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I. INTRODUCTION

According to general relativity, compact concentrations of energy (e.g, neutron stars,
black holes) should warp spacetime strongly, and whenever such an energy concentration
changes shape, it should create a dynamically changing spacetime warpage that propagates
out through the Universe at the speed of light. This propagating warpage is called gravi-
tational radiation -a name which arises from general relativistic description of gravity as a
consequence of spacetime warpage. Like water waves on the ocean the concept of a gravi-
tational wave requires the idealization of a smooth, unperturbed background on which the
waves propagate. Unlike water waves, however, gravitational waves are not motion in a
material medium; they are ripples in the fabric of spacetime itself. Once the waves leave
their sources (near zone), they exist generally in regions where their wavelengths A are very
small compared to the radius of curvature R of the background spacetime through which
they propagate.

Gravitational waves have two linear polarizations, conventionally called + (plus) and X
(cross). Associated with each polarization there is a gravitational-wave field, hy and h,,
which oscillates in time and propagates with the speed of light. Each wave field produces
tidal forces (stretching and squeezing forces) on any object or detector through which it
passes. Relative to the object’s center, the forces have the quadrupole patterns shown in

Fig. 1.
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FIG. 1. The lines of force associated with the two polarizations of a gravitational wave.

There are great differences between the gravitational waves and the electromagnetic



waves.

1. Electromagnetic waves are oscillations of the electromagnetic field that propagate
through spacetime; gravitational waves are oscillations of the spacetime itself, as I

mentioned above.

2. Electromagnetic waves are almost always incoherent superpositions of emission from
individual electrons, atoms, and molecules. Gravitational waves are produced by coher-
ent, bulk motions of huge amounts of mass-energy or the energy of vibrating, nonlinear

spacetime curvature.

3. Electromagnetic waves are easily absorbed, scattered, and dispersed by matter. Grav-

itational waves travel nearly unscattered through all amounts of intervening matter.

4. Electromagnetic waves have frequencies that begin at f ~ 107 Hz and extend upward
by roughly 20 orders of magnitude. Gravitational waves frequencies should begin at

f ~ 10* Hz and extend downwards by roughly 20 orders of magnitude.

5. Since the wavelengths of the electromagnetic waves are small compared to their sources
(gas clouds, stellar atmospheres, accretion discs), from the waves we can make pic-
tures of the sources. The wavelengths of gravitational waves are comparable to or
larger than their sources, so we cannot make pictures of their sources. Instead, the
gravitational waves are like sound; they carry, in two independent waveforms, a stereo-

phonic, description of their sources.

These enormous differences make it likely that most (but not all) gravitational waves
sources that our instruments detect will not be seen electromagnetically, and vice versa.
For example, typical electromagnetic wave sources are stellar atmospheres, accretion disks,
and clouds of interstellar gas —mnone of which emit significant gravitational waves— while
typical gravitational waves sources are the cores of supernovae (which are hidden from
electromagnetic view by dense layers of surrounding stellar gas), and colliding black holes

(which emit no electromagnetic radiation at all).
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We are sure about the existence of gravitational waves since we know that the orbital
frequency of the binary pulsar PSR1913416 is increasing with time due to the emission
of gravitational radiation. But our desire is to “see” gravitational waves directly and not
indirectly by their consequences. There are a number of efforts, worldwide, to detect grav-
itational waves. These efforts are driven in part by the desire to “see gravitational waves
alive,” as I mentioned earlier, but more importantly by the goal of using the waves as a
probe of the Universe and of the nature of gravity. They should be a powerful probe, since
they carry very detailed information about gravity and their sources.

This paper is organized as follows:

In Sec. II, T will refer to possible sources of gravitational radiation, that is supernova
explosions, coalescing binaries, pulsars, big bang etc. I will make a detailed reference to the
coalescing binaries and pulsars because their study is easier and more understandable.

In Sec. III, T will mention the two kind of detectors that are developed for catching
gravitational waves and the methods we use to search the signals in the noisy output of the
detectors.
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Finally, in Sec. IV, I will analyse the “ inverse problem ”, namely the way to extract

from a gravitational wave signal the parameters of its source.

II. SOURCES OF GRAVITATIONAL RADIATION
A. Coalescing compact binaries

The best understood of all gravitational wave sources are coalescing compact binaries
composed of neutron stars (NS) or black holes (BH). The famous Hulse-Taylor binary pulsar
is an example of a NS/NS binary whose waves could be measured by LIGO/VIRGO, if we
were to wait long enough. At present the PSR19134-16 has an orbital frequency of about
1/(8h) and emits its waves at twice this frequency, roughly 10™* Hz. This is far outside the

LIGO/VIRGO band. However, as a result of their lose of orbital energy to gravitational



waves, the PSR1913+16 neutron stars are gradually spiraling inward. If we wait 10% years,
this inspiral will bring the waves into the LIGO/VIRGO band (~ 10 Hz to 10® Hz). As the
two stars continue their inspiral the wave’s frequency will then increase over a time of about
15 min from 10 Hz to 10® Hz, at which point the two stars will collide and coalesce. It is
these last 15 minutes of the inspiral, with ~ 16.000 cycles of waveform oscillation, and the
final coalescence that the LIGO/VIRGO seeks to monitor.

The important question that arises is how many of these systems exist in our Galaxy
and generally in the close Universe. According to estimates by Narayan, Piran, Shemi and
Phinney based on statistics of binary pulsar searches and discoveries, in our Galaxy there
is one every 100.000 years. Extrapolating out through the Universe we find that we have to
look out to a distance of 200 Mpc (give or take a factor ~ 2) to have some hope to detect
such waves in a reasonable time.

The observationally inferred coalescence rate is roughly 100 times smaller than the birth
rate of the NS/NS binaries’ progenitors; that are massive, compact, main-sequence binaries.
Therefore, either 99% of progenitors fail to make it to the NS/NS state (e.g, because of
binary disruption during a supernova), or else they do make it, but they wind up as a class
of NS/NS binaries that has not yet been discovered in any of the pulsar searches. If the
latter is the case, then the coalescence rate in our galaxy will be one per 1000 years and so
the LIGO/VIRGO will have to look out to about 40 Mpc rather than 200 Mpc to see a few

coalescing binaries per year.

