perturbation. The equation of motion for such system usually
reads

d2x

dt2
+

dx

dt
+ kx = 0

since we have allowed frictional forces to be present. The resultant motion is
then proportional to the term e−γteiωt, that is, the system undergoes a damped
oscillation and remains stable. It turns out that the picture is more or less
the same for the black holes! Whichever is the analytic solution of (2.4), the
complex form of the quasinormal frequencies assures that the oscillation of the
black hole will be damped. Of course this request that the imaginary part of the
frequency is negative: as we shall see, this is something that is ensured by the
boundary conditions and the potential of the physical problem. The physical
meaning of that result is that the black hole spacetime right after an initial
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Figure 2.1: (a) Evolution of a gravitational perurbation near a Schwarzschild
black hole. One can see that the waveform is dominated by a characteristic
ringing. That ringing down frequency and damping time is independent of the
perturbation. (b) The same in logaritmic scale. The dominance of quasinormal
ringing is clear, and at very late times, a power-law falloff appears. Although
the signal seems to contain only one frequency, it consists of a discrete set of
quasinormal frequencies.

perturbation loses energy through gravitational wave emission (or any massless
field) and becomes stable. The certain response of spacetime is unavoidable:
every time the spacetime oscillates gravitational waves are generated that carry
energy away. Thus a black hole is stable under gravitational perturbations.

This was shown also numerically by integrating the Regge-Wheeler equa-
tion. As shown in Figure (2.2) both in linear and logarithmic scale, the signal is
dominated, during a certain time, by damped single frequency oscillations. The
frequency and damping of these oscillations depend only on the parameters char-
acterizing the black hole, which in the Schwarzschild case is its mass. The initial
perturbation here arise from close limit approximation of black hole - black hole
collisions, though the numerical results always shows that the response is com-
pletely independent of the particular initial configuration that caused the exci-
tation of such vibrations. Finally, in a logarithmic scale, the same calculations
shows an appearance of quasinormal modes only over a limited time interval.
At very late times quasinormal ringing gives way to a power-law falloff. This
short appearance is due to the incompleteness of the quasinormal modes that
prohibits a possible superposition for all times as in the case of the normal mode
systems.

2.3 Boundary Conditions

The motion of compact linear oscillating systems such as finite strings with
both ends fixed can always be described as a superposition of preferred har-
monic states. The mathematical formulation of the problem is described by the
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following equation
∂Φ
∂t

= AΦ (2.5)

where A is a differential operator acting on the spatial variables. The boundary
conditions of such a system indicates that the problem is self-adjoint1, thus
the differential operator A has a discrete point spectrum on the Hilbert space.
The eigenfunctions and the eigenvalues of the operator determines the solutions
of the problem, i.e., the normal modes. Due to the completeness2 of those
eigenfunctions, the physical motion of the system corresponds to a superposition
of the normal modes.

Completely different is, however, the behavior and the mathematical proper-
ties of systems that may lose energy at infinite such the one that we study here.
Having in mind the forms of the potentials (1.81) and (1.85), we realize that
the potential V is positive towards the horizon and spatial infinity (cf. Figure
1.3) and satisfies

V → 0 as x → ±∞
while it can be characterized of short range in the sense that the integral

∫ +∞

−∞
V (x)dx (2.6)

is finite. However, such potentials do not allow bound states, meaning that we
cannot impose that the solutions vanish as x → ±∞. Therefore, this precludes
a possible normal mode analysis. Nevertheless, an idea that the general solution
may be written as a superposition of QNMs seems to be correct, a task that we
will later prove by using Laplace transformations.

The exact boundary conditions to be applied here are “radiation boundary
conditions” and can be determined by studying the flux of radiation at infinity.
As |x| → +∞ the spacetime becomes asymptotically flat and

(ω2 − V ) → ω2

The same holds when |x| → −∞, hence, the solutions Ψ(x) at spatial infinity
and near the horizon, resemble to spherical plane waves. At infinity, one can
detect ingoing and outgoing waves, while at the horizon only waves propagating
towards the black hole are present, namely ingoing waves that falls into the black
hole. Ingoing and outgoing waves at spatial infinity correspond, respectively, to
the radial solutions proportional to e−iωx and eiωx. The physically correct
boundary condition at the horizon corresponts to the solution proportional to

1An operator is said to be self-adjoint if A = A†, where A† is the adjoint operator of A
defined by the following relation

〈u,Av〉 = 〈A†u, v〉

2A set of eigenfunctions of any self-adjoint operator is a complete set in the sense that any
well behaved function can be expanded as a linear combination of these functions
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e−iωx. Thus, the boundary conditions defining QNMs are those that toward the
infinity are purely outgoing and toward the horizon, purely ingoing,

Ψ ∼ e+iωx, x → +∞ (2.7)
Ψ ∼ e−iωx, x → −∞ (2.8)

The boundary conditions at the edges of spacetime that we imposed here
are fairly suitable for our analysis. They allow us to study the evolution of a
perturbation without any external contributions, as for example gravitational
waves coming from infinity. The fact that near the horizon we allow solutions
only proportional to e−iωx, was something that it was to be expected since
no scalar field can travel trough the horizon to the outside region of the black
hole. Before we close this section we should notice that the above boundary
conditions lay the foundations of the physical content of problem; the reflection
and transmission of incident waves from ±∞ by the one-dimensional potential
barrier V (±).

2.4 Definition of Quasinormal Modes via Laplace
Transformations

2.4.1 Existence of the Solutions

In order to explore the quasinormal modes of Schwarzschild black hole we could
use Fourier transforms in time, so that we would be able to construct a discrete
frequency spectrum. However, the quasinormal mode solutions do not form a
complete set, as the normal modes in the case of the compact linear systems
stated above. The solutions become unbounded at the edges of spacetime, and
that causes a lot of problems, both mathematically and numerically. Only
under special circumstances, namely certain initial conditions to be taken into
account, the quasinormal modes can form a complete spectrum. Nevertheless,
the Fourier transform does not allow initial conditions at some fixed time to
be considered into our calculations. This problem can be solved explicitly if
we use a Laplace transformation on (2.1) instead of a Fourier transformation, a
mathematical confrontation first introduced by Nollert & Schmidt [6].

In general a Laplace transformation can be used to solve differential equa-
tions that involve compact initial value problems and for a function f(t) defined
for 0 ≤ t ≤ ∞ is the ordinary calculus integration problem denoted as

Lf(t) ≡ f̂(s, t) =
∫ ∞

0

e−stf(t)dt [f(t) = 0 for t < 0] (2.9)

where s is the transform variable that may be complex, s = σ+iω. The Laplace
transform can therefore be viewed as a generalization of the Fourier transform
from the real line (a simple frequency axis) to the complex plane. It is necessary
that f(t) is exponentially bounded, or more precisely is of exponential order, that
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is f(t) should not increase very fast. For this class of functions the relation

lim
t→∞

|f(t)e−αt| = 0

is required to hold for some real number α, or equivalently, for some constants
M and α,

|f(t)| ≤ Meαt

when f(t) is piecewise continuous. In addition, the Laplace transform is analytic
for Re(s) = σ = 0 (the so-called right-half plane).

The Laplace transform satisfies particular properties that allow us to solve
explicitly differential equations usually with non-constant coefficients. Some of
those are the following:

L[f(t) + g(t)] = Lf(t) + Lg(t) The integral of a sum
is the sum of the integrals.

L[cf(t)] = cLf(t) Constants c pass through
the integral sign.

Lf ′′ = s2Lf(t)− sf |t=0 −f ′ |t=0 The t-derivative rule,
or integration by parts (the initial
values are called Cauchy data).

We now turn back to our case where we have to solve the following time-
dependent differential equation

∂2
xxQ(t, x)− [∂2

tt + V (x)]Q(t, x) = 0 −∞ < x < +∞, 0 ≤ t ≤ ∞ (2.10)

which can be rewritten as

∂2
ttQ(t, x) + AQ(t, x) = 0 (2.11)

where A is the following differential operator

A = −∂2
xx +

(
1− 2M

r

)[
l(l + 1)

r2
− 6Mτ

r3

]

that in first site to do not defines a self-adjoint problem. Applying to both terms
of (2.10) the Laplace transform, we obtain

L
[
∂2

xxQ(t, x)
]− L[∂2

ttQ(t, x)]− L[V Q(t, x)] = L(0) ⇒
d2

dx2
f̂(s, x)− s2f̂(s, x) + sQ(t, x) |t=0 +Q′(t, x) |t=0 −V (x)f̂(t, x) = 0 ⇒

d2

dx2
f̂(s, x)− [s2 + V (x)]f̂(s, x) = −sQ(t, x) |t=0 −Q′(t, x) |t=0

d2

dx2
f̂(s, x)− [s2 + V (x)]f̂(s, x) = I(s, x)(2.12)
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Here we have defined the Laplace transformation f̂(s, x) of the solution Q(t, x)
as the integral ∫ ∞

0

e−stQ(t, x)ds

It is remarkable the fact that the Laplace transformation allow us to include
initial data, concerning the perturbations that we study, via the Cauchy data on
the initial surface t = 0, namely the source term I(s, x). We may restrict now
our treatment only to initial data of compact support. In this way we force the
operator A, despite beig self-adjoint now, to have a purely continuous spectrum.
The lack of discreteness leads to plane wave solutions that although they form
a set of improper eigenfunctions, when treated properly they can build proper
superpositions and thus, construct solution that can be considered as normal
eigenfunctions. In this way the solutions can be viewed as bounded in a sense
that there is a positive constant α such that,

Ψ(t, x, θ, φ) ≤ α, ∀ t, x, θ and φ (2.13)

We then know from the standard theory of PDE’s that the corresponding gen-
eral solution Q(t, x) must have a Laplace transform which is bounded as well
and analytic in the right-half plane and can be obtained from the Bromwich
Inversion Formula

Q(t, x) =
1

2πi
lim

ω→∞

∫ σ+iω

σ−iω

estf̂(s, x)ds (2.14)

where f̂ is the solution of the inhomogeneous equation (2.12).

