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The Langevin EquationThe Langevin Equation

 Brownian motion is the irregular, almost Brownian motion is the irregular, almost 
random motion observed in many physical random motion observed in many physical 
problems like the motion of pollen grains problems like the motion of pollen grains 
suspended in a liquid.suspended in a liquid.

 The problem of Brownian motion was solved The problem of Brownian motion was solved 
many years after it’s formulation by Einstein.many years after it’s formulation by Einstein.

 Langevin proposed a different (and more Langevin proposed a different (and more 
simple) way to approach Brownian motion. He simple) way to approach Brownian motion. He 
used the following equationused the following equation

( )q V q qγ ξ= − − +&& &

 The above equation is a second order stochastic differential equation (SDE).
 It is equivalent to the Newtonian equation of motion for a force derived from a potential 

plus a drift and a stochastic term.
 The stochastic term is a white noise Gaussian process. It is equal to
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The Langevin Equation – ExampleThe Langevin Equation – Example

Formulation
 Consider a particle inside a liquid whose mass is greater but comparable to the mass of 

the molecules of the liquid. The particle is under the influence of gravity field.
 The equations of motion for the particle is

 In the Langevin equation the potential is the gravity field, the drift term represents the 
friction caused by the motion of the particle inside the liquid and the stochastic term is 
due to the unpredictable collisions of the particle with the molecules of the liquid.

 We study the motion of the particle in a vertical plane (2 dimensions).

Solution
 In the absence of the stochastic term there is a unique solution for specific initial 

conditions.
 For low intensity noise the orbit of the particle is slightly perturbed. For higher intensity 

noise the orbit is completely different.
 The averaged orbit                                             is same with the one of the noise-free 

system
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The Langevin Equation – ExampleThe Langevin Equation – Example



  

The Diffusion CoefficientThe Diffusion Coefficient

 An essential phenomenon that characterizes many stochastic systems, like those 
described by the Langevin equation, is that if the particles of the system are in a small 
area, after some time they will spread in space.

 This process is quantified with the diffusion coefficient defined as

 Higher value of the diffusion coefficient means that the particles spread in space faster.
 If the second moment of space grows linearly with time, for some time interval, we say 

that the system is in normal diffusion. If it grows faster we have superdiffusion and if 
slower we have subdiffusion.
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 The experimental calculation of diffusion is 
practical impossible. A quantity that describes the 
diffusive behavior of a system and we are able to 
calculate is

 A feature of many stochastic systems, like the 
ones we are going to study, is that they reach 
normal diffusion state after some time.
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Periodic Potentials – DynamicsPeriodic Potentials – Dynamics

 If the potential in the Langevin equation is a If the potential in the Langevin equation is a 
smooth periodic function of space then there smooth periodic function of space then there 
exist global minima and global maxima. The exist global minima and global maxima. The 
interval of length equal to the period that has interval of length equal to the period that has 
end points global maxima of the potential is end points global maxima of the potential is 
called a well.called a well.

 The potential can be seen as a sequence of The potential can be seen as a sequence of 
wellswells

 The motion of the Brownian particle is The motion of the Brownian particle is 
characterized by jumps between the wells and characterized by jumps between the wells and 
trapping inside them.trapping inside them.

21

2
D κ= l

 The possibility a jump will occur in a certain period of time is called jump rate.
 The particle may pass many wells before it gets trapped again. Thus we have jumps 

with various lengths.
 The jump rate and jump lengths depend on friction, temperature and the potential.
 The diffusion coefficient can be calculated from the formula



  

Periodic Potentials – Time SeriesPeriodic Potentials – Time Series



  

Underdamped & Overdamped LimitUnderdamped & Overdamped Limit

Underdamped limitUnderdamped limit
 For the case that For the case that γγ is far less than 1 a formula for the diffusion is available. This formula  is far less than 1 a formula for the diffusion is available. This formula 

is valid for low temperatures and for cosine potential is equal tois valid for low temperatures and for cosine potential is equal to

 As we can see, the diffusion coefficient increases when we raise the temperature As we can see, the diffusion coefficient increases when we raise the temperature ββ-1-1  
and decreases when we raise the friction and decreases when we raise the friction γγ. . 