1. Inspiral wave forms and the information they carry

Neutron stars and black holes have such intense gravity that is exceedingly difficult
to deform them. Correspondingly, as they spiral inward in a compact binary, they do
not gravitationally deform each other significantly until several orbits before their final
coalescence. This means that the inspiral wave forms are determined to high accuracy by

only a few parameters: the masses and spin angular momentum of the bodies and their



initial orbital parameters (the parameters when the wave enters the detector).

Although tidal deformations are negligible during inspiral, relativistic effects can be very
important. If we neglect those effects and approximate gravity as Newtonian we will get
the following for a binary system: (We assume that the two bodies move on circular orbits
around their center of mass). The kinetic energy of each body, and the total kinetic energy

of the system are, respectively,

~ Gumy T ~ Gumy ~ Gmyimy
1 — 2R ) 2 — 2R ) tot — 2R )

(1)

where my, msy are the masses of the two stars, p is the reduced mass of the system p =

mymsy/my + my and R is the distance between the two stars. The potential energy of the

system is :
Gm1m2

V=— ) 2
, )

So the total energy of the system is

Gm1m2

Ei, 3
= §)

But we know from general relativity that the energy loss rate is given by

db 1G< ------ _32G4M3u2
dt 5V Y 5 ¢ RP

(4)

By combining the above equation with Eq. (3) and by solving with respect to R we get the

expression below for R(t):

3m1m2 14 4
R(t) = (256G M) (te —1)"/%, (5)

5¢P
where ¢ is the speed of light, M is the total mass and t. is the so called coalescence time,
which is the time the two stars will coalesce. Taking under consideration the relation between

w and R we get the expression for w(t), which is

Whin (1) = GM_5/8(tc — t)_3/87 (6)

1/5
MfMg)/

—3/8
where a = G~5/8 (@) / and M is the so called chirp mass defined as M = (M1+M2

5c
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From the above equation we are able to find the phase of the wave, which is ¢ = [ w(t)dt.

After integration we obtain,
8 —5/8 5/8
Pin(t) = —EGM (te —1)"° + ¢, (7)

where ¢, is an initial phase. The final step is to get the strain of the gravitational wave

h(t), which is, according to the Newtonian quadrupole moment approximation,

h(t) = Q(Q’g’]g}(’t;)uMcos </ wwavdt> , (8)

where, Q(6, ¢,1,1) is a factor depending on the geometry of the detector-binary system and
D is the distance to the source. If we use equations (5) and (7) then we obtain for the strain

of the gravitational wave (neglecting the geometry parameter Q):

ney = 2 (22N pporngs, gy (—E M, = 7 46, ()
~ D \256G° ¢ T ¢ <)

Here notice that the frequency of the gravitational waves emitted is double the frequency of
the binary, wyay = 2wpin and therefore ¢y, = 2¢nin, this is because the quadropole moment
repeats when the masses move through one half of their orbit. The shape of the waveform

is shown in Fig. 2.
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FIG. 2. The waveform of Eq. (9). The amplitude and the frequency of the wave are increasing

with time.

As one can see from the diagram, the amplitude and the frequency of the signal are
increasing as the binary bodies spiral closer and closer together. Because of that, the signal
is referred to as ‘chirp’ (a term that comes from the radar technique). The ratio of the
amplitudes of the two polarizations is determined by the inclination ¢ of the orbital plane

to the line of our sight from the relation

Amp(h,)  2cos:
Amp(hy) 1+ cos?i’

(10)

The shapes of the individual waves, are determined by the orbital eccentricity. In our
case of a circular orbit the rate at which the frequency sweeps, df /dt, is determined solely,
in the Newtonian approximation, by the binary’s chirp mass. The amplitude of the two

waveforms are determined by the chirp mass, the distance to the source, and the orbital
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inclination. Thus, by measuring the two amplitudes (in the Newtonian approximation),
the frequency sweep, and the harmonic content of the inspiral waves, we can determine the

source’s distance, chirp mass, inclination and eccentricity (if there is any).

2. Coalescence waveforms and their information

The waves from the binary’s final coalescence can bring us new types of information. In
the case of a BH/BH binary, the coalescence will excite large-amplitude, highly nonlinear
vibrations of spacetime curvature near the coalescing black-hole horizons —a phenomenon
of which we have little understanding today. Especially fascinating will be the case of two
spinning black holes whose spins are not alligned with each other or with the orbital angular
momentum. The dynamical evolution of such a complex configuration of coalescing space-
time warpage (as revealed by its emitted waves) might bring us surprising new insights into
relativistic gravity. Moreover if the sum of the BH masses is fairly large ~ 40 to 200M,,,
then the waves should have frequencies of about 200 to 40 Hz where the LIGO/VIRGO
broad-band interferometers have their best sensitivity and can best extract the informations
the wave carry. The challenge of computing the waves from such a coalescence, via super-
computer simulations, appear to be almost as difficult as detecting them, especially if the
holes are spinning and their spins and their orbital angular momentum are not alligned, as
I said above. High priority is given to the development of such simulations, so that, when
the LIGO/VIRGO detectors begin to monitor BH/BH coalescences, comparison of theory
and experiment can be used to unravel the details of the nonlinear vibrations of spacetime
curvature.