2.4.2 Quasinormal Expansion

Up until now, that we have not specified what σ in s = σ + iω is. For a given
f̂(s, x), σ must be chosen so that the right hand side of the inversion integral
is zero for t < 0 (to match the left side). To do this, we start with σ > 0 and
close the contour of integration using a semicircle in Re(s) > σ > 0 to form
a closed contour C. Now, for t < 0, the factor ensures that the contribution
from the integral over the semicircle at infinity vanishes. Thus, for the integral
around C to yield zero, f̂(s, x) must have no singularities inside C. Therefore,
all singularities of f̂(s, x) must lie to the left of the line Re(s) = σ. This fixes
σ. For t > 0, we close the contour in Re(s) < σ. This gives

Q(t, x) =
1

2πi

∮

C

estf̂(s, x)ds (2.15)

If the only singularities of f̂(s, x) are isolated poles, the inversion integral can
be performed by the Cauchy residue theorem

Q(t, x) =
∑

Res[estf̂(s, x)]

=
∑

q

esqtf̂(sq, x) (2.16)
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Figure 2.2: The path of integration for the Laplace function f̂(s, x).

for poles at s = sq.
Now, the solution of the inhomogeneous differential equation (2.12) is unique

up to a solution of the homogeneous equation. If Re(s) > 0, then any two lin-
early independent solutions, f− and f+, of the homogeneous differential equation

d2

dx2
f̂± − [s2 + V (x)]f̂± = 0 (2.17)

define a particular Green’s function G(s, x, x′) of the inhomogeneous equation
such that

f̂(s, x) =
∫ +∞

−∞
G(s, x, x′)I(s, x′)dx′ (2.18)

The integrability boundary conditions that are to be satisfied from f− and f+

in order to be bounded are

f−(s, x) ∼ esx

(
1 + O

(
1
x

))
as x → −∞

f+(s, x) ∼ e−sx

(
1 + O

(
1
x

))
as x → +∞ (2.19)

In the literature of the PDE’s the Green’s function is usually defined as the
solution of the differential equation

∂2
xxG(s, x, x′) + s2G(s, x, x′) = δ(x− x′) (2.20)
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The solution is then derived from the formula

G(s, x, x′) =
1

W (s)

{
f−(s, x′)f+(s, x) (x′ < x)
f−(s, x)f+(s, x′) (x′ > x)

where W (s) is the Wronskian of f− and f+,

W (s) = f−(s, x)
d

dx
f+(s, x)− d

dx
f−(s, x)f+(s, x)

The solutions f±(s, x) of the homogeneous differential equation, and conse-
quently the Green’s function, have been defined so far only into the right-half
complex plane. In order to do this, we need to close the contour of integration
to the left-plane of s. A prospective continuation of those solution also into
the left-half plane requires f±(s, x) to be analytic. However, even if we assume
initially that f̂± are analytical, it turns out that the Wronskian of f− and f+

has isolated zeros which lead therefore to poles of the Green’s function in the
left-half plane. Since the poles are isolated, the Cauchy theorem of residua for
Q(x, t) yields to

Q(t, x) =
1

2πi

∮

C

estf̂(s, x)ds

=
1

2πi

∮

C

est

∫ +∞

−∞
G(sq, x, x′)I(sq, x

′)dx′ds

=
∑

Res[est

∫ +∞

−∞
G(sq, x, x′)I(sq, x

′)dx′]

=
∑

q

esqtRes
( 1

W (s)

)[
f+(x, sq)

∫ x

−∞
f−(x′, sq)I(sq, x

′)dx′

+f−(x, sq)
∫ +∞

x

f+(x′, sq)I(sq, x
′)dx′

]
(2.21)

We need now to calculate the residue of the function 1/W (s). The function of
interest can be written in the form

f(s) =
g(s)
W (s)

where g(s) = 1. Furthermore, g(s) and W (s) are analytical near sq and g(sq) 6=
0, W (sq) = 0, dW/ds |s=sq , thus the residue is given from

Res

(
1

W (s)

)
=

1
dW/ds

Since we have restrict our treatment only to initial data of compact support,
we may assume an interval [x−, x+] of compact Cauchy data. If x is located,
say, at the left of the interval such that x ≡ x+, then we may develop the
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solution Q(t, x) into a series of quasinormal modes, namely a quasinormal mode
expansion, of the form

Q(t, x) =
∑

q

cquq(t, x) (2.22)

where

cq =
1

dW (sq)/ds

∫ x+

x−
f−(x′, sq)I(sq, x

′)dx′

and
uq(t, x) = esqtf+(sq, x)

It is now time to follow a more intuitive approach for the definition of quasi-
normal modes. As we have already stated, the Laplace transform can be viewed
as a generalization of the Fourier transform. Indeed, when evaluated along the
s = iω axis (i.e., σ = 0), the Laplace transform reduces to the Fourier transform.
Such a replacement gives the following asymptotic behavior for f±

f±(s, x) ∼ e∓iωx as x → ±∞

thus, the obey the quasinormal mode boundary conditions as they have given out
in (2.8). In addition, even though f± have been defined as linearly independent
solutions of (2.17), at the roots sq of the Wronskian they become identical, up
to a constant.

W (s = sq) = f−(sq, x)
d

dx
f+(sq, x)− d

dx
f−(sq, x)f+(sq, x) ≡ 0

⇒ f−(sq, x)df+(sq, x) = df−(sq, x)f+(sq, x)
⇒ f−(sq, x) = A(sq)f+(sq, x) (2.23)

The vanishing of the Wronskian implies that we have found values of s (and
therefore of ω) where there exists a solution f−(s, x) = A(sq)f+(s, x) that satis-
fies the conditions at both boundary conditions simultaneously and it is called
quasi eigenfunction. We therefore regard the roots of the Wronskian (or re-
spectively the poles of the Green’s function) as the quasinormal modes of the
Regge-Wheeler potential! Thus, we have finally found that the corresponding
spacetime solution defined for compact initial Cauchy data, is of exponential
decay and has the form

Q(t, x) =
∑

q

cqe
sqtf+(sq, x) (2.24)

As we shall later see there is an infinite number of such roots for Re(s) < 0. It
has to be noticed, however, that these roots are not the only singularities of the
Green function. Indeed, although the roots are confined in the left half-plane,
Leaver in [8] found that there is an essential singularity at s = 0 that at late
times leads to a polynomial decay in the solution, of the form Q(t, x) ∼ t−2l−3

(see also Figure (2.2)).
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2.4.3 Construction of the Solutions

We will now seek for the solutions of the homogeneous part of equation (2.12).
In the standard radial Schwarzschild coordinate r the homogeneous part reads

r(r − 1)
d2f(s, r)

dr2
+

df(s, r)
dr

−
[

s2r3

r − 1
+ l(l + 1)− τ

r

]
f(s, r) = 0 (2.25)

For simplicity the radial coordinate r has been scaled such that 2M = 1. In the
new form the homogeneous part is a second-order ordinary differential equation
known as generalized spheroidal wave equation. In the region of interest equation
(2.25) has a regular singular point at r = 1 (in tortoise coordinates, x = −∞)
and an irregular singular point at r = ∞ (x = ∞). For the above stated form
of the wave equation obeyed by f , the linearly independent solutions f− and f+

have the following series expansions accordinh to ([8])

f−(s, r) = (r − 1)s
∞∑

n=0

an(r − 1)n, with f−(s, r) r→1→ (r − 1)s

f+(s, r) = e−srr−s
∞∑

n=0

anr−n, with f+(s, r) r→∞→ e−srr−s (2.26)

For Re(s)> 0, f− is bounded and converges absolutely for |r − 1| < 1. The
analytic continuation and convergence of f− in the left-half plane is also triv-
ially. Thus, f− is analytic in s, both in the right-half and left-half domain. The
picture, however, is not the same for the solution f+. The asymptotic expansion
of f+, for Re(s)> 0, although it is bounded as r → ∞, it does not converge
for any value of r. What one should do mathematically in order to construct a
well-defined solution is to integrate f+ over large values of r, for various initial
conditions, until he obtains a solution that stays bounded at infinity. Then, the
well-behaved solution should be calculated for many s in the right-half plane
until those that converges absolutely to be found and then to continued analyt-
ically into the left-half plane. Of course for the computation of the quasinormal
modes, we do not have to construct f+(s, r) explicitly. It is sufficient to find
the roots of f−(s, r). Then, according to (2.23), for those roots the Wronskian
is zero and therefore the Green’s function has a singularity that corresponds to
a quasinormal frequency (for a detailed description see [6]).

2.5 Numerical Results

Nollert’s method for calculating the quasinormal modes that we described pre-
viously is straightforward, accurate, it is not based on any approximations and
its mathematical foundation is rigorous (cf. Figure 2.3 for numerical results).
All expressions for the computation of the zeros of the Wronskian are given in
terms of converged series. In the same way the Wronskian is expressed as a
series of the form

Wn(r) ≡ Knw(r) (2.27)
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It turns out, however, that the series Kn may first grow very large before ap-
proaching its limiting value. This effect becomes stronger as the real part of
s grows more negative. While this obstacle may be overcome, it precludes the
evaluation of frequencies with Re(s)< −6.

There are many other numerical methods for computing the quasinormal
modes in the left-half plane. The most popular are the WKB method originally
introduced by Schutz and Will [8] and the continued fractions pioneered by
Leaver, with the latter to be the most reliable. We will now proceed to the
development of those techniques as well as to the representation of numerical
results.

2.5.1 First-order WKB approximation

This semianalytic technique is based on the similarity between the wave equation
describing the perturbations of the Schwarzschild black hole and the Schrödinger
equation of a particle encountering a potential barrier. It yields a simple ana-
lytic formula that gives the real and imaginary part of the frequency in terms of
the parameters of the black hole, namely he mass, and of the field whose pertur-
bation is under study, and in terms of the quantity (n+ 1

2 ), where n = 0, 1, 2, . . .
labels the fundamental mode, the first overtone mode, and so on.

Recalling (2.4), we rewrite the wave equation into the form

Ψ′′ + S(ω, r)Ψ = 0 (2.28)

In the first order of approximation the WKB method leads to the following
condition satisfied by a quasinormal mode frequency

2S0

(
d2S0

dx2

)−1/2

= i
(
n +

1
2

)
(2.29)

Since S is frequency dependent, this condition will lead to discrete, complex
values for the quasinormal mode frequencies, that is

(2Mω)2 =
(

1− 2
r

) [
l(l + 1)

r2
0

+
2τ

r3
0

]
+ i

[
d2V0

dx2

]1/2(
n +

1
2

)
(2.30)

where S and V are calculated in r0, i.e., the peak of the Regge-Wheeler potential,

r0 =
3

2l(l + 1)
{l(l + 1)− τ + [l2(l + 1)2 + l(l + 1)(14/9)τ + τ2]}1/2

and the second derivative of the potential V (x) with respect to x is given by

d2V

dx2
=

(
1− 2

r

) [
− l(l + 1)

r4

](
6− 40

r
+

60
r2
− 2τ

r5

)(
12− 70

r
+

96
r2

)

Using the first-order WKB approximation we can compute the fundamental
modes, n=0, for different values of l with great accuracy, in comparison with the
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l = 2 l = 3 l = 4 l = 5
Re(2Mω) 0.7776 1.2332 1.6446 2.0458
Im(2Mω) -0.1766 -0.1846 -0.1878 -0.1894

Table 2.1: Representative Schwarzschild fundamental mode frequencies (n = 0)
for gravitational perturbations (τ = −3), calculated using the standard WKB
method.

numerical results of Chandrasekhar and Detweiler in [10]. The numerical results
for gravitational perturbations for various values of the angular momentum
index l are listed in Table 2.1. The WKB method gives the fundamental modes
of Schwarzschild black hole with great accuracy and allows the calculation of
modes with large l, providing an analytic formula for the large-l limit and it
can be extended to higher-orders providing thereby better accuracy. However
it fails at the calculation of modes with large imaginary parts.