Overdamped limitOverdamped limit
 For the case that For the case that γγ  is far bigger than 1 the left hand term in the Langevin equation is is far bigger than 1 the left hand term in the Langevin equation is 

negligible and the equation reduces to the 1 dimensional SDE (after elimination of negligible and the equation reduces to the 1 dimensional SDE (after elimination of γγ))

 It is easier and more efficient to study the above equation instead of the original one.It is easier and more efficient to study the above equation instead of the original one.
 For the overdamped case an analytic formula is also available. This formula, for cosine For the overdamped case an analytic formula is also available. This formula, for cosine 

potential ispotential is

( ) 12q V q Wβ −= − + &&
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The Monte Carlo Integration MethodThe Monte Carlo Integration Method

 The concept of this method is to integrate the The concept of this method is to integrate the 
Langevin equation using a numerical scheme, for Langevin equation using a numerical scheme, for 
large enough time and a large enough number of large enough time and a large enough number of 
particles and then calculate the diffusion through particles and then calculate the diffusion through 
the definition formula.the definition formula.

 If we don’t know the time needed for the system to If we don’t know the time needed for the system to 
reach normal diffusion state we should estimate it reach normal diffusion state we should estimate it 
experimentally with a graph of experimentally with a graph of DD** versus t. versus t.

 In order to apply a numerical scheme we have to In order to apply a numerical scheme we have to 
rewrite the Langevin equation as a systemrewrite the Langevin equation as a system

( )( ) 12dp V q p dt dW

dq pdt

γ γβ −= − − +

=

 In numerical analysis, the term dW is translated as a gaussian random number of mean 
value zero and variance 1, denoted as N(0,1).

 The second equation can be integrated as an ordinary differential equation.
 For SDE there are two types of convergence, the strong (convergence of a single orbit) 

and the weak (convergence of averaged quantities).



  

The Monte Carlo Integration MethodThe Monte Carlo Integration Method

Euler-Maruyama schemeEuler-Maruyama scheme
 The Euler-Maruyama scheme is a generalization of the Euler scheme for ODE.The Euler-Maruyama scheme is a generalization of the Euler scheme for ODE.
 For a differential equation of the formFor a differential equation of the form

 The Euler-Maruyama scheme isThe Euler-Maruyama scheme is

 The orders of convergence are 0.5 for strong and 1 for weak.The orders of convergence are 0.5 for strong and 1 for weak.

Milstein schemeMilstein scheme
 The Milstein scheme isThe Milstein scheme is

 The orders of convergence are 1 for strong and 2 for weak.The orders of convergence are 1 for strong and 2 for weak.
 The difference with the Euler-Maruyama scheme is a term that is proportional to the The difference with the Euler-Maruyama scheme is a term that is proportional to the 

derivative of derivative of b(x,t).b(x,t). Since in the Langevin equation this term is constant the two methods  Since in the Langevin equation this term is constant the two methods 
coincide.coincide.
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The Monte Carlo Integration MethodThe Monte Carlo Integration Method

ConvergenceConvergence
 There are several parameters that affect the convergence in the Monte Carlo method. There are several parameters that affect the convergence in the Monte Carlo method. 

ParticularlyParticularly
 The time step The time step dtdt: The Milstein scheme has weak rate of convergence 2. That : The Milstein scheme has weak rate of convergence 2. That 

means that the error is proportional to (means that the error is proportional to (ΔΔtt))22. The usual values of the time step are . The usual values of the time step are 
between 10between 10-2-2 and 10 and 10-3-3..