The final coalescence of NS/NS binaries should produce waves that are sensitive to the
equation of state of nuclear matter so that coalescences have the potential to teach us about
the nuclear equation of state. Unfortunately, the final NS/NS coalescence will emit its
gravitational radiation in the kHz frequency band (800 Hz < f < 2500 Hz) where photon

shot noise will prevent them from being studied by the LIGO/VIRGO interferometers, but
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only by resonant bars and spherical detectors. A number of research groups [19] are engaged
in numerical astrophysics simulations of NS/NS coalescence, with the goal not only to predict
the emitted gravitational waveforms and their dependence on equation of state, but also to
learn whether such coalescences power the v-ray bursts that have been a major astronomical
puzzle since their discover in early 70s. NS/NS coalescence is currently a popular explanation
for the ~-ray bursts because (1) the bursts are isotropically distributed on the sky, (2)
they have a distribution of number versus intensity that suggests they might lie at near-
cosmological distances, and (3) their event rate is roughly the same as that predicted for
NS/NS coalescence. If LIGO/VIRGO were now in operation and observing NS/NS inspirals,
they could report definitely whether or not the v bursts are produced by NS/NS binaries;
and if the answer were yes, then the combination of the y-bursts data and gravitational-
wave data could bring valuable information that neither of them could bring by itself. For
example, it would reveal when, to within a few msec, the y-burst is emitted relative to the
moment the NS’s first begin to touch; and by comparing the v and the gravitational-wave
times of arrival, we might test whether gravitational waves propagate with the speed of light
to a fractional precision of ~ 0.01sec/3 x 10%lyr = 10~ *.

A NS spiraling into a BH of mass M > 100, should be swallowed more or less as a
whole. However, if the BH is less massive than roughly 10M,, and especially if it is rapidly
rotating, then the NS will tidally disrupt before being swallowed. Little is known about
the disruption and corresponding waveforms. To model them with any reliability will likely
require full numerical relativity, since the circumferences of the BH and the NS will be
comparable and their physical separation at the moment of disruption will be of the order of
their separation. As with the NS/NS coalescence their waves should carry information about
the equation of state information and will come out in the kHz band where their detection

will require interferometric gravitational detectors working in dual recycling mode.
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B. Spinning neutron stars—Pulsars

An axisymmetric object rotating rigidly about its symmetry axis has no time-varying
quadropole moment, and hence does not radiate gravitational radiation.

If the principal moments of inertia of an object are Iy, Is, I3, then radiation will be
produced if it rotates about the principal axis eg and is nonaxisymmetric (I; # ;). Al-
ternatively, it can radiate if it is axisymmetric (I; = I3), but the rotation axis is not a
symmetry axis es. I shall consider the first case first, whose physical application could be a
pulsar whose rigid crust can support a “mountain”. A set of coordinates z, rotating with
the object (body coordinates) is related to an inertial coordinate system x; with common

origin at the center of the mass by the rotation matrix:

' = Rx (11)
where,
cos¢ sing 0
Rij = | —sin¢ cos¢ 0 (12)
0 0 1

and ¢ = Qt; Q = constant (no applied torques). The inertia tensor in the inertial coordinates

has components given by
I =R'I'R, (13)

where I’ is a diagonal matrix with diagonal elements I;, I and I3. I will use 1,2,3 to denote
components in the body frame and x,y,z for the inertial frame. The components of the

inertia tensor in the inertial frame are

1
I, =1, cos® ¢ + I,sin? ¢ = 5(11 — I,) sin 2¢ + const, (14a)

1
Loy = Iy = 5 (1 = 1) sin 26, (14b)
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1
I, = 5(12 — 1) cos 2¢ + const, (14c)
I, = const, (144)

I,=1,=1,=1,=0, 14e
Y Yy

since Trl' = Trl = I, + I, + I3 = constant, we can use [;; instead of I;; in the energy loss

formula and thus we get

dE 1G g o g

1
— _2_095(29)6(11 — I5)*{cos* 2¢ + 2sin” 2¢ + cos? 2¢)
c

= -2 (L~ L) (15)

If the object can be approximated by a homogeneous ellipsoid with semi axes a,b,c then

1

I = =M@ + ), (16a)
1 2 2

I, = gM(a +¢%), (16b)
1 2 2

]3 = gM(a +0b ), (16C)

For a small asymmetry(i.e, a ~ b), we may write

dE  32G ,,

where the ellipticity € is defined by

(a—b)

NI e)

Now turn to the case of rigid rotation about a nonprincipal axis, but assume [, = I,

for simplicity. Choose the fixed direction of the angular momentum vector J to be along e,

13



in the inertial frame. The transformation to the body coordinates is given in terms of the

Euler angles by

costpcosp —cosfsingsiny  costsing 4 cosf cospsiny  sinfsin
Rij = | —sintcos¢ — cosfsinpcosty —sinsing + coscospeosty sinfcosyy | (19)
sin # sin ¢ —sin # cos ¢ cos
In free precession, the symmetry axis eg and the angular velocity vector rotate about
e, with constant angular velocity gb = J/I;, e3 maintaining a constant angle 6 with respect

to e,. In addition the angular velocity vector precesses about esg with angular velocity

) = (I, — Is)¢ cos /Iy = constant, as seen in the body frame. Equations (13) and (19) give

Iy = I (cos® ¢ + cos? Osin? ¢) + I3 sin® O sin? ¢

1
= 5(11 — I3) sin” § cos® 2¢) + constant, (20a)
1 9,
Iyy =1y, = 5(11 — I3) sin” 0 sin 2¢, (20Db)
I,,=1,, = —(I; — I3)sinf cosfsin ¢, (20c)
1 L,

I, = —5(11 — I3) sin” f cos 2¢ + constant, (20d)
I,, =1, = (I — I3)sinf cos  cos ¢, (20e)
I,, = I3 + (I, — I,) sin® § = constant. (20f)

Writting ¢ = ¢, ) = gb = constant, we find

dE 1G

B vy o o o
1G 1
= —5—5(11 — I3)2<Z sin 0(20)%(2 cos? 2¢ + 2 sin” 2¢) + 2Q° sin? # cos? O(cos® ¢ + sin? ¢))
c
2G
= ——2(h - I3)%Q0 sin? 0(16 sin” 6 + cos® 6). (21)
&
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For a small “wobble angle” #, we get

dE 2G
% >~ —gg(]]_ - [3)29692. (22)

Note that for rotation about a principal axis (Egs. (15) and (17)) the frequency of the
radiation is 2. In the case of Eqs. (21) and (22), however, the dominant radiation is at
frequency €2, since the cos? § term comes from I, and I,,. In the general case of combined
“mountain” and “wobble” radiation, dE/dt is given by the sum of Eqs. (15) and (21),
provided the “mountain” and the “wobble” are small.