2.5.2 Continued Fractions

This method derives from a technique, employed by Jaffè, for the determination
of the electronic spectra of the H+

2 ion in 1934. Leaver observed that the time-
independent wave equation (2.4) is similar to Schrödinger equation for H+

2 and
adopted the technique for calculating the eigenvalues of the problem3.

We have already mentioned that, the radial equation

r(r − 1)
d2Ψ(s, r)

dr2
+

dΨ(s, r)
dr

−
[

s2r3

r − 1
+ l(l + 1)− τ

r

]
Ψ(s, r) = 0 (2.31)

belongs to a certain type of differential equations, the generalized spheroidal
wave equations. That type of equations permits solutions in the form of series
expansions, thus, it is wise to consider a solution of (2.31) as a product of the
previously defined solutions f−(s, r) and f+(s, r), namely

Ψ(s, r) ≡ f−(s, r)f+(s, r) = (r − 1)sr−2se−s(r−1)

︸ ︷︷ ︸
due to boundary conditions

∞∑
n=0

αn

(r − 1
r

)n

(2.32)

where the series converges for 1
2 < r < ∞. We now substitute the solution (2.32)

into the wave equation (2.31) and we obtain a three term recursion relation for
the coefficient αn

αnαn+1 + βnαn + γnαn−1 = 0, n = 0, 1, 2, . . . (2.33)

3There is, however, a major difference between those two problems. The necessary bound-
ary conditions for the determination of the eigenvalues of H+

2 defines a self-adjoint problem, a
picture that is not similar for our problem, though, it turns out that the method is numerically
stable for each case.
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where the first two terms of αn are determined from

α0α1 + β0α0 = 0 (2.34)

The three recurrence terms αn, βn and γn are given from

αn = n2 + (2s + 2)n + 2s + 1
βn = −{2n2 + (8s + 2)n + 8s2 + 4s + l(l + 1) + τ}
γn = n2 + 4sn + 4s2 + τ − 1 (2.35)

Hence, only the parameters of the perturbation determines the expansion coef-
ficients αn (remember that s = iω). Leaver’s substantial contribution was the
determination of under what circumstances the series expansion converges. If
there is a particular conditions to be satisfied by the recurrence coefficients then,
because of the ω, l and τ dependence in equations (2.35), we could extract a
relation for calculating the quasinormal mode frequencies. Indeed, it turns out
that the recurrence relation convergence only if for the terms αn and αn+1 holds

αn+1

αn

n→∞→ 1− (2s)
1
2

n
1
2

+
2s− 3

4

n
+ . . . (2.36)

a relation that is valid if ω in s is a quasinormal mode frequency. In that case the
ratio of two continued terms αn is given by a continued fraction representation

αn+1

αn
= − γn+1

βn+1 −
αn+1γn+2

βn+2 −
αn+2γn+3

βn+3 . . .

(2.37)

Such a representation, after some manipulations, is sometimes written in the
form

αn+1

αn
= −γn+1αn+1γn+2αn+3γn+3

βn+1 − βn+2 − βn+3− · · · (2.38)

and it can be considered as a boundary condition on n at ∞. This relation
evaluated at n = 0 gives

α1

α0
= − γ1α1γ2α2γ3

β1 − β2 − β3
· · ·

while, from (2.34) we take
α1

α0
= −β0

α0
(2.39)

Thus, by equating the right-hand sides, we obtain the following expression for
calculating the quasinormal frequencies

0 = β0 − α0γ1α1γ2α2γ3

β1 − β2 − β3
· · ·
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This relation, however, is not suggested for deriving a large number of frequen-
cies, meaning the asymptotic spectrum of the black hole. The topology of the
equation does not allow us to locate all the complex roots. What we could do is
to invert (2.36) n times so that we could separate the infinite continued fraction
into a finite and an infinite part, i.e.,
[
βn − αn−1γnαn−2γn−1

βn−1 − βn−2
· · · α0γ1

β0

]
=

[
αnγn+1αn+1γn+2

βn+1 − βn+2− · · ·
]

(n = 1, 2, 3 . . .)

We then choose a truncation index N = n, usually large, and we sum the infinite
part backwards instead of normal left-to-right summation. We repeat the same
procedure for various truncation indices N until we track all the frequencies
up to n = N = 1. It must be noticed that the two equation written above for
evaluating the quasinormal frequencies are for every n > 0 completely equivalent
as far as the roots are concerned. By changing, however, the value of N , namely
the number of inversions, we change the topology of the complex plane and that
help us to track all the roots of the infinite continued fraction explicitly; the
n-th mode is found to be the most stable root of the n-th inversion.

Leaver’s method that we just described works well and with fine accuracy.
Later Nollert [11] improved Leaver’s method and he managed to evaluate modes
with n ≫ 100 ⇒, Im(ω) ≫ 100 (n up to 2,000). Nollert, after calculating
almost 100,000 frequencies, found that for large values of n, the frequencies are
well fitted by the following verified asymptotic expression

(2MωN ) = 0.0874247+Ω̂N−1/2+i

(
N − 1

2

2
− Ω̂N−1/2

)
+O−1(N−1/2) (2.40)

where

Ω̂ =

{ 0.4850 for l = 2
1.067 for l = 3
3.97 for l = 6

and the original units have been reintroduced. Having a formula for evaluating
the asymptotic behavior of the quasinormal frequencies it is now easy to con-
struct and study the frequency spectrum for the gravitational perturbations of
the Schwarzschild black hole. The schematic representation of the spectrum for
l = 2 and l = 3 is depicted in Figure (2.4) and the first 41 overtones for l = 2
and l = 3 are depicted in Table (2.2).

We see that solution with negative real part are also included, since they
constitute physical solutions of the above equations. Leaver bears up the fact
that there is an infinite number of frequencies, but there is no formal proof about
this. The sure is the existence of algebraically “special” modes, that is modes
with zero real part, within the error of the computer. Those almost purely
imaginary solutions for each l were analytically predicted by Chandrasekhar
and they are given by

(2Mωl) = ±i
(l − 1)(l + 1)(l + 2)

6
(2.41)
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l = 2 l = 3
n = 1 (0.747343369, -0.177924631) (1.198887000, -0.185406000)
n = 2 (0.693421994, -0.547829751) (1.165287606, -0.562596227)
n = 3 (0.602106909, -0.956553966) (1.103369802, -0.958185502)
n = 4 (0.503009924, -1.410296405) (1.023923822, -1.380674192)
n = 5 (0.415029160, -1.893689782) (1.103369802, -0.958185502)
n = 6 (0.338598806, -2.391216108) (0.940348012, -1.831298785)
n = 7 (0.266504681, -2.895821253) (0.862772957, -2.304302724)
n = 8 (0.185645101, -3.407681809) (0.795319048, -2.791824485)
n = 9 (0.000000000, -4.000000000) (0.737984552, -3.287689057)

n = 10 (0.126620794, -4.605291864) (0.689236637, -3.788065608)
n = 11 (0.153114211, -5.121615413) (0.647366263, -4.290797900)
n = 12 (0.165216340, -5.630858722) (0.610921804, -4.794709101)
n = 13 (0.171477284, -6.137418749) (0.578768197, -5.299159211)
n = 14 (0.174757778, -6.642428268) (0.550038792, -5.803799142)
n = 15 (0.176472347, -7.146697858) (0.524072319, -6.308438956)
n = 16 (0.177251065, -7.650230047) (0.500359431, -6.812977185)
n = 17 (0.177354514, -8.153298127) (0.478502441, -7.317362326)
n = 18 (0.177070030, -8.656072139) (0.458186005, -7.821571443)
n = 19 (0.176514490, -9.158666975) (0.439155978, -8.325598043)
n = 20 (0.175590405, -9.661043449) (0.421204073, -8.829445112)
n = 21 (0.174592249, -10.16280325) (0.404156586, -9.333121030)
n = 22 (0.174145883, -10.66479799) (0.387866111, -9.836637115)
n = 23 (0.172596136, -11.16677533) (0.372205434, -10.34000692)
n = 24 (0.172304623, -11.66814457) (0.357059818, -10.84324503)
n = 25 (0.170455493, -12.16969337) (0.342330863, -11.34636289)
n = 26 (0.170164121, -12.67176553) (0.327916109, -11.84938531)
n = 27 (0.169461568, -13.17222851) (0.313742821, -12.35231382)
n = 28 (0.167573456, -13.67327646) (0.299681309, -12.85517029)
n = 29 (0.166194668, -14.17531786) (0.285679084, -13.35801775)
n = 30 (0.165702871, -14.67714853) (0.271676672, -13.86081457)
n = 31 (0.165376445, -15.17841554) (0.257498222, -14.36354344)
n = 32 (0.164861843, -15.67944371) (0.242962822, -14.86627972)
n = 33 (0.164125255, -16.18050526) (0.227924284, -15.36910824)
n = 34 (0.163125419, -16.68169171) (0.212212592, -15.87207622)
n = 35 (0.161710641, -17.18287254) (0.195591813, -16.37519443)
n = 36 (0.159803793, -17.68353519) (0.177789459, -16.87844243)
n = 37 (0.158150890, -18.18290567) (0.158641741, -17.38186933)
n = 38 (0.158569419, -18.68181517) (0.138176412, -17.88616173)
n = 39 (0.160292868, -19.18311345) (0.115716028, -18.39361153)
n = 40 (0.159786738, -19.68669637) (0.075295600, -19.41554504)
n = 41 (0.155451285, -20.18805815) (0.000258865, -20.01565305)

Table 2.2: The first 41 quasinormal frequencies for l = 2 and l = 3 of
Schwarzschild black hole.
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Figure 2.3: Comparison between the first 12 quasinormal frequencies for l = 2
as calculated by Nollert (zeros of Kn) and Leaver (continued fractions). Although
the divergences are neglected the later technique is always preferable since it
allows the reliable derivation of frequencies with n up to 100.000, while it is fast
as well. Note that for n = 9 Nollert’s method does not give results.