 The integration time The integration time TT: The integration time has to be equal or greater from the : The integration time has to be equal or greater from the 
time needed so that the system will reach state of normal diffusion. A main factor time needed so that the system will reach state of normal diffusion. A main factor 
that affects this time is the friction coefficient that affects this time is the friction coefficient γγ. . For low values of dissipation the For low values of dissipation the 
necessary time is at least one order of magnitude greater than 1/necessary time is at least one order of magnitude greater than 1/γγ. . For mid to large For mid to large 
values of dissipation we usually use values of dissipation we usually use ΤΤ = 1000. = 1000.

 The number of particles The number of particles mm: The usual number for the particles are between 10: The usual number for the particles are between 1033 and  and 
101044..

 The friction The friction γγ, , the temperature the temperature ββ-1-1  and the potential and the potential VV((qq): They determine the value ): They determine the value 
of the diffusion coefficient. This value itself affect the time needed for the system to of the diffusion coefficient. This value itself affect the time needed for the system to 
reach normal diffusion.reach normal diffusion.

 The quality of the Gaussian Random Number Generator.The quality of the Gaussian Random Number Generator.



  

The Jumps MethodThe Jumps Method

 The jumps method is based in the formula for the diffusion coefficient in periodic The jumps method is based in the formula for the diffusion coefficient in periodic 
potentialspotentials

 To calculate the diffusivity we apply the following stepsTo calculate the diffusivity we apply the following steps
 We integrate the Langevin equation once with a numerical scheme that was We integrate the Langevin equation once with a numerical scheme that was 

described before and we store the orbit in a vector. The integration time is far described before and we store the orbit in a vector. The integration time is far 
bigger than the one used in Monte Carlo integration method.bigger than the one used in Monte Carlo integration method.

 From the vector of positions we get a vector of the wells in which the particle was.From the vector of positions we get a vector of the wells in which the particle was.
 We write the sequence of the wells the particle followedWe write the sequence of the wells the particle followed
 We remove from the sequence the wells in which the particle stayed there for less We remove from the sequence the wells in which the particle stayed there for less 

than some time than some time ττ.. We merge the consecutive terms that refer to the same well. We merge the consecutive terms that refer to the same well.
 From the number of the elements of the sequence we get the number of the jumps, From the number of the elements of the sequence we get the number of the jumps, 

and therefore the jump rateand therefore the jump rate
 From the differences in the sequence we get the lengths of the jumps. We calculate From the differences in the sequence we get the lengths of the jumps. We calculate 

the mean squared jump length.the mean squared jump length.
 We apply the above to the formula for the diffusionWe apply the above to the formula for the diffusion
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The Jumps MethodThe Jumps Method

The definition of jumpThe definition of jump
 We say that a particle is trapped in a potential well if it stays there for more than the We say that a particle is trapped in a potential well if it stays there for more than the 

relaxation time.relaxation time.
 A jump occurs when a particle is trapped in a well and then, after some time gets trapped A jump occurs when a particle is trapped in a well and then, after some time gets trapped 

in a different well. The difference of the wells is the jump length.in a different well. The difference of the wells is the jump length.
 In case that a particle moves from one well to a next one and then returns to the first one In case that a particle moves from one well to a next one and then returns to the first one 

this may not be a jump, depending on how long the particle stayed there.this may not be a jump, depending on how long the particle stayed there.
 In case that a particle moves from one well to the next one and then to the very next one In case that a particle moves from one well to the next one and then to the very next one 

this may be 2 jumps of length 1 or 1 jump of length 2, depending on the time the particle this may be 2 jumps of length 1 or 1 jump of length 2, depending on the time the particle 
stayed in the intermediate well.stayed in the intermediate well.