As a neutron star settles down into it’s final state, its crust begins to solidify (crystalize).
The solid crust will assume nearly the oblate axisymmetric shape that centrifugal forces are
trying to maintain, with poloidal ellipticity €, ~ w?. However, the principal axis of the star’s
moment of inertia tensor may deviate from its spin axis by some small “wobble angle” 6,,,
and the star may deviate slightly from axisymmetry about its principal axis; i.e., it may
have a slight ellipticity €, < ¢, in its equatorial plane.

As this slightly imperfect crust spins, it will radiate gravitational waves with frequency
twice the frequency of the rotation, f = 2f, with A ~ €., and the wobble angle will couple to
€p producing waves at f = fyor + fprec (the precessional sideband of the rotation frequency)
with amplitude h ~ 0, X €,. For typical neutron-star masses and moments of inertia, the

wave amplitudes are

2
lkpc [ €. or O,¢
~ 1 —25 frot e wtp ) 2
hire 610 <5OOHZ r 106 (23)

The neutron star gradually spins down, due in parts to gravitational-wave emission but

perhaps mainly due to electromagnetic torques associated with its spinning magnetic field
and pulsar emission. The spin-down reduces the strength of centrifugal forces, and thereby
causes the star’s poloidal ellipticity €, to decrease with resulting breakage and resolidification
of its crust’s crystal structure. In each starquake, 0,,¢. and ¢, will all change suddenly,
thereby changing the amplitudes and frequencies of the star’s two gravitational “ spectral

lines 7 f = 2fit and f = frot + forec- After each quake, there should be a healing period
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in which the star’s fluid core and solid crust, now rotating at different speeds, gradually
regain synchronism. By monitoring the amplitudes, frequencies, and phases of the two
gravitational-wave spectral lines, and by comparing them with timing of the electromagnetic
pulsar emission, one might learn much about the physics of the neutron star interior.

But how large the quantities €, and 6, X ¢, will be? Rough estimates of the crystal
shear moduli and breaking strengths suggest an upper limit in the range €p., ~ 107 to
10=%, and it might be that typical values are far below this. We are extremely ignorant,
and correspondingly there is much to be learned from searches for gravitational waves from

spinning neutron stars.

C. Supernovae

Traditionally supernovae are classified into two classes: type I supernovae (SNI) and
type II supernovae (SNII). Type II supernovae represent the core collapse of a massive star
and the shock-driven rebound expansion of an optically luminous shell. In a few instances
it is certain that the collapsed core is a neutron star. Type I supernovae are different. The
traditional view is that a type I supernovae is the nuclear detonation of a white dwarf, after
it has accreted matter from a companion. There appear to be many reasons why this may
not be correct however. The white dwarf has the choice of collapsing or detonating and the
choice is determined by detailed properties of degenerate matter. The best guess today is
that it is likely that at least a fraction of accreting white dwarfs will collapse, but only to a
neutron star, since white dwarf mass is insufficient to allow collapse to a black hole.

Supernovae 1987A discovered on February 23, 1987, represented a historic landmark in
astronomy. The supernovae occured in a nearby irregular dwarf galaxy, the Large Magellanic
Cloud, at a distance of about 50 Kpc. In this instance neutrinos from the inverse (-decay
associated with the collapse were observed by several huge detectors originally designed to
test for the radioactive decay of protons. This is the first instance of direct observation of

core collapse.
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The strengths of gravitational waves from a supernovae depend crucially on the degree
of non-sphericity in the stellar collapse that triggers it, and somewhat on the speed of the
collapse. Perfectly spherical collapse will produce no waves; highly non-spherical collapse
will produce strong waves. The main source of non-sphericity during collapse is angular
momentum. Little is known about the degree of non-sphericity in type II but current
prejudice suggests that the typical type II might be quite spherical and thus poorly radiating.
About type I on the contrary, if are due to explosion of an accreting white dwarf, the
explosion is accompanied by collapse of the stellar core to a neutron star, then the white
dwarf might be rapidly rotating due to the accretion, and the centrifugal forces might then
cause it to collapse very non-spherically and radiate strongly.

Our knowledge about the strengths of the waves and the waveforms from supernovae is
poor. The figures below show some typical calculated waveforms, all showing the general
character of burst source; extremely brief pulses with duration of only a few cycles. The left
curve shows several epochs labeled FF in which h, (t) varies approximately as [t — to| /3,
corresponding to free-fall motion; and these free-fall epochs are separated by three brief
periods with sharply reversed peaks (labeled P in the diagram) corresponding to a sharp
acceleration in the direction opposite to the free fall. The natural and correct interpretation
of the diagram is that these waves are produced from collapse to a neutron star in which
the stellar core bounced sharply three times. The fact that the three sharp peeks are all
in the direction (up, not down) indicates that the sharp bounces are along the same axis.
Surely the other axis that projects on our sky should have bounced as well, or at least
stop its collapse; so there should be at least one sharp peak in the down direction. And
indeed there is; it is superposed on the central up peak (region labeled E in the diagram).
The interpretation of that is that the star was centrifugally flattened by rotation; its pole
collapsed fast and bounced three times (up peaks P) while its equator collapsed more slowly
and bounced once (down peak E). The entire event lasts only 50 ms. The right curve shows
the waveform where the collapse has excited quadropole oscillations of the neutron star.

Near sinusoidal oscillations are excited at 1.4 kHz, and rapidly damped out.
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Now turn to the formation of black holes due to a star’s collapse. It is very likely that
black holes exist in our universe with masses throughout a range 2M, < M < 10'9M,,.
The holes of lowest mass can only form by direct collapse of a star. Those of higher mass,
however, can form by many ways (direct collapse; gradual growth from a small hole by
accretion; collision and coalescence of small holes; etc).

In one respect collapse to a black hole is better understood than collapse to a neutron
star; the final object is much simpler, and correspondingly the waves from its vibrations, if
they are triggered by the collapse, are far better understood. Detailed calculations suggest,
in fact, that black hole vibrations are rather easy to trigger and that when they are triggered,
the most slowly damped one or two quadropole modes will dominate. Thus, while the details
of the initial burst of waves may depend on unknown details of the collapse, the late-time
behavior will have a well established damped oscillatory form, from which one can read
off the mass of the hole with excellent accuracy and it’s angular momentum with modest
accuracy.