For l = 2 the special mode is located at (0.000, 3.998) and for l = 3 at (0.0002,
20.0157). As it is expected from the asymptotic expression (2.40), as the order
of the mode increases the real part of the frequency tends to an l-independent
constant value, something significant as we will see directly, and the imaginary
part increases to high values proportionally to n. Does this finite limit for the
real parts have any physical significance? That the behavior of all highly damped
quasinormal frequencies is uniquely determined, expresses a suspicion that there
must be a more fundamental relation between the response of a black hole to a
general perturbation and the parameters of the black hole itself. Indeed, in 1998
Hod (see [13]) observationally and Motl (see [12]) after analytical manipulations
of the infinite continued fraction derived by Leaver, related the high frequency
external response of a black to a purely quantum property of the black hole, the
Hawking temperature TH . More precisely, the numerical results combined with
the analytical calculations seems to suggest that

ωn = TH ln 3 + 2πTHi(n +
1
2
) + O(n−1/2) (2.42)
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Figure 2.4: Quasinormal modes of gravitational perturbations (l = 2 and l = 3)
for large imaginary parts (up to Im(2Mω) = −50).

where the Hawking temperature is given by

TH =
~

8πM
(2.43)

or if we again chose our magnitudes to be expressed in physical units, i.e.,
2M = 1 and ~ = 1, simply one reads

TH =
1
4π

(2.44)

The remarkable notations here are two. Firstly, in the large n-limit the imagi-
nary parts of the ωn are equidistantly spaced and thus this could be of relevance
for a quantum description of black holes. Secondly, the real part of ωn,

ωR ≡ TH ln 3 =
ln 3

8πGM
≈ 8.85

M¯
M

kHz (2.45)

introduces a universality, since it is n and l-independent, and it can be considered
from now own as a property of the black hole itself. It must be pointed out that
these results and conclusions are the most significant ones of our so far analysis
and they will constitute the key of the foundation of the following chapter.
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Chapter 3

Loop Quantum Gravity

3.1 Motivation

The aim of the last chapter of this report is to review the basis and the main
results of a newly-born issue in the area of quantum gravity, the one that deals
with the application of the quasinormal mode hints in the foundation of a pos-
sible quantum theory of gravity. To illustrate this let us recall first some basic
ideas and principles of General Relativity.

From Newton to the beginning of this century, physics has had a solid foun-
dation in a small number of key concepts such as space, time, causality and mat-
ter. In spite of substantial evolution, these concepts remained rather stable and
self-consistent. In the first quarter of this century, Quantum theory and General
Relativity have modified this foundation in depth. Before Albert Einstein pos-
tulate General Relativity, scientists thought of space as a fixed background, an
independent entity, that has a geometrical structure - something like a “stage”
where matter could travel independently. The picture changed slightly when
Maxwell and Faraday introduced the concept of the field. The fields have the
property that they can move through the space. They where first described as
lines that filled up the space due to the presence of electric or magnetic charges.
Later Maxwell and Faraday realized that the presence of those charges were
not necessary; the fields constitute independent entities that can exist alone
in space. In this way they reformulate the laws of electricity and magnetism
by introducing the electric and magnetic field. The concept of the field later
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became even more appealing! Nowadays the fundamental description of nature
simply reduces to the existence of various types of fields, with the characteristic
property of undergoing quantum fluctuations, that is a temporary change in
the amount of energy in a point in space, arising from Heisenberg’s uncertainty
principle. The usefulness of the fields is such that the fundamental forces are
described by fields called Yang-Mills, the elementary particles by the fermionic
fields, while massive particles, that rises from the Higgs particles, are described
by the scalar fields. These fields are the elements of the Quantum Field Theory,
a theory that attempts to unify the three (weak, strong and electromagnetic)
fundamental forces of nature with the fourth fundamental force (i.e., gravity)
and depends on particle fields embedded in the flat, Minkovskian spacetime of
Special Relativity.

However, the scheme change dramatically when we study the gravitational
field in General Relativity. General Relativity not only changed the way we
understand gravity as a force but also reintroduced the concept of spacetime.
Although Einstein originally tried only to describe gravity with terms of fields,

Why Quantum Field Theory?

Quantum Field Theory replaces the conventional Quantum mechanics in

domains, smaller than atomic and molecular systems, where energy can

manifest itself in a variate of ways, e.g., pair creation and annihilation or

particles moving at relativistic speeds. Therefore, the Schrödinger equation

has to be replaced by field equations such as the Klein-Gordon equation (for

particle with no spin) or Dirac equation (for particle with spin 1
2
). These field

equations are invariant (unchanged) under a change of the spacetime coordinate

system (Lorentz transformation). It is referred to as relativistic invariance,

which ensures the validity of the field equation at relativistic speed. To account

for the creation/annihilation of particles in high energy interaction, the field

is considered to be an operator. It is expanded into Fourier series in terms

of harmonic functions and coefficients. These coefficients are then subjected

to some quantization rules. Depending on whether the particle has integer or

half integer spin, these operators satisfy the commutation or anti-commutation

relations (for example: ab + ba = 1; the Pauli exclusion principle is guaranteed

by quantization with the anti-commutation relations for spin 1
2

particles).

They are the creation and annihilation operators, which operate on state

vectors describing the number of particles in different states. This is called

the second quantization, which endows particle property to the field (field +

second quantization = quantum field). Thus, in QFT the particles are just bun-

dles of energy and momentum of the fields, which constitute the basic ingredient.
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in order to be consistent with Special Relativity, he eventually found that the
gravitational field that he had introduced was actually the background space
that Newton had considered. Now spacetime or equivalently the gravitational
field is a dynamical entity that changes as matter moves within it. While easy
to embrace in principle, this is the hardest idea to understand about General
Relativity, and its consequences are profound and not fully explored, even at
the classical level. To a certain extent, General Relativity can be seen to be
a relational theory, in which the only physically relevant information is the
relationship between different events in spacetime.

The two theories, General Relativity and Quantum Field Theory, have ob-
tained great success and vast experimental confirmation, and can be now consid-
ered as established knowledge. Each of the two theories modifies the conceptual
foundation of classical physics in a (more or less) internally consistent manner,
but we do not have conceptual foundation capable of supporting both theo-
ries. Such a foundation is called quantum gravity, and it is a theory that tries
to unify Quantum mechanics and General Relativity in a physical regime in
which it seems that both theories should be relevant, the regime of Planck scale
phenomena, 10−33cm.

Any attempt to formulate a quantum gravity must incorporate an appro-
priate behavior of the gravitational field at the Plank scales. We know that in
General Relativity space and time are considered as dynamical quantities, while
spacetime location is relational only. This teach us that there is no fixed space-
time background, as found in Newtonian mechanics and Special Relativity. On
the other hand, Quantum mechanics has taught us that any dynamical entity is
subject to Heisenbergs uncertainty at small scales. Thus, even the gravitational
field, in the Plank scale, should be subject to such a constraint. It seems that
a quantum theory for gravitation should originate from the basic concepts of

Classical-Quantum inconsistencies

The fundamental principles of General Relativity and Quantum Field
Theory seems to collide in the classical Einstein equations

Rµν − 1

2
Rgµν

︸ ︷︷ ︸
Geometry (General Relativity)

= 8πT (g)µν︸ ︷︷ ︸
Matter (QFT, standard model)

These equations relate matter density in form of the energy momentum

tensor Tµν and geometry in form of the Ricci curvature tensor Rµν . Notice

that the metric tensor gµν enters also the definition of the energy momen-

tum tensor. However, while the left hand side is described until today only

by a classical theory, the right hand side is governed by a Quantum Field Theory.
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Quantum mechanics (or Quantum Field Theory) and General Relativity, and to
conclude to a new synthesis, where space and time are deeply reshaped, in order
to keep into account what we have learned from both our present “fundamental”
theories and to unravel what take place in the Planck scale nature.

But what is the picture of quantum gravity nowadays? In modern physics,
there have been established three different ways for approaching quantum grav-
ity. Given that such a theory must be a unification of Quantum theory and
General Relativity, the two of the three roads are not that unforseen. Hence,
there is a path that starts from Quantum Field Theory and every idea and
method that has been introduced is based exclusively on Quantum mechanics.
There is also, as expected, another path that initiates from the basic principles
of General Relativity and tries to modify them in order to include quantum
phenomena. Each of those two roads has led to a well worked out and partially
successful quantum theory of gravity; the first road gave birth to String Theory,
while the second to the so-called Loop Quantum Gravity (or Quantum General
Relativity). In the following sections we shall explore the basic remarks of those
two elegant theories. Especially for the Loop Quantum Gravity we shall explore
some intriguing features that arise from the classical black hole perturbation
theory, which is actually the subject of this report.

Before that, it would be of great interest to explore which is the third road.
Thus, apart from the first two roads, there is always another road for reaching
quantum gravity. This path has been followed by scientists that threw down
Relativity and Quantum mechanics as starting points. They decided that the
new theory must incorporate and treat fundamental concepts such us the nature
of time or the origins of the universe. While sometimes based on well established
theories, scientist in this road do not hesitate to invent pioneering mathematical
formalisms and abstract structures. By using these formalisms and accumulat-
ing of as many hints as possible from the known theories, they attempt to build
a new theory from the ground up.

This approach has been already given prominent results concerning black
holes, and so far the most important and encouraging are the Area Theorem and
the Hawking temperature for black holes argued by Bekenstein and established
by Hawking. Incredibly innovative, Bekenstein’s and Hawking’s results estab-
lished the physical and mathematical foundations of the so far phenomenologi-
cal area of black hole thermodynamics. Black hole thermodynamics, or quantum
black hole thermodynamics after the contribution of Bekenstein and Hawking,
leads to a series of significant conclusion about black holes when treated as phys-
ical systems. In this report we devote an individual section to that aspect, not
only to catch on fundamental concepts, such as the Hawking temperature, but
also to understand how black holes behave as dynamical physical objects that
undergo the same processes that usual thermodynamical systems also undergo.
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3.2 Black Hole Thermodynamics

Bekenstein, in the concepts of classical General Relativity, argued that a black
hole should have a temperature T which is proportional to its surface gravity κ
and an entropy S that is proportional to its area A. Using Quantum Field The-
ory on curved spacetime, Hawking discovered later a mechanism by which black
holes have non-zero temperature. His formulation was based on the disquiet of a
quantum mechanical vacuum state; that is, quantum fluctuations, namely, par-
ticle and anti-particle pair production and annihilation is continually occurring
in empty space. By the Heisenberg uncertainty principle, the non-conservation
of energy involved in creating the pair is balanced by the shortness of the time
span, after which the pair annihilates. In modern theory, the vacuum more
closely resembles a “quantum foam”, as inspiringly described Wheeler, than it
resembles empty, static space. Hawking assumed an initial vacuum field on the
Schwarzschild metric, and calculated the particle mode populations at infinity
at late times. He found a distribution that correspond to a perfect black body
spectrum, with a temperature of

TH =
κ~
2π

(3.1)

where κ in the case of the Schwarzschild black hole equals 1/4M . That is, in
the presence of the strong surface gravity just outside the event horizon, virtual
pairs are separated, and one particle is absorbed while the other is radiated
away from the black hole. The surface gravity, relates to the magnitude of the
force exerted on a test particle at a particular position on the event horizon and
simply expresses the local gravitational field strength at the surface of the black
hole. It is defined only for a static or stationary spacetime, that is, whenever
the event horizon of the black hole is a Killing horizon. Hence, the stronger
the surface gravity is, the higher will be the observed temperature. The in-
troduction of Hawking temperature resolved many flaws of classical black hole
thermodynamics and constituted a transition to quantum black hole thermody-
namics. Actually the classical black hole thermodynamics is just an analogy.
It relies on the fact that energy can flow not just into black holes but also out
of them. This is suggested by the famous Penrose process, a classical process
where one can exploit the existence of the ergoregion in the rotating1 black
holes to extract rotational energy. Thus, a black hole can be considered as an
ordinary thermodynamical system.