  

The Jumps MethodThe Jumps Method

The trapping timeThe trapping time
 The relaxation time for cosine potential in the underdamped and overdamped limits isThe relaxation time for cosine potential in the underdamped and overdamped limits is

 If instead of the relaxation time we use some other time If instead of the relaxation time we use some other time τ τ as a minimum trapping time as a minimum trapping time 
then the results we are going to get will be quite different if then the results we are going to get will be quite different if τ < ττ < τrelrel and (almost) the same  and (almost) the same 

if if τ τ >> τ τrelrel, but not far bigger. This is illustrated in the following pictures, but not far bigger. This is illustrated in the following pictures
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The Jumps MethodThe Jumps Method

Storing dataStoring data
 Storing all the positions of the orbit is much memory consuming. For this reason we Storing all the positions of the orbit is much memory consuming. For this reason we 

store only a percentage of them, for example 1 point for every 100.store only a percentage of them, for example 1 point for every 100.
 The less we store the less memory and processing time is needed. But subtracting too The less we store the less memory and processing time is needed. But subtracting too 

many points may lead to poor results, because the orbit may not look like the original many points may lead to poor results, because the orbit may not look like the original 
one at all.one at all.

 To apply the above we use an inner loop while integrating.To apply the above we use an inner loop while integrating.



  

The Jumps MethodThe Jumps Method

The transformation & the sequence of wellsThe transformation & the sequence of wells
 From the vector of positions (the orbit) we get the vector of wells if we divide each From the vector of positions (the orbit) we get the vector of wells if we divide each 

element with the period and round to the nearest integer. This transformation can be element with the period and round to the nearest integer. This transformation can be 
seen in the following picturesseen in the following pictures

 From the vector of wells we separate the orbit of the particle in time intervals in which From the vector of wells we separate the orbit of the particle in time intervals in which 
the particle is inside the same well.the particle is inside the same well.

 From these intervals we remove the ones that the particle was not trapped and then we From these intervals we remove the ones that the particle was not trapped and then we 
merge the consecutive terms that refer to the same well to get the sequence of the wells merge the consecutive terms that refer to the same well to get the sequence of the wells 
where the particle was trapped.where the particle was trapped.



  

The Jumps MethodThe Jumps Method

ConvergenceConvergence
 There are several parameters that affect the convergence in the Jumps method. There are several parameters that affect the convergence in the Jumps method. 

ParticularlyParticularly
 The time step The time step dtdt: The same with the Monte Carlo method. Almost every time we : The same with the Monte Carlo method. Almost every time we 

use time step equal to 10use time step equal to 10-2-2..
 The integration time The integration time TT: We usually get good results for integration time 10: We usually get good results for integration time 1066. For . For 

more accuracy we use 10more accuracy we use 1077 and for fast results we use 10 and for fast results we use 1055..
 The friction The friction γγ, , the temperature the temperature ββ-1-1  and the potential and the potential VV((qq): They determine the value ): They determine the value 

of the diffusion coefficient. For low values of diffusivity a very long integration time of the diffusion coefficient. For low values of diffusivity a very long integration time 
is needed in order to get affordable number of jumps. From the diffusion coefficient is needed in order to get affordable number of jumps. From the diffusion coefficient 
formula we getformula we get

If the diffusion is of order of 10If the diffusion is of order of 10-5-5 then for T = 10 then for T = 1066 we have about 1 jump, leading to  we have about 1 jump, leading to 
poor results.poor results.

 The quality of the Gaussian Random Number Generator.The quality of the Gaussian Random Number Generator.
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The Poisson Equation MethodThe Poisson Equation Method

 The Poisson equation method is derived from Multiscale analysis.The Poisson equation method is derived from Multiscale analysis.
 The diffusion coefficient is calculated from the formulaThe diffusion coefficient is calculated from the formula

where the function where the function φφ is the solution of the Poisson equation is the solution of the Poisson equation

and and ρρβ β   is the Maxwell-Boltzmann distributionis the Maxwell-Boltzmann distribution

 The differential operator The differential operator LL that appears in the Poisson equation is that appears in the Poisson equation is

 The integral of diffusion can be calculated numerically. Our work for calculating the The integral of diffusion can be calculated numerically. Our work for calculating the 
diffusion reduces to finding the function diffusion reduces to finding the function φφ..
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The Poisson Equation MethodThe Poisson Equation Method