If collapse to a black hole radiates with an efficiency AE/Mc* = ¢ and the hole is at a
distance r,, and has mass M, then the characteristic frequency and amplitude of its waves

will be

1

M
fem 7= (1.3 x 10*Hz) (M—®> : (24a)

12 (10° Hz\ /M
he = 1.0 x 10~ (ﬁ) ( Of Z) ( rpc>. (24b)

If the collapse is axisymmetric, then the efficiency e probably doesn’t exceed the value of

7x107*. However, in the non-axisymmetric case the efficiency might be at the range 0.01-0.1.
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III. DETECTION OF GRAVITATIONAL WAVES
A. GENERAL REMARKS

The frequency band of gravitational waves can be divided into four regions:

1. The high-frequency band (HF: f ~ 10* to 1 Hz).

In this frequency band lies the stellar collapse to a neutron star or a black hole in
our Galaxy and distant galaxies; the rotation and vibrations of neutron stars (pulsars)
in our Galaxy; the coalescence of neutron star and stellar-mass black hole binaries in

distant galaxies.

2. The low-frequency band (LF: f ~ 1 to 107* Hz).

The low-frequency band should be populated by waves from short-period binary stars
in our Galaxy; from white dwarfs, neutron stars and small black holes spiralling into
massive black holes (M ~ 3 x 10° to 3 x 107) in distant galaxies; and from the inpiral

and coalescence of supermassive black-hole binaries (M ~ 100 to 108M).

3. The very-low frequency band (VLF: f ~ 10~ 7 to 10~* Hz).

The only compact bodies that can radiate in the very-low frequency band at f < 1077
Hz are those with M > 10'M,. Conventional astronomical wisdom suggests that
compact bodies this massive cannot exist, and therefore the only strong waves in the
VLF band and below are stochastic background produced by cosmic strings, phase

radiations and the big bang.

4. The extremely-low frequency band (ELF: f ~ 107! to 107! Hz).

Gravitational waves in the ELF band should produce anisotropies in the cosmic mi-

crowave background radiation.
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B. DETECTORS
1. BAR DETECTORS

The construction of bar detectors for gravitational radiation is based on the issue of
resonance that we know from basic physics. Each body has a normal-mode frequency fy
which depends on the size and the material of which is made. So our task is to construct
bodies from material that have normal-mode frequency equal or similar to the frequencies
of gravitational waves we wish to detect. In that case when a gravitational wave hits the
detector we have resonance and we might be able to monitor the wave.

In order to understand the function of the bar detector, I analyze the case of a sim-
ple quadrupole oscillator consisting of two masses connected by a spring, as a detector of
gravitational waves. I want to calculate what oscillation amplitude the incident wave can
excite and how much energy is absorbed by the wave. As we know the observable driving
force on the oscillator is the tidal force. Suppose that a plane wave is incident on the simple
quadrupole placed on x-axis with equilibrium positions © = £b which vibrates along this
axis and the direction of incidence is perpendicular to that and parallel to one of the princi-
pal axes of the tidal deformation field. If the displacement of the two masses remains always
small (] x — b |< b), then the equation of motion of one of the masses, say, the mass on the
positive x-axis, is
iwt

mi = m§Awavw2be — myE — mwp (x — b) (25)

where, the first term of the right hand of Eq. (25) is the tidal force, the second is the friction
force and the third is the harmonic oscillator force; wy, is the natural frequency of the free
oscillations and v is the damping rate associated with the frictional forces acting on the

oscillator. The steady-state solution of the above equation is
sk Ayavw?be™!

—w? + Wi +iyw

(26)

T —b=

where k = v/16mG. The steady state response of the oscillator has a sharp maximum at

the frequency w = wy. Hence gravitational waves of this frequency are in resonance with
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the natural oscillations of the system. As a measure of the sensitivity of the detector it is
often convenient to use a parameter called the cross section. The scattering cross section is
defined as the ratio of the power reradiated to the incident flux , that is

power reradiated

(27)

w) =
Tocats () incident flux

and is a parameter that measures the efficiency of the oscillator’s scattering the radiation in

all directions. The incident flux in this case is Ayayw? /2¢ and the power reradiated is

dE) 16G
— | — = ——(mAb)*w° (28)
( dt ) .4 15¢5

where A is the amplitude of the oscillation. Taking A from Eq. (26) and substituting it in

the above equation and then in Eq. (27) we obtain for the scattering cross section,

15mc? 9 1
_ r , 29
Oscatt 9 (7 ad) (w2 _ w3)2 + ,),2&)2 ( )
where Vpaq 18
166, |
Yrad = @mb w . (30)

Note that oy is independent of the amplitude of the incident wave; this is what makes
the cross section useful as a measure of how much the quadrupole scatters radiation out of
the incident wave.

For the purpose of detecting gravitational waves we are more interested in the energy
absorbed from the oscillator than in the one scattered. This means that we want to know
what power the oscillator delivers to the (mechanical) frictional forces in the oscillator. In
a similar way we can define the absorption cross section as

() power lost to mechanical friction (31)
Oabs(W) = .
abs incident flux

We can establish a connection between o,,s and ogatt, if we note that the total damping

rate 7y is given by two terms,

1 ( dE ) 1 ( dE )
’Y = —— —_— = —— R _
B dt tot K dt mechanical

friction

0 = Ym + Vrad (32)
( dt >radiation

&~
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Thus by definition oy and 045 must stand in the ratio 7,,/Vraq, that is,

Oabs = ﬂgscat- (33)
rad

If we assume that 7,, > Vaq then 7, >~ v and the o4, is

Ogbs — ——T0 T .