Rather than jumping now into the subject of quantum black hole thermody-
namics, it would be worth discussing the aspects of the classical theory. These
are important in their own right, but also it is intriguing to see what it can be
inferred for our analysis without invoking to much the quantum theory.

At first sight it seems that we cannot correlate any classical concept of
thermodynamics, such as the temperature or the entropy, to black holes. As
a consequence, it seems to be even more peculiar how could a whole theory

1This is true also for non-rotating charged black holes: one can extract energy from them
by neutralizing them.
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of black hole thermodynamics to be established from classical definitions. As
far as the temperature is concerned we saw that, as defined for black holes, it
originates from a purely quantum effect; this has nothing to do with the classical
definition of temperature, where it just reflects the internal energy of motion
and vibration of the molecules of substance. However, the definition seems to
work well. The proportionality relation between the surface gravity and the
temperature leads to a thermal spectrum identical to that of a black body. But
what are the physical implications of entropy? Is it possible to correlate the
classical definition with physical (or statistical) properties of the black hole?
The answer is yes, and it can be proved easily from simple quantum arguments
concerning the properties of matter and energy2.

Let us consider the simple case of a singularity in the center surrounded
by a spherical event horizon. We know that when a black hole is created by a
collapsing star that the ordinary matter is crushed out of existence. However
the total mass-energy remains. Outside the event horizon all properties of that
matter are gone except for the total mass-energy, rotation, and electric charge,
where the total mass-energy is manifested as the curvature of spacetime around
the singularity. This is sometimes called the Black hole has no hair theorem.

It is plausible, however, to consider representing all the mass-energy inside
the black hole as waves, as Quantum mechanics predicts. Now, what kind
of waves are possible to be generated inside the black hole? The answer is
standing waves, waves that “fit” inside the black hole with a node at the event
horizon. The possible wave states are very similar to the standing waves on a
fixed string, a system that we presented in the preceding chapter. The energy
represented by a particular wave state is related to the frequency and amplitude
of its oscillation. The higher overtones have a higher frequency and thus these
quantum mechanical waves contain more energy. If we assume that the total
mass-energy inside the event horizon is fixed, then we shall have various standing
waves, each with a certain amount of energy, and the sum of the energy of
all these waves equals the total mass-energy of the black hole. There are a
large number of ways that the total mass-energy can distribute itself among the
standing waves. We could have it in only a few high energy waves or a larger
number of low energy waves.

It turns out that all the possible standing wave states are equally probable.
Thus, we can calculate the probability of a particular combination of waves
containing the total mass-energy of the black hole the same way we calculated
the probability of getting various combinations for dice. But we know that the
entropy is just a measure of the probability. Thus we can calculate the entropy
of a black hole. We also know that the entropy measures the heat divided by
the absolute temperature. The “heat” here is just the total mass-energy of the
black hole, and if we know that and we know the entropy, we can calculate a
temperature for the black hole. So, as Hawking realized, we can apply all of
thermodynamics to a black hole. Indeed, the introduction of the entropy of a
black hole leads to the formulation of, as in classical Thermodynamics, the four

2The approach presented here is called the “Holographic Principle”
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laws of black hole thermodynamics.

3.2.1 Zeroth Law

The Zeroth Law of black hole mechanics defines an equilibrium state for black
holes. One expression of it states that any static or any stationary and ax-
isymmetric black hole has a uniform surface gravity κ over the event horizon.
By definition, κ is constant over each null geodesic on the event horizon; this
law means that κ has the same value on every such null geodesic. Physically,
the Zeroth Law defines a state of thermal equilibrium for a black hole. As we
have seen, the Hawking temperature is proportional to κ, thus, κ is effectively
the temperature of a black hole; hence, uniform surface gravity over the event
horizon means a uniform temperature. This is readily comprehended when con-
sidering the symmetry of the relevant class of black holes, for which the event
horizon is a Killing horizon.

3.2.2 First Law

The First Law of black hole thermodynamics relates perturbations in the mass to
perturbations in area and angular momentum. In form, it very closely resembles
the conservation of energy expressed in the First Law of thermodynamics (cf
the following box) and, for a rotating charged black hole is stated as follows

δM =
κ

8π
δA + ΩδJ + ΦδQ (3.2)

where J and Q are the angular momentum and the charge of the black hole and
Ω and Φ the angular velocity and electric potential of the horizon. By simply
using the law of entropy of a black hole one readily find another form of the
first law as a function of the Hawking temperature and entropy

δM = THδS + ΩδJ + ΦδQ (3.3)

The surface gravity κ evidently plays here the role of temperature As men-
tioned, one can see similarities between (3.3) and the First Law of thermody-
namics. For a stationary black hole κ, Ω and Φ, although locally defined on
the horizon, are always constant over the horizon. This is an emanation of the
Zeroth Law.

However, an even greater correlation is evident when the concept of entropy
is introduced for a black hole. To first order, the entropy can be calculated to
be directly proportional to the area; equation (3.3) then becomes

δM =
κ

2π
δS + ΩδJ (3.4)

That is, the entropy of a black hole is calculated as

S = A/4
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Equation (3.4) not only lends itself to comparison with the First Law of thermo-
dynamics, it also highlights the correlation between the surface gravity and the
temperature of a black hole, as the factor proportioning the entropy variation
term.

3.2.3 Second Law (Area Theorem)

The Second Law is of course Hawking’s area theorem, stating that the horizon
area can never decrease. The Third Law also has an analog in black hole physics,
namely, the surface gravity of the horizon cannot be reduced to zero in a finite
number of steps.

Hawking proved that suggestion by assuming the null energy conditions in
(3.3). Under these constraints, the Raychaudhuri equation implies that the
expansion, θ, of the congruence of null geodesics (in part, those comprising the
event horizon) will tend to infinity if it becomes negative. Hence, Hawking
reasoned that θ is always non-negative, and thus the area of a black hole never
decreases. In analogy to the Second Law of thermodynamics, the Area theorem

The Classical Laws of Thermodynamics

• Zeroth Law
The Zeroth Law defines the thermodynamic equilibrium of systems. It
states that if two systems are each in thermal equilibrium with a third
system, then the two much be in thermal equilibrium with each other.
Although seemingly obvious, this law lays the foundations on which the
others are developed.

• First Law
The First Law is an expression of the law of conservation of energy. It
states that the increase in internal energy of a system is equal to the sum
of the heat flow into the system and the work done on the system. For
isolated systems, which have no interaction with their surroundings, this
law implies that their internal energy is constant (such is the case for
the universe). For interacting systems, the First Law can be expressed
mathematically as

dE = TdS − PdV

In the above equation, T is the temperature of the system, S is the entropy
of the system (see below), and the last term represents mechanical work
in the form of forced compression or expansion done on the system.

• Entropy and the Second Law
The Second Law applies to the entropy of a system. Entropy is a measure
of disorder; and, disorder can take various forms, depending on the system.
For instance, for particles in a box, the most ordered configuration has all
the particles localized in a particular region.
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As such, diffusion of a gas can be understood as a process that increases
the entropy of the system. In statistical mechanics, entropy is defined as
the natural logarithm of the density of states at a particular energy, as
shown

S = ln n

Entropy also relates to the reversibility of a process. A process that con-
serves the entropy of a system is reversible; and, dynamic equilibrium in
chemical reactions is an example of an entropy-conserving process. The
Second Law of thermodynamics describes the change of the entropy of
a system. For an isolated system, the entropy is never decreasing. For
a non-isolated system, the change in entropy is related to the heat flow
across the system boundaries, as follows

dS =
dQ

T

Since the universe is an isolated system, the Second Law implies that the
entropy of the universe is never decreasing (moreover, because we have not
reached a state of maximum disorder in the universe thermodynamically
speaking, at least the entropy of the universe is continually increasing).
This is the most famous expression of the Second Law, and its relation
to black hole mechanics is very important. The equation below expresses
the Second Law, as applied to the universe

dSuniverse ≥ 0

is expressed as
dA ≥ 0 (3.5)

3.2.4 The Third Law

The Third Law of thermodynamics, does not apply to black holes. There are,
in fact, extremal black holes, for which the surface gravity is zero, but which
have a non-zero area (i.e., entropy). It has been postulated, however, that the
Third Law of thermodynamics is not, in fact, a fundamental law; rather, it is a
consequence of the make up of many common systems. In fact, certain quantum
mechanical systems have been shown to violate this law.

Generalized Second Law (GSL): One major past question surrounding
the existence of black holes was what happens to the entropy of matter that
falls in. When black holes were shown to possess a quantity serving as entropy,
Bekenstein proposed an alteration to the Second Law of thermodynamics, as
follows

∆S′ ≥ 0 where S′ = S + Sbh (3.6)
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That is, Bekenstein redefined the entropy of the universe to be the sum of the
entropy of everything outside the black hole and that of the black hole. He
proposed that this quantity is never decreasing.

Difficulties for the Area Theorem

Hawking radiation presents a problem for the Area Theorem, because

when the black hole loses energy as radiation, it decreases in mass, which

causes a decrease in area. A potential way around this dilemma is presented

by the Generalized Second Law. Rather than the entropy of a black hole

and the entropy of the matter outside it both individually constrained to

be increasing, the sum of these is considered to increase. In fact, the loss

in area due to Hawking radiation is balanced by a corresponding increase in

the entropy outside, due to the particles being radiated. Hence, although the

Area Theorem may be invalid, the thermodynamic implications of it are not

necessarily so. The Generalized Second Law, itself, in part relies on Hawking

radiation for validity. A possible refutation of the GSL involves lowering matter

slowly into a black hole, such that no energy is transferred to it. In this ideal

scenario, the area of the black hole would not increase, hence neither would

its entropy, but the entropy of the matter would still be lost. A resolution

to this problem involves the thermal atmosphere of a black hole. Trying to

lower matter slowly through the temperature gradient surrounding the black

hole would put pressure on it, and in doing so, energy would be transferred as

work. This would cause a slight increase in the black hole area just enough

to account for the lost entropy of the in-falling matter. One consequence of

Hawking radiation is the eventual evaporation of a black hole, by radiating

away all its energy. The lifetime of a black hole is theorized to be finite, and

can be calculated for a number of common black hole geometries.