Solution to the Poisson equationSolution to the Poisson equation
 We will look for a solution of the formWe will look for a solution of the form

where where ffnn((pp) are the eigenfunctions of the operator ) are the eigenfunctions of the operator LL00 and are the normalized Hermite  and are the normalized Hermite 

polynomialspolynomials

 The normalized Hermite polynomials are orthonormal with densityThe normalized Hermite polynomials are orthonormal with density

 The gradient of the potential that appears in The gradient of the potential that appears in LL should also be expanded in Fourier  should also be expanded in Fourier 
seriesseries
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The Poisson Equation MethodThe Poisson Equation Method

The diffusion integralThe diffusion integral
 The integral that gives the diffusion isThe integral that gives the diffusion is

 If we apply the expansion of If we apply the expansion of φ φ in the above formula, after some calculations we getin the above formula, after some calculations we get

 Expanding the term Expanding the term ee--ββVV((qq ) ) in a Fourier series we finally get in a Fourier series we finally get

where where UUkk are the coefficients of the Fourier expansion of  are the coefficients of the Fourier expansion of ee--ββVV((qq ) )..

 Thus, in order to calculate the diffusion we only need the Fourier expansions of Thus, in order to calculate the diffusion we only need the Fourier expansions of φφ11  

and the one of and the one of ee--ββVV((qq  ))  ..
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The Poisson Equation MethodThe Poisson Equation Method

Derivation of the linear systemDerivation of the linear system
 Our goal is to find the coefficients Our goal is to find the coefficients φφnknk of the expansion of  of the expansion of φφ. . In order to do that we In order to do that we 

substitute the expansion of substitute the expansion of φφ  in the Poisson equation and we follow the stepsin the Poisson equation and we follow the steps
 We act with the operator We act with the operator LL00 on the functions  on the functions ffnn((pp).).

 We eliminate the operators We eliminate the operators pp and  and ddpp using the relations that hold for the normalized  using the relations that hold for the normalized 

Hermite polynomialsHermite polynomials

 We make the suitable transformations for the indices and then we make the We make the suitable transformations for the indices and then we make the 
factorization with factorization with ffnn((pp). Using the fact that                        , we demand that the ). Using the fact that                        , we demand that the 

coefficients of the functions coefficients of the functions ffnn((pp) are equal to zero.) are equal to zero.

 We expand the gradient of the potential in Fourier series.We expand the gradient of the potential in Fourier series.
 We make the suitable transformations for the indices and then we make the We make the suitable transformations for the indices and then we make the 

factorization with factorization with ee-ikq-ikq. We demand that the coefficients of . We demand that the coefficients of ee-ikq-ikq areequal to zero. areequal to zero.
 From the above process we get a linear system for the coefficients From the above process we get a linear system for the coefficients φφnknk..
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The Poisson Equation MethodThe Poisson Equation Method

Formulation of the linear systemFormulation of the linear system
 The equation that we get from the previous process isThe equation that we get from the previous process is

 The above equation represents a system of infinite equations and infinite variables. To The above equation represents a system of infinite equations and infinite variables. To 
solve it, we keep the first solve it, we keep the first NN+1 terms of the Hermite expansion and the first +1 terms of the Hermite expansion and the first KK+1 terms +1 terms 
(both positive and negative) of the Fourier expansion. The term (both positive and negative) of the Fourier expansion. The term φφ0000  is absent and one is absent and one 

equation is linearly dependent of the others. We remove the equation for equation is linearly dependent of the others. We remove the equation for nn, , k k = 0.  Thus, = 0.  Thus, 
we get a finite system with (we get a finite system with (NN+1)(2+1)(2KK+1)-1 equations and variables of the form                 +1)-1 equations and variables of the form                 
withwith

 and αij is the coefficient of xj in the ith equation, which is for values of n and k
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The Poisson Equation MethodThe Poisson Equation Method

The numerical schemeThe numerical scheme
 An algorithm that uses this method to calculate the diffusion, briefly follows the stepsAn algorithm that uses this method to calculate the diffusion, briefly follows the steps

 Create the square matrix Create the square matrix AA with zero elements of dimensions ( with zero elements of dimensions (NN+1)(2+1)(2KK+1)-1.+1)-1.  Using Using 
loops give values for the elements of loops give values for the elements of AA..