(34)

The above calculations were made for a quadrupolar oscillator oriented in the most favorable
direction in the tidal field of the wave. The line of vibration of the masses was taken both
perpendicular to the direction of incidence and parallel to one of the principal axes of the
tidal deformation field. For an oscillator whose masses are constrained to vibrate along a
line making an angle 6 with the direction of incidence (z-axis) and an angle ¢ with one of
the principal axes of the tidal field the component of the tidal force along this line is reduced
by a factor

sin? 0 cos 2¢

as compared with the most favorable case. This factor is easy to understand; the magnitude
of the tidal force is proportional to the transverse dimension of the system (~ sin ) ; taking
the component of this force along the line of vibration results another factor sin; finally,
the factor cos 2¢ simply represents the angular dependence of the (radial) tidal field strength
in the transverse plane. The cross section depends on the square of the component of the
tidal force along the line of vibration; hence the reduce factor is sin* # cos? 2¢. Taking the

mean value over all angles of the above factor we get

1 4 9 4
o /sm 6 cos” 2¢dQ) = I5 (35)

Consequently if the wave arrives with an arbitary orientation then the mean G, is

1

w? — wi)? + 7w?

Oabs = 27T627’Yrad ( (36)

Although those calculations have been made for the special case of a simple linear

quadrupole, the results are also valid for an arbitary mass system vibrating in a mode
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of cylindrical symmetry. More precisely, since the amplitude of the time-dependent part of
the quadrupole tensor is some symmetric matrix Q¥ it can be diagonalized by a trans-
formation to principal axes. By cylindrical symmetry we mean that two of the diagonal
elements of the diagonalized matrix are equal. If we take the axis in the z-direction, then
Q"' = Q"™ and since the trace must be zero, Q" = —2Q"".

For that reason, a bar detector is usually a cylinder (called resonant mass). The resonant
mass is typically made from an alloy of aluminum and weights several tones, but some
have been made of niobium or single crystal silikon with masses well below a tone. To
control thermal noise, the resonant mass is usually cooled cryogenically to liquid-helium

temperatures or below.

The cross-seqtjon of a bar detector as a futhion of frequency is given in Fig. 3.
0.8}
0.6}
@)
0.4+
0.2t
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W

FIG. 3. The cross section of a bar detector as a function of frequency. The maximum is very

sharp at the normal-mode frequency. The numbers and units on the diagram are arbitary.

This resonance has a width of only Af ~ /27 ~ 1072Hz. Consequently the frequencies
of the wave and the normal-mode of the cylinder must agree to one part in ~ 10°. This is
quite unlikely. Probably, the best we can hope is that the radiation contains a spread of

frequencies which overlaps the detector resonance; the spread of frequency of the radiation
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is likely to be much larger than the width of resonance.

The resonant-mass antenna is instrumented with an electromagnetic transducer and
electronics, which monitor the complex amplitude of one or more of the mass’s normal
modes. When a gravitational wave passes through the mass, its frequency components near
each normal-mode frequency f; drive that mode, changing its complex amplitude; and the
time evolution of the changes is measured within some bandwidth Af by the transducer
and electronics. Current resonant mass antennas are narrow-band devices (Af/fy < 1) but
in the era of LIGO/VIRGO, they might achieve bandwidths as large as Af/f, ~ 1/3

Resonant mass antennas for gravitational radiation were pioneered by Joseph Weber
about 35 years ago and have been pushed to even higher sensitivities later. At present
there is a network of such antennas, cooled to 3K, and operating with an rms noise level
for broad-band gravity-wave bursts of Ayms ~ 6 x 1071, The network includes an aluminum
cylinder called EXPLORER at the University of Rome, Italy; an aluminum cylinder at
Louisiana State University, USA; and a niobium cylinder at University of Perth, Australia.
This network has been in operation, searching for waves, for several years.

The next generation of resonant-mass antennas is now under construction at the Univer-
sity of Rome and at the University of Legarno, Italy. There are several-ton aluminum bars
cooled to 0.05K; their rms sensitivity for wave bursts are ~ 10720,

A subsequent generation, which hopefully will operate in the LIGO/VIRGO era, is being
discussed and planned. These are 1 to 100 tone spheres cooled at ~ 0.01-0.05K, with
sensitivity goals of ~ 10722, Such antennas might be built by an American collaboration, a
Brazilian collaboration, an Italian collaboration called “Omega” , and a Dutch collaboration
called “Grail”. Their spherical or nearly spherical shapes make them omnidirectional and
should give them several times higher sensitivities that can be achieved by cylinders at the
same frequency. The name of this program is TIGA (Truncated Icosahedral Gravitational-
wave Antenna).

The present consept of the TIGA project is to built a “xylaphone” of four aluminium

alloy spheres with diameters ranging from 2 to 3 meters. The largest sphere will then weigh
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about 40tons and have the lowest quadropole frequency of about 900 Hz. A three-mode
antenna transducer system will allow a fractional bandwidth of about 900 Hz. If both
foundamental and second harmonic quadropole modes are instrumented, a frequency range
of 800 to 2700 Hz will be covered.

The attractiveness of such antennas in the LIGO/VIRGO era lies in their ability to
operate with impressive sensitivity in the uppermost reaches of the high-frequency band,
~ 103 to 10* Hz, where photon shot noise debilitates the performance of interferometric
detectors. The figure below shows the projected rms noise curves of TIGA detectors, each
instrumented to operate at the “standard quantum limit” for such a detector (a nontrivial
experimental task). For comparison is shown the rms noise of the first LIGO interferometer,

which of course is not optimized for the kHz band.
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FIG. 4. The rms noise curves h (f) for a ‘xylaphone’ of TIGA gravitational-wave detectors for

signals of random polarization and direction. Shown in comparison the noise curves for the first

LIGO interferometer (dashed curve).

2. LIGO-VIRGO INTERFEROMETERS

The other kind of detector for gravitational waves is based on the issue of interferometry

known from optics. A laser interferometer gravitational wave detector consists of four masses
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that hang from vibration-isolated supports as shown in figure 5, and the indicated optical
system for monitoring the separation between the masses. Two masses are near each other, at
the corner of an “L”, and one mass is at the end of each of the L’s long arms. The arm lengths
are nearly equal, L; ~ L, = L. When a gravitational wave, with frequencies high compared
to masses, passes through the detector, it pushes the masses back and forth relative to each
other as though they were free from their suspension wires, thereby changing the arm-length
difference, AL = L, — Ly. If the waves are coming from overhead or underfoot and the axis
of the + polarization coincide with the arm’s directions, then it is the + polarization that
drives the masses, and AL(t)/L = h,(t). More generally, the interferometer is sensitive to

a linear combination of the two wave fields:

ALT“) = Fyhy(t) + Fehy(t) = h(t). (37)

The coefficients F'y and F are of the order of unity and depend in a quadrupolar manner on
the direction to the source and the orientation of the detector. Usually they are called beam—
pattern functions. The combination h(t) of the two waveforms is called the gravitational —
wave — strain that acts on the detector; and the time evolutions of h(t), hy(t), and h.(t)
are sometimes called wave forms.