3.3 Loops, Networks and Spinfoam

After having explore the more issues of black hole thermodynamics let us return
back to our main topic, the formulation of the quantum gravity. Up until now
physicist have developed a large collection of theories that are treated as possible
candidates for quantum gravity. Among of them, are theories with names, such
as non-commutative geometry, supergravity and twistor theory. A more popular
approach, however, is the String Theory.

According to the String Theory, the fundamental constituents of the material
world are not point-like elementary particles, but tiny one-dimensional strings
having a length of about lp = 10−33cm (the Planck length) that lie on a eleven-
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dimensional spacetime. Like the string of a violin, they can vibrate in many
different ways (different modes), which correspond to the different elementary
particles observed in nature. It is a quantum theory that incorporates gravity
naturally. In its larger framework of M-theory, the strengths of all the four
fundamental forces merge together at very small distance (10−33cm).

There are two classes of strings, those with ends (open strings), and those
without (closed strings, i.e., a loop). The particles associated with the open
strings are the spin-1 gauge bosons and fermions. Their movement is restricted
on the surface of a membrane by some boundary conditions. Graviton with spin-
2 is an example of closed string, which can travel freely in all spatial dimensions.

When a point particle moves through spacetime, it follows a geodesic and
sweeps out a one-dimensional curve which is referred to as its world-line. How-
ever, when a string propagates through spacetime, it sweeps out a two-dimensional
surface which, by analogy, is called its world-sheet, and moves along a surface
of minimum area. When supersymmetry is incorporated into the original String
Theory, it resolves the problem with tachyon (square of mass is negative), ac-
commodates the ferminonic vibrational pattern, and merge General Relativity
with Quantum mechanics. The Theory of Strings then becomes the Theory of
Superstrings.

There is, however, and another more consistent and best-developed alter-
native approach, which is the subject of this report, that seems to be more
promising and reliable than String Theory: the Loop Quantum Gravity. Loop
Quantum Gravity is a mathematically well-defined and non-perturbative quan-
tization of General Relativity in four-dimensions, that serves the minimality of
structures. Minimality here means that one explores the logical consequences
of bringing together the two fundamental theories of modern physics, without
adding any experimentally unverified additional structures (as in String Theory)
such as extra dimensions, extra symmetries or extra particle content beyond the
standard model. Loop Quantum Gravity therefore is, by definition, not a unified
theory of all interactions in the standard sense since such a theory would require
a new symmetry principle. However, it unifies all presently known interactions
in a new sense by quantum mechanically implementing their common symmetry
group, the four-dimensional diffeomorphism group, which is almost completely
broken in perturbative approaches.

Loop Quantum Gravity is an attempt to quantize gravity that does not make
any assumptions beyond the experimentally well tested principles of General
Relativity and Quantum theory. In particular it relies on two key principles of
General Relativity and performs calculation with standard techniques of quan-
tum mechanics. The first key principle is already known: the background inde-
pendence. Although we have explained what is the background independency,
it is worth mentioning the fact that the String Theory, as currently formulated,
is not background independent; the equations describing the strings are set up
in a predetermined classical (that is, non-quantum) flat spacetime.

The second principle, known as name diffeomorphism invariance, is closely
related to background independence. This principle implies that the choice of
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Loops vs. Strings

The main merits of String Theory are that it provides an elegant uni-
fication of known fundamental physics, and that it has a well defined
perturbation expansion, finite order by order. Its main incompletenesses are
that its non-perturbative regime is poorly understood, and that we do not
have a background-independent formulation of the theory. In a sense, we do
not really know what the theory we are talking about is. Because of this
poor understanding of the non perturbative regime of the theory, Planck scale
physics and quantum gravitational phenomena are not easily controlled: Except
for a few computations, there has not been much Planck scale physics derived
from String Theory so far. There are, however, two sets of remarkable physical
results.
The first is given by some very high energy scattering amplitudes that have been
computed. An intresting aspect of these results is that they indirectly suggest
that geometry below the Planck scale cannot be probed and thus in a sense
does not exist in String Theory. The second physical achievement of String
Theory (which followed the d-branes revolution) is the recent derivation of the
Bekenstein-Hawking black hole entropy formula for certain kinds of black holes.
he main merit of Loop Quantum Gravity, on the other hand, is that it pro-
vides a well-defined and mathematically rigorous formulation of a background-
independent, non-perturbative generally covariant Quantum Field Theory. The
theory provides a physical picture and quantitative predictions of the world at
the Planck scale. The main incompleteness of the theory is regarding the dy-
namics, formulated in several variants. So far, the theory has lead to two main
sets of physical results. The first is the derivation of the (Planck scale) eigen-
values of geometrical quantities such as areas and volumes. The second is the
derivation of black hole entropy for normal black holes.

Finally, strings and loop gravity may not necessarily be competing theories.

There might be a sort of complementarity between the two. This is due to the

fact that the open problems of String Theory are with respect to its background-

independent formulation, and Loop Quantum Gravity is precisely a set of tech-

niques for dealing non-perturbatively with background independent theories.

Perhaps the two approaches might even, to some extent, converge. Undoubt-

edly, there are similarities between the two theories: first of all the obvious fact

that both theories start with the idea that the relevant excitations at the Planck

scale are one dimensional objects call them loops or strings!

coordinates to map spacetime and express equations is totally free. A point in
spacetime is defined only by what physically happens at it, not by its location
according to some special set of coordinates (no coordinates are special). Dif-
feomorphism invariance is very powerful and is of fundamental importance in
General Relativity.

The most revolutionary idea mediated by Loop Quantum Gravity is the
change of our perception about space and time. The consideration of space and
time as a continuous and smooth entity is now totally revised. Here space, as
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well as time, appears to be quantized. Although this seems to be an intuitive
initial condition it is not. The discreteness of space and time reveals from
calculation on the mathematical language of the theory. Indeed, when Smolin,
Ashtekar, Rovelli and Jacobson, the founder fathers of Loop Quantum Gravity,
started working on the quantization of gravity at the late 80’s, they found that
space is like atoms: it comes in distinct pieces or “quantum units of area and
volume” (see Figure 3.1). We can call them as the quantum of area and volume,
so long as we bear in mind that not all areas are integer multiples of this one – at
least, not in the most popular version of the theory. This quanta determines the
energy level spacing of the quantum states. The description of those quantum
states is simple and arises from the definition of the Faraday’s lines: a Faraday
line can be viewed as a quantum excitation of the field in the presence of charges.
In the absence of charges these lines must close and form a loop. Now in Loop
Quantum Gravity the the quantum gravitational field is described in terms of
these loops. That is, the loops are quantum excitations of the Faraday lines of
the gravitational field.

The possible values of volume and area are measured in units of the Planck
length3. The Planck length is also related to the strength of gravity, the size of
quanta and the speed of light. It measures the scale at which the geometry of
space is no longer continuous. Remember that the Planck length is very small:
1033cm. The smallest possible nonzero area is about a square Planck length, or
1066cm2. The smallest nonzero volume is approximately a cubic Planck length,
1099cm3. Thus, the theory predicts that there are about 1099 atoms of volume
in every cubic centimeter of space. The quantum of volume is so tiny that there
are more such quanta in a cubic centimeter than there are cubic centimeters in
the visible universe (∼ 1085).

However, space is more than just a collection of volume elements. Rather, the
space is represented by diagrams, the so-called spin networks that represent the
quantum states of area and volume (Figure 3.4). Each network carry some dots
that are called “nodes”, and represent the points where the loops intersect. A
“link” of the net, i.e., the portion of loop between two nodes, indicates precisely
the quanta of space that are adjacent to one another. Two adjacent elements
of space are separated by a surface, and the area of this surface turns out to
be quantized as well. In fact, it soon became clear that nodes carry quantum
numbers of volume elements and links carry quantum numbers of area elements
(Figure 3.2). But what does time represents in Loop Quantum Gravity? Space
is replaced by a spin network and spacetime is therefore described by a history
of spin networks. Time here is not thought continuous but rather as “ticks” of
a clock, that last 10−43sec, i.e., the Plank time. The history of spin networks
is called “spinfoam”, and it has a simple geometrical structure. The history of

3The value of that unit derives intuitionally from the following: The uncertainty principle
states that in order to observe a small region of spacetime we need to concentrate a large
amount of energy and momentum. However, General Relativity implies that if we concentrate
too much energy and momentum in a small region, that region will collapse into a black hole
and disappear. Putting in the numbers,we find that the minimum size of such a region is of
the order of the Planck length about 1.6× 1033cm.
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Figure 3.1: Quantum states of volume and area: A central prediction of the Loop
Quantum Gravity theory relates to volumes and areas. Consider a spherical shell
that defines the boundary, B, of a region of space having some volume. According
to classical (non-quantum) physics, the volume could be any positive real number.
The loop quantum gravity theory says, however, that there is a nonzero absolute
minimum volume (about one cubic Planck length, or 1099 cubic centimeter), and
it restricts the set of larger volumes to a discrete series of numbers. Similarly,
there is a nonzero minimum area (about one square Planck length, or 1066 square
centimeter) and a discrete series of larger allowed areas. The discrete spectrum
of allowed quantum areas (left) and volumes (center) is broadly similar to the
discrete quantum energy levels of a hydrogen atom (right).

a point is a line, and the history of a line is a surface. A spinfoam is therefore
formed by surfaces called faces, which are the histories of the links of the spin
network, and lines called edges, which are the histories of the nodes of the spin
network (Figure 3.3). Now, the fundamental result of Relativity that time flows
differently in different frames, is naturally incorporated in the physical result of
the theory that time in the universe is represented by the ticking of innumerable
clocks: every time a quantum of space moves in a spinfoam the clock at that
location has ticked once!