 Create the vector Create the vector bb with zero elements of dimensions ( with zero elements of dimensions (NN+1)(2+1)(2KK+1)-1.+1)-1.  Give value Give value 
for the non-zero element of for the non-zero element of bb..

 Inverse the Matrix Inverse the Matrix AA..
 Multiply Multiply AA-1-1 with  with b b and store the result in a vector called and store the result in a vector called φφ..
 Find the Fourier series (using an integrating routine) for Find the Fourier series (using an integrating routine) for ee--ββVV((qq ) ) and store the first  and store the first KK+1 +1 

coefficients in a vector called coefficients in a vector called UU..
 Find the factor Find the factor ZZ (using an integrating routine). (using an integrating routine).
 Calculate the diffusion with the formulaCalculate the diffusion with the formula

( ) 3 21 1
12

k

k k
k

D Z Uπ β φ
=

− −
−

=−

=



  

Comparison of Numerical ResultsComparison of Numerical Results

 Numerical results that obtained with the methods described before are presented in Numerical results that obtained with the methods described before are presented in 
following pictures for comparison.following pictures for comparison.

 The calculation time was the same for all the methods. The programs run in the same The calculation time was the same for all the methods. The programs run in the same 
computer.computer.

 The calculation time was far greater for low values of friction, since it is more difficult to The calculation time was far greater for low values of friction, since it is more difficult to 
get results in this case.get results in this case.

 With the Monte Carlo integration method we were not able to get affordable results for With the Monte Carlo integration method we were not able to get affordable results for 
values of friction far from 1.values of friction far from 1.

 With the Jumps method we can get results for a wider range of dissipation, but the With the Jumps method we can get results for a wider range of dissipation, but the 
values are not always perfectly accuratevalues are not always perfectly accurate

 The Poisson equation method produces result that matches perfectly with the The Poisson equation method produces result that matches perfectly with the 
theoretical values for all the regimes of friction.theoretical values for all the regimes of friction.

 From the above we can conclude that the Poisson equation method is superior to the From the above we can conclude that the Poisson equation method is superior to the 
others.others.

 The Poisson equation can give perfect results for large values of dissipation even with The Poisson equation can give perfect results for large values of dissipation even with 
extremely small calculation time.extremely small calculation time.



  

Comparison of Numerical ResultsComparison of Numerical Results



  

ConclusionsConclusions

 We described the motion of a Brownian particle in a periodic potential. We presented We described the motion of a Brownian particle in a periodic potential. We presented 
three different methods to calculate the diffusivity.three different methods to calculate the diffusivity.

 The Monte Carlo integration method is not limited to periodic potential and it is fast and The Monte Carlo integration method is not limited to periodic potential and it is fast and 
easy to construct a program and get values for the diffusion. In contrast, it lacks of easy to construct a program and get values for the diffusion. In contrast, it lacks of 
efficiency and for very low or very big values of dissipation gives very poor results. A efficiency and for very low or very big values of dissipation gives very poor results. A 
generalization to more dimensions is straightforward.generalization to more dimensions is straightforward.

 The Jumps method can be applied only to periodic potentials. It needs more time to The Jumps method can be applied only to periodic potentials. It needs more time to 
construct a program, but is more efficient than the Monte Carlo integration method. construct a program, but is more efficient than the Monte Carlo integration method. 
Generalization to more dimensions is also straightforward.Generalization to more dimensions is also straightforward.

 The Poisson equation method is the most efficient method and gives perfect result for a The Poisson equation method is the most efficient method and gives perfect result for a 
very wide range of dissipation. Needs more time to construct a program. The very wide range of dissipation. Needs more time to construct a program. The 
generalization to more dimensions is not obvious.generalization to more dimensions is not obvious.
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