The detector’s masses at present are made of transparent fused silica (quartz), though
other materials might be used in the future. The masses’ inner faces (shown white in the
diagram) are covered with high-reflectivity dielectric coatings to form the indicated mirrors,
while the masses’ outer faces are covered with anti-reflection coatings. The two mirrors
facing each other on each arm form a Fabry-Perot cavity. A beam splitter splits a carefully
prepared laser beam in two, and directs the resulting beams down the two arms. Each
beam penetrates through the antireflection-coating of each arm’s corner mass, through the
mass, and through the dielectric coating (the mirror); and thereby —if the length of the
arm’s Fabry-Perot cavity is accurately adjusted —the beam gets trapped in the cavity. The
cavity’s end mirror has much higher reflectivity than it’s corner mirror, so the trapped

light leaks back out through the corner mirror, and then hits the beam splitter where it

26



recombines with light from the other arm. Most of the recombined light goes back toward
the laser (where it can be reflected back into the interferometer by a so called light recycling

mirror, labeled R), but a tiny portion goes toward the photodiode.

Mirror

R
Laser i
Beam ;
Splitter - ———— - L - ——— - -
Photodiode

FIG. 5. A simple schematic diagram of a laser interferometer gravitational wave detector

When a gravitational wave hits the detector and moves the masses, thereby changing
the lengths L, and Ly of the two cavities, it shifts each cavity’s resonant frequency slightly
relative to the laser frequency, and thereby changes the phase of the light in the cavity and the
phase of the light that exits from the cavity toward the beam splitter. Correspondingly, the
relative phase of the two beams returning to the splitter is altered by an amount A® oc AL,
and this relative phase shift causes a change in the intensity of the recombined light at
the photodiode, I,q o< A® o< AL o h(t). Thus, the photodiode output current is directly
proportional to the gravitational wave strain h(t). This method of monitoring h(t), is capable
of very high sensitivity, as we shall see below.

The technology and techniques for such interferometers have been under development
for more than 20 years and plans for km-scale interferometers have been developed the past
20 years. Two km-scale systems have recently been approved for construction: the Ameri-
can LIGO (“Laser Interferometer Gravitational-wave Observatory”), and the French/Italian
VIRGO (named after the Virgo cluster of galaxies).

LIGO will consist of two vaccum facilities with 4-kilometer-long arms, one in the north-
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western part of the USA and the other in the southern-east part of the USA. VIRGO
entails one vaccum facility in Pisa, with 3-kilometer-long arms. Both LIGO and VIRGO are
scheduled for completion in the late 1990s.

LIGO alone, with it’s two sites which have parallel arms, will be able to detect an
incoming gravitational wave, measure its two waveforms, and locate its source to within a
~ 1° wide annulus on the sky. LIGO and VIRGO together will be able to locate the source
(via time delay, which will be discussed in Sec. IV) to within a 2-dimensional error box
with size between several tens of arcminutes and several degrees, depending on the source
direction and on the amount of high-frequency structure in the waveforms; and they will be
able to monitor both waveforms h.(t) and h ().

The accuracies of the direction measurements and the ability to monitor more than
one waveform will be severely compromised when the source lies anywhere near the plane
formed by the three LIGO/VIRGO interferometer locations. To get good all-sky coverage
will require a fourth interferometer at a site far out of that plane; Japan and Australia would
be excellent locations, and research groups are carrying out research and development on
interferometric detectors, aimed at such a possibility.

Interferometers are plugged by non-Gaussian noise, e.g. due to sudden strain releases in
the wires that suspend the masses. This noise prevents a single interferometers, by itself,
from detecting with confidence short-duration gravitational-waves bursts. The non-Gaussian
noise can be removed by cross correlating two or more interferometers at widely separated
sites.

The principal sources of displacement noise are seismic vibrations of the ground beneath
the interferometer, and thermally-induced vibrations of the test masses and of the wires
that suspend them. Another source of noise in the phase shift is the photon shot noise due
to random times at which the light’s photons arrive at the photodiode. Figure 6 shows the
spectra that are expected from these three noises in the first interferometers that will operate
in LIGO. At frequencies above 200 Hz, shot noise dominates; between 200 Hz and 40 Hz,

thermal noise in the suspension wires dominates; and below 40 Hz, seismic noise dominates.
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During LIGO’ s operation, step-by-step improvements will be made in the control of the
three noise sources, thereby pushing the overall noise spectrum downward from the “first-

interferometer” level toward the “advanced interferometer” level shown in Fig. 6.
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FIG. 6. The expected noise spectrum in each LIGO’s first 4-km interferometers (upper solid
curve) and in more advanced interferometers (lower solid curve). The dashed curves show var-
ious contributions to the first interferometers’ noise. Plotted horizontally is gravity wave fre-
quency f; plotted vertically is l~z( f), the square root of the spectral density of the detectors output

h(t) = AL(t)/L in the absence of a gravity wave. The rms noise in a bandwidth Af at a frequency
J 18 hyms = E(f)VAf

The strongest gravitational waves that arrive at Earth several times per year are expected
to have strengths A ~ 10722, Correspondingly, LIGO is designed to achieve rms noise

levels huns = h(f)vV/AF ~ 3 x 10722 in the first detectors, and ~ 1023 in more advanced
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detectors. A wave strain h ~ 10~%? will produce a displacement AL = hL ~ 107 !% cm of
the interferometer’s mirror-endowed masses. 107'% ¢cm is awfully small: 1/1000 the diameter
of the nucleus of an atom, and 107'% the wavelength of the light being used to monitor the
masses’ motion. How can one possibly monitor such small motions?