3.4 Area and Entropy in Loop Gravity

By quantizing a theory, certain physical quantities take only discrete values, such
as the energy levels in the hydrogen atom. Computing these quantized values
involves solving the eigenvalue problem for the “operator” that represents a
particular physical quantity. The volume of a region of space, or a certain
number of loops, which in General Relativity is determined by the gravitational
field. By solving the eigenvalue problem of the volume operator in Loop Gravity,
it was found that the eigenvalues were discrete, that is, there are elementary
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Figure 3.2: Diagrams called spin networks are used by physicists who study Loop
Quantum Gravity to represent quantum states of space at a minuscule scale.
Some such diagrams correspond to polyhedra-shaped volumes. For example, a
cube (a) consists of a volume enclosed within six square faces. The corresponding
spin network (b) has a dot, or node, representing the volume and six lines that
represent the six faces. The complete spin network has a number at the node to
indicate the cubes volume and a number on each line to indicate the area of the
corresponding face. Here the volume is eight cubic Planck lengths, and the faces
are each four square Planck lengths. (The rules of loop quantum gravity restrict
the allowed volumes and areas to specific quantities: only certain combinations
of numbers are allowed on the lines and nodes.) If a pyramid sat on the cubes
top face (c), the line representing that face in the spin network would connect
the cubes node to the pyramids node (d). The lines corresponding to the four
exposed faces of the pyramid and the five exposed faces of the cube would stick
out from their respective nodes. (The numbers have been omitted for simplicity.
In general, in a spin network, one quantum of area is represented by a single
line (e), whereas an area composed of many quanta is represented by many lines
(f). Similarly, a quantum of volume is represented by one node (g), whereas a
larger volume takes many nodes (h). If we have a region of space defined by a
spherical shell, the volume inside the shell is given by the sum of all the enclosed
nodes and its surface area is given by the sum of all the lines that pierce it. The
spin networks are more fundamental than the polyhedra: any arrangement of
polyhedra can be represented by a spin network in this fashion, but some valid
spin networks represent combinations of volumes and areas that cannot be drawn
as polyhedra. Such spin networks would occur when space is curved by a strong
gravitational field or in the course of quantum fluctuations of the geometry of
space at the Planck scale.
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Figure 3.3: Loop quantum gravity replaces the Newtonian concept of background
space with a history of spin networks called a spinfoam. Each link in the network
is associated with a quantum number of area called spin, which is measured in
units related to the Planck length. Here a θ-shaped spin network (bottom) with
three links carrying spins j, k and l evolves in two steps into a spin network
carrying spins o, p, q, j, k, l, m, n and s (top). The initial spin network has
two nodes where the three links meet, and the vertical lines from these nodes
define the edges of the spinfoam. The first vertex which is similar to the vertex
of a Feynman diagram is where the left edge branches off, at which point an
intermediate spin network with spins o, p, q, j, k and l is formed. The edge
on the right branches off in a second interaction vertex, which is enlarged. The
“faces” of the spinfoam are the surfaces swept by the links moving in time. The
enlargement shows that the vertex is connected to four edges and six faces with
associated spins j, k, l, m, n and s. Spinfoams like this one can be thought of as
a discretized quantum spacetime.)

quanta of volume, or elementary grains of space. So far, calculations working
strictly within the framework of Loop Quantum Gravity have been unable to
determine this quantum of area. But now, thanks to work of Hod [13] and
Dreyer [14], an innovative method of calculating the quantum of area have been
shown to give an elegant answer: 4 ln 3 times the Planck area. This method
uses semiclassical ideas from outside Loop Quantum Gravity: the formula for
the frequencies of highly damped vibrational modes of Schwarzschild black hole.
It is still completely mysterious why this method gives this answer. It could be
a misleading coincidence, or it could be an important clue.

The importance of area in quantum gravity has been obvious ever since the
early days of black hole thermodynamics. After the arguments of Bekenstein
that the entropy of a black hole was proportional to its area, Hawking deter-
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Figure 3.4: Left: Elementary grains of space represented by the nodes on a spin
network. The lines joining the nodes, or adjacent grains of space, are called
links. Spins on the links (integer or half-integer numbers) are the quantum
number that determine the area of the elementary surfaces separating adjacent
grains of space. The quantum number of the nodes, which determine the volume
of the grains are not indicated. The spins and the way the come together on the
nodes can take on any integer or half-integer value, and they are governed by
the same algebra as angular momentum in Quantum mechanics. Right: Area
corresponding to a surface carried by a link labeled by j.

mined the constant of proportionality, arriving at the formula

S =
A

4
(3.7)

Understanding this formula more deeply has been a challenge ever since. Now,
after the introduction of Loop Quantum Gravity, things seems to take a new
turn, when Rovelli and Smolin showed that in Loop Quantum Gravity, area is
quantized, with the spin networks to describe the geometry of space

Any surface gets its area from spin network edges that puncture it, and an
edge labeled by the spin j contributes an area of

A = 8πl2P γ
√

j(j + 1) j = 0, 1/2, 1, 3/2 . . . (3.8)

where γ is a dimensionless parameter called Barbero-Immirzi parameter. This
parameter parameterizes an ambiguity in the choice of canonically conjugate
variables that are used in the quantization. There is no a priori reason to fix
the value of this parameter to any particular value.

Given this, it was tempting to attribute the entropy of a black hole to mi-
crostates of its event horizon, and to describe these in terms of spin network
edges puncturing the horizon. After the pioneering work by Rovelli and Smolin,
Krasnov noticed that the horizon of a non-rotating black hole could be described
using a field theory called Chern-Simons theory.

He began working with Ashtekar and Corichi on using this to compute the
entropy of such a black hole. They found out that the geometry of the event



68 Loop Quantum Gravity

horizon is described not only by a list of nonzero spins ji label the spin network
edges that puncture the horizon, but also by a list of numbers mi which ranges in
(−ji, ji) in integer steps. The intrinsic geometry of the horizon is flat except at
the punctures, and the numbers mi describes the angle deficit at each puncture.
To count the total number of microstates of a black hole of area near A, we
must therefore count all lists ji, mi for which

A '
∑

i

8πγ
√

j(j + 1) (3.9)

It turns out that for a large black hole, the great majority of all microstates
come from taking all the spins to be as small as possible. So, we can just count
the microstates where all the spins ji equal 1/2. If there are n punctures, this
gives

A ' 4πγn
√

3 (3.10)

In a state like this, each number mi can take just two values at each puncture.
Thus if there are n punctures, there are 2n microstates, and the black hole
entropy is

S ' ln(2n) ' A ln 2
4πγ

√
3

(3.11)

In short, we see that entropy is indeed proportional to area, at least for large
black holes. However, we only get Hawking’s formula S = A/4 if we take the
Barbero-Immirzi parameter to be

γ =
ln 2
π
√

3
(3.12)

On the one hand this is good: it’s a way to determine the Barbero-Immirzi
parameter, and thus the quantum of area, which works out to

8πγ

√
1
2

(
1
2

+ 1
)

= 4 ln 2 (3.13)

This makes for a pretty picture in which almost all the spin network edges
puncturing the event horizon carry one quantum of area and one qubit of in-
formation. One can also check that the same value of γ works for electrically
charged black holes and black holes coupled to a dilaton field. On the other
hand, it seems annoying that we can only determine the quantum of area with
the help of Hawking’s semiclassical calculation. The strange value of γ might
also make us suspicious of this whole approach.

3.5 Insights form Quasinormal modes

In 1974, Bekenstein had argued that Schwarzschild black holes should have a
discrete spectrum of evenly spaced areas. While this law does not hold in the
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Loop Quantum Gravity description of black holes, it has some of the same
consequences. For example, in 1986 Mukhanov noted that with a law of this
sort, the formula S = A/4 can only hold exactly if the nth area eigenstate has
degeneracy kn and the spacing between area eigensates is 4 ln k for some number
k = 2, 3, 4, . . . He also gave a philosophical argument that the value k = 2 is
preferred, since then the states in the nth energy level can be described using n
qubits.

Many researchers have continued this line of thought in different ways, but
in 1998, Hod [13] gave an remarkable argument in favor of k = 3. His idea
was to determine the quantum of area by looking at the vibrational modes of
the Schwarzschild black hole! Hod argues that if classically a system, such as
the black hole, can undergo periodic motion at some frequency ω, then in the
quantum theory it can emit or absorb quanta of radiation with the corresponding
energy. But the energy of a Schwarzschild black hole is just its mass, and this
is related to the area of its event horizon by

A = 16πM2 (3.14)

so when a black hole absorbs one quantum of radiation its area should change
by

∆A = 32πM∆M = 32πMωtr (~ = 1) (3.15)

The frequency ωtr is correlated with the transition between two black hole
states, or in our theory, with the appearance or disappearance of a puncture of
spin jmin. At that time, observed numerically that asymptotic frequency for a
Schwarzschild black hole tends to the value 0.0874247/2M and he related that
value to the transition frequency. By replacing that value to (3.15) he obtained
for the quantum of area the numerical value:

∆A = 4.39444 (3.16)

which is quite close to 4 ln 3. Thus he concluded that k = 3 and for the transition
frequency (according to the first law of thermodynamics)

ωtr = ωR = TH ln 3 (3.17)

We shall turn now in to more recent developments. In November 2003,
Dreyer (see [14]) found an ingenious way to reconcile Hod’s conjecture with
the Loop Quantum Gravity calculations, within the frame of the statistical-
mechanical interpretation of black hole entropy. The calculation due to Ashtekar
et al used a version of Loop Quantum Gravity where the gauge group is SU(2).
This is why so many formulas resemble those familiar from the Quantum me-
chanics of angular momentum, and this is why the smallest nonzero area comes
from a spin network edge labeled by the smallest nonzero spin: j = 1/2. But
there is also a version of Loop Quantum Gravity with gauge group SO(3), in
which the smallest nonzero spin is j = 1. In that version the spin networks
form a basis of the Hilbert space of the theory. The dimension of that space
increases by each puncture that contributes area. It can be shown that if the
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area is increased by a puncture that its edge has a label j, then the dimension
of the Hilbert space increase by a factor of 2j + 1. Thus if the area of the
horizon is given by a large number of punctures N of edges that have a spin
ji,i = 1, 2, . . . , N , with some arbitrary degeneracy that is not of interest,then
the dimension of that surface is given by

(2j1 + 1)(2j2 + 1) . . . (2jN + 1) =
N∏

i=1

(2ji + 1)

It has been shown that the microstate with the greatest statistical probability
is the puncture with the smallest non-zero spin. Thus the entropy is then just

S = N ln(2jmin + 1) (3.18)

It is easy now to find an expression for the number of punctures N . If we divide
the total area A with the area that contributes the puncture with the lowest
spin one readily finds for the entropy the following expression

S =
A ln(2jmin + 1)

8πl2P γ
√

jmin(jmin + 1)
(3.19)

We must now fix the the Immirzi-Barbero parameter. Again the assumption of
an appearance or disappearance of a puncture at the horizon leads to a transition
between two states of the black hole that correspond to an area change of

∆A = A(j)min = 8πl2P γ
√

jmin(jmin + 1) (3.20)

