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I. INTRODUCTIONAccording to general relativity, compact concentrations of energy (e.g, neutron stars,black holes) should warp spacetime strongly, and whenever such an energy concentrationchanges shape, it should create a dynamically changing spacetime warpage that propagatesout through the Universe at the speed of light. This propagating warpage is called gravi-tational radiation -a name which arises from general relativistic description of gravity as aconsequence of spacetime warpage. Like water waves on the ocean the concept of a gravi-tational wave requires the idealization of a smooth, unperturbed background on which thewaves propagate. Unlike water waves, however, gravitational waves are not motion in amaterial medium; they are ripples in the fabric of spacetime itself. Once the waves leavetheir sources (near zone), they exist generally in regions where their wavelengths � are verysmall compared to the radius of curvature R of the background spacetime through whichthey propagate.Gravitational waves have two linear polarizations, conventionally called + (plus) and �(cross). Associated with each polarization there is a gravitational-wave �eld, h+ and h�,which oscillates in time and propagates with the speed of light. Each wave �eld producestidal forces (stretching and squeezing forces) on any object or detector through which itpasses. Relative to the object's center, the forces have the quadrupole patterns shown inFig. 1.

FIG. 1. The lines of force associated with the two polarizations of a gravitational wave.There are great di�erences between the gravitational waves and the electromagnetic3



waves.1. Electromagnetic waves are oscillations of the electromagnetic �eld that propagatethrough spacetime; gravitational waves are oscillations of the spacetime itself, as Imentioned above.2. Electromagnetic waves are almost always incoherent superpositions of emission fromindividual electrons, atoms, and molecules. Gravitational waves are produced by coher-ent, bulk motions of huge amounts of mass-energy or the energy of vibrating, nonlinearspacetime curvature.3. Electromagnetic waves are easily absorbed, scattered, and dispersed by matter. Grav-itational waves travel nearly unscattered through all amounts of intervening matter.4. Electromagnetic waves have frequencies that begin at f � 107 Hz and extend upwardby roughly 20 orders of magnitude. Gravitational waves frequencies should begin atf � 104 Hz and extend downwards by roughly 20 orders of magnitude.5. Since the wavelengths of the electromagnetic waves are small compared to their sources(gas clouds, stellar atmospheres, accretion discs), from the waves we can make pic-tures of the sources. The wavelengths of gravitational waves are comparable to orlarger than their sources, so we cannot make pictures of their sources. Instead, thegravitational waves are like sound; they carry, in two independent waveforms, a stereo-phonic, description of their sources.These enormous di�erences make it likely that most (but not all) gravitational wavessources that our instruments detect will not be seen electromagnetically, and vice versa.For example, typical electromagnetic wave sources are stellar atmospheres, accretion disks,and clouds of interstellar gas |none of which emit signi�cant gravitational waves| whiletypical gravitational waves sources are the cores of supernovae (which are hidden fromelectromagnetic view by dense layers of surrounding stellar gas), and colliding black holes(which emit no electromagnetic radiation at all).4



We are sure about the existence of gravitational waves since we know that the orbitalfrequency of the binary pulsar PSR1913+16 is increasing with time due to the emissionof gravitational radiation. But our desire is to \see" gravitational waves directly and notindirectly by their consequences. There are a number of e�orts, worldwide, to detect grav-itational waves. These e�orts are driven in part by the desire to \see gravitational wavesalive," as I mentioned earlier, but more importantly by the goal of using the waves as aprobe of the Universe and of the nature of gravity. They should be a powerful probe, sincethey carry very detailed information about gravity and their sources.This paper is organized as follows:In Sec. II, I will refer to possible sources of gravitational radiation, that is supernovaexplosions, coalescing binaries, pulsars, big bang etc. I will make a detailed reference to thecoalescing binaries and pulsars because their study is easier and more understandable.In Sec. III, I will mention the two kind of detectors that are developed for catchinggravitational waves and the methods we use to search the signals in the noisy output of thedetectors.Finally, in Sec. IV, I will analyse the \ inverse problem ", namely the way to extractfrom a gravitational wave signal the parameters of its source.II. SOURCES OF GRAVITATIONAL RADIATIONA. Coalescing compact binariesThe best understood of all gravitational wave sources are coalescing compact binariescomposed of neutron stars (NS) or black holes (BH). The famous Hulse-Taylor binary pulsaris an example of a NS/NS binary whose waves could be measured by LIGO/VIRGO, if wewere to wait long enough. At present the PSR1913+16 has an orbital frequency of about1/(8h) and emits its waves at twice this frequency, roughly