One adjusts the reflectivities of the interferometer’s inner mirrors so that the two arms
store laser light on average for about half a cycle of a ~ 100 Hz gravitational wave, which

means for about 100 round trips. The light in each arm thereby acquires a phase shift

4 AL N

AP ~ 100 x ~ 1077, (38)

where A ~ 10~* c¢m is the wavelength of light. If the interference of the light from the
two beams is done optimally, then this phase shift (equal and opposite in the two arms)
can be measured at the photodiode to an accuracy that is governed by the light’s photon
shot noise, A® ~ 1/\/N, where N is the number of photons that enter the interferometer
from the laser during the half-cycle of photon storage time. Thus, to achieve the required
accuracy, A® ~ 1079, in the face of photon shot noise, requires N = 10'® photons in 0.01
second, which means a laser power of ~ 100 Watts.

By cleverness, one can reduce the required laser power: The light is stored in the in-
terferometer arms for only a half gravity-wave period (~ 100 round tips) because during
the next half period the waves would reverse the sign of AL, thereby reversing the sign of
the phase shift being put onto the light and removing from the light the signal that had
accumulated in the first half period. In just 100 round tips, however, the light is attenu-
ated hardly at all. One therefore reuses the light over and over again. This is done by (i)
operating the interferometer with only a tiny fraction of the recombining light going out
toward the photodiode, and almost all of it instead is going back toward the laser, and by
(ii) placing a mirror between the laser and the interferometer in just such a position that
the entire interferometer with each arms as two subcavities become an optical cavity driven
by the laser. Then mirror R recycles the recombining light back into the interferometer in

phase with the new laser light, thereby enabling a laser of say 5 Watts to perform like one
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of 100 Watts or more.

Turn from photon shot noise to thermal noise. How, one might ask, can somebody
possibly expect to monitor the mirror’s motions at a level of 107!¢ ¢cm when the room tem-
perature atoms of which the fused-silica mirrors are made vibrate thermally with amplitudes
Alps = \/kT/mw? ~ 107! ¢m? The answer is that these individual atomic vibrations are
unimportant. The light beam, with its ~ 5 cm diameter, averages over the positions of
~ 102! atoms in the mirror, and with its 0.01 sec storage time it averages over ~ 10!
vibrations of each atom. This spatial and temporal averaging makes the vibration of the
individual atoms irrelevant. Not so irrelevant, however, are the lowest-frequency normal-
mode vibrations of the mirror-endowed masses (since this mode experience much less time
averaging than the fast atomic vibrations). Assuming a mass m ~ (a few tens of kg), these
normal modes have angular frequencies w ~ 10%°s!, so their rms vibration amplitude is
Alps = /KT /mw? ~ 107'* cm. This is 100 times larger than the signals we wish to moni-
tor; but if this modes have high quality factor, then the vibrations will be very steady over
the interferometer’s averaging time of 0.01 sec; and correspondingly these effects will average
down by more than a factor 100. Similar considerations apply to the thermal noise in the
masses suspention wires.

Finally turn from thermal noise to seismic noise. At the LIGO sites, and most any
other quiet location on Earth, the ground is continually shaking with an rms displacement
Alpgs =~ 1078em(100H 2/ £)*/2. This is 107 times larger than the the motions one seek to
monitor. At frequencies above 10 Hz or so, one can protect the masses from these seismic
vibrations by simple passive isolation stacks. Each element in the stack is a mass and a
spring with normal-mode frequency fy ~ (a few Hz). When seismic noise tries to drive
this harmonic oscillator far above its resonant frequency, the amplitude of its response is
attenuated relative to the driving motion by a factor (fo/f)?. Thus, each oscillator in the
stack will provide reduction 102 in Al,,s, so a stack of four or five oscillators are enough to
provide the required isolation.

The above rough estimates show that it is possible for interferometers to achieve the
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required sensitivities, Ayms ~ 10722 and AL ~ 10 !¢ cm. However, going out from these
rough estimates to a real working interferometer, and doing so in the face of a plethora of
other noise sources, is a tremendous experimental challenge that has occupied a number of

excellent experimental physicists since 1972.

3. LISA : The Laser Interferometric Space Antenna

LISA the Laser Interferometric Space Antenna is planned to operate the second decade
of the 21=st century. The main economic source of the program is ESA (European Space
Agency) but members of the LISA team hope that NASA will join together with ESA so
that the project will be completed considerably sooner.

LISA will consist of six compact drag-free spacecraft (i.e spacecraft that are shielded
from buffeting by solar wind and radiation pressure, and that thus move very nearly at
a geodesics of spacetime). All six spacecraft will be launched simultaneously by a single
Ariane rocket. They would be placed into the same heliocentric orbit as the Earth occupie,
but would follow 20° behind the Earth as shown in figure 7. The spacecraft would fly in
pairs, with each pair at a vertex of an equilateral triangle that is inclined at an angle of 60°
to the Earth’s orbital plane. The triangle’s arm length would be 5 million km (10° larger
that LIGO’s arms). The six spacecraft would track each other optically, using one—Watt
Laser beams. Because of diffraction losses over the 5 x 10° km arm length, it is not feasible
to reflect the laser beams back and forth as is done in LIGO. Instead, each spacecraft will
have it’s own laser; and the lasers will be phase locked to each other, thereby achieving
the same kind of phase—coherent out and back light as LIGO achieves with mirrors. The
six laser, six spacecraft configuration thereby functions as three, partially independent by

partially redundant gravitational-wave interferometer.
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FIG. 7. LISA’s orbital configuration

Figure 8 shows the expected noise and sensitivity of LISA in the same language as we have
used for LIGO (Fig 6). The curve at the bottom of the stippled region is hp,,s, the rms noise,
in a bandwidth equal to frequency, for waves with optimum direction and polarization. The
top of the stippled region is hg, = 5v/5hpms, the sensitivity for high-confidence detection

(S/N = 5) of a broad-band burst coming from random direction, assuming Gaussian noise.
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