The change ∆M in the mass again equals the energy of the quantum of en-
ergy emitted with the characteristic frequency ωtr. Thus, recalling again the
expression that we derived for that frequency, we have

∆A = 32πM∆M = 32πMωtr ⇒
∆A = 8πl2P γ

√
jmin(jmin + 1) = 4 ln 3l2P ⇒

γ =
ln 3

2π
√

jmin(jmin + 1)
(3.21)

Hence, based on that new value for γ, Dreyer calculated for the entropy

S =
A

4l2P

ln(2jmin + 1)
ln 3

(3.22)

that gives the Bekenstein-Hawking result S = A/4, just by replacing j = 1/2
by j = 1. This new results matches Hod’s result! For the new calculated value
of the Immirzi parameter

γ =
ln 3

2π
√

2
(3.23)

one obtains an ln 3 as the new quantum of area. But ultimately, all that really
matters is that when j = 1 there are 3 spin states instead of 2. Thus each
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Figure 3.5: (a) The proposed quantum transition between two black hole states
giving rise to the emission of a quantum of energy ~ω. (b) The emerging “trit
of information” picture.

quantum of area carries a “trit” of information instead of a bit (see Figure 3.5),
which is why Dreyer obtains k = 3. With the appearance of Dreyer’s paper,
the suspense became almost unbearable. After all, Hod’s observation relied on
numerical calculations, so the very next digit of his number might fail to match
that of 4 ln 3. Luckily, in December 2002, Motl [15] showed that the match
is exact by using the analysis of Nollert’s continued fraction expansion for the
asymptotic frequencies of quasinormal modes.

3.6 Discussion and Outlook

The attempt to quantize gravity seems to be a quite difficult, but also an in-
triguing task. The formulation of a theory such as the Loop Gravity is not an
achievement of the last decade. Actually, the mathematical foundations of the
theory are, but not also the fundamental concepts and assumptions. For exam-
ple, the notion of spin networks and their fundamental role in the theories of
quantum gravity was firstly proposed by Roger Penrose in the early 70s. After
all, the idea of introducing loops to represent the quantum excitations of the
gravitational field arises from an older idea in superconductivity: the quanti-
zation of the Faraday’s lines, the natural variables of the Yang-Mills theory.
The physical representation of the theory seems to be beautiful and fairly sat-
isfactory. What more for a theory that postulates four dimensions and strikes
quantum gravity by quantizing spacetime! These arguments become even more
significant when considering the fact that Loop Quantum Gravity predicts and
confirms properties of objects made from purely gravity, i.e., the black holes.

Hod’s conjecture and Dreyer’s method for calculating the Immirzi-Barbero
introduce a physical process that could give rise to the asymptotic quasinormal
frequency. This process can be thought as a growing process of a large black
hole which is related to the appearance or disappearance of a puncture at the
surface of the horizon, that is, a physical process of conversion of area quanta
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into matter quanta via the emission of an edge. By equating the mass change
corresponding to this area change with the energy ~ωtr = ~ωR of the quantum
with frequency ωR and using the fact that

MωR =
ln 3
8π

we fix the Immirzi-Barbero parameter. Using the value of that parameter we
are able to calculate the entropy of a black hole, which in our case agrees with
the Bekenstein-Hawking result provided one chooses jmin = 1.

It has to be also pointed out the importance of the appearance of ωR as a
transition frequency in the quantum theory. The existence of a universal limit
for quasinormal mode frequencies, depending only to macroscopic parameters of
the black hole, for non-rotating uncharged black holes is a remarkable fact. An
obvious question is whether such a dependence exists also for rotating charged
black holes, and if in that case, there is a physical picture within Loop Quantum
Gravity that can produce such frequencies.

Indeed, Hod tried to generalize his conjecture to charged and rotating black
holes and using as starting point the first law of thermodynamics

δM = THδS + ΩδJ + ΦδQ (3.24)

He argued and proved qualitatively that in a quantum transition of a rotating
and charged black hole, the quantum of energy that is emitted has a transition
frequency

ωtr = ωR ≡ TH ln 3 + mΩ (3.25)

where m is the azimuthal eigenvalue of the perturbation4. That is, in the
asymptotic quasinormal mode spectrum of a charged and rotating black hole no
contribution to the real part of the frequency is made from the charge term δQ.
Thus, in an numerical investigation of the asymptotic spectrum of an extremal
Reissner-Nordström (Q → 1

2 ), we should expect a zero real part. Motl and
Neitzke found the following analytic expression for the asymptotic frequencies
for a Reissner-Nordstöm black hole

eβω + 2 + 3e−βIω = 0 (3.26)

In the above relation β is the inverse Hawking temperature, β = 4π/(1− k) =
1/TH , where k is given by Q/M = 2

√
k/(1 + k) and βI = −k2β in the inverse

Hawking temperature of the inner horizon. The formula was later rederived by
an independent method. However, the numerical predictions of that formula are
a bit peculiar. In particularly, the complex solutions of (3.26) exactly coincides
with the numerical results of those derived by Kokkotas and Berti [16]. Kokko-
tas and Berti computed for the first time the very highly damped quasinormal

4Rotation in black holes causes a split in the frequencies of the spectrum. This splitting,
which is similar to the Zeeman splitting in the energy levels of an atom due to the external
magnetic field, is represented by the azimuthal quantum number m that takes the values
m = −l, . . . , l.
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Figure 3.6: Left: Behavior of the n = 10 quasinormal frequency in the complex
ω plane. The mode “spirals in” towards its value in the extremal charge limit.
Right: Real part of the RN frequency as a function of charge for n = 5×103. The
numerical result is compared with the result of the analytic formula derived by
Motl and Neitzke. The analytic formula predicts the oscillatory behavior at large
values of charge, but fails to reproduce the TH ln 3 result in the Schwarzschild
limit.

modes for the Reissner-Nordström and Kerr solution. In the case of charged
black holes, they found that quasinormal frequencies show an oscillatory behav-
ior as a function of charge (Figure (??)). According to them, as we approach
to the extremal limit value Q → 1

2 the real part of the frequency approach the
value

ωR → TH ln 3

a value that is also reproduced by the real part of the frequency predicted by
the analytic formula (3.26).

In the case of the Schwarzschild limit, that is, Q → 0, the numerical results
reproduce the expected value TH ln 3. However, using (3.26) one finds instead
(see Figure (??))

ωR → TH ln 5

a prediction that, in any case, is hard to reconcile with Hod’s interpretation,
eq. (3.25), of the asymptotic spectrum.

In the case of Kerr black holes, as we have already stated, rotation introduces
a separation of the frequencies that is represented by the azimuthal eigenvalue m.
Kokkotas and Berti [?] studied again the asymptotic behavior of the quasinormal
modes frequencies and they observed, in particularly for the mode l = m = 2,
that for large n (n ∼ 50) the real part approaches the value

ωl=m=2 = 2Ω + i2πTHn (3.27)

Generally, most modes with m > 0 approach the limiting value ωR = mΩ
(except of a few exceptions, see Figure 3.7). The imaginary part of all modes
with m > 0 have a separation 2πTH , where now TH is the Hawking temperature
of the horizon. We see, however, that the evaluated value for the real part of the
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Figure 3.7: Left: Splitting of the fundamental gravitational mode l = 2. Right:
Trajectory of the first eight Kerr quasinormal frequencies with m = 2 and m =
−2 (dashed lines). We observe the existence of an exceptional modes with n = 6,
that does not tend to the asymptotic frequency mΩ.

asymptotic frequency does not agree with Hod’s conjecture. The term TH ln 3 is
totally missing from the derived expression, we observe only the “corrections”
mΩ due to rotation.

As a conclusion, the numerical results for charged and rotating black holes
seems to suggest that they do not agree with the behavior predicted by Hod’s
conjecture, meaning that Hod’s conjecture prediction must be wrong or it must
be revised and somehow recasted. Similarly, Loop Quantum Gravity has not
offered yet any strong arguments about the nature of the asymptotic spectrum
of charged and rotating black hole, concluding thus that our physical under-
standing for highly damped black hole oscillations and their place in quantum
gravity is admittedly very poor.
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Appendix A

Spherical Harmonics
Normalization

A significant remark is that the ten harmonics, under proper normalization, are
complete over the space of symmetric tensor fields, on a 2-sphere and orthonor-
mal. The tensor spherical harmonics satisfy the orthonormality relation

∫
(Y µν

lm )∗ Y l′m′
µν sin θdθdφ =

1
2
l(l − 1)(l + 1)(l + 2)δll′δmm′

where (Y µν
lm )∗ is the complex conjugate of Y µν

lm . The above mentioned relation is
valid for both axial and polar tensor spherical harmonics. Furthermore, if Y lm

µν

is an even spherical harmonic and X lm
µν an odd one, then it holds the following

property

∫
Xµν

lm Y l′m′
µν sin θdθdφ = 0

which states that the even-parity and odd-parity harmonics are always orthog-
onal. We list the complete set of normalized tensor spherical harmonics used in
the study of the perturbed field equations in Chapter 2:

Y 1
lm =




1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


Ylm,
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Y 2
lm =

i√
2




0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0


Ylm,

Y 3
lm =




0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0


 Ylm,

Y 4
lm =

ir√
2l(l + 1)




0 0 ∂θ ∂φ

0 0 0 0
∗ 0 0 0
∗ 0 0 0


Ylm,

Y 5
lm =

r√
2l(l + 1)




0 0 0 0
0 0 ∂θ ∂φ

0 ∗ 0 0
0 ∗ 0 0


Ylm,

Y 6
lm =

r√
2l(l + 1)




0 0 (1/ sin θ)∂φ (− sin θ)∂θ

0 0 0 0
0 ∗ 0 0
0 ∗ 0 0


 Ylm,

Y 7
lm =

ir√
2l(l + 1)




0 0 0 0
0 0 (sin θ)∂φ (− sin θ)∂θ

0 ∗ 0 0
0 ∗ 0 0


 Ylm,

Y 8
lm =

−ir2

√
2l(l + 1)(l − 1)(l + 2)




0 0 0 0
0 0 0 0
0 0 −(1/ sin θ)Xlm (sin θ)Wlm

0 0 ∗ (sin θ)Xlm


 ,

Y 9
lm =

r2

√
2




0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 sin2 θ


 Ylm,

Y 10
lm =

r2

√
2l(l + 1)(l − 1)(l + 2)




0 0 0 0
0 0 0 0
0 0 Wlm Xlm

0 0 ∗ (sin2 θ)Wlm




where Wlm = (∂2
θθ − cot θ∂θ − 1

sin2 θ
∂2

φφ) and Xlm = 2(∂2
θφ − cot θ∂φ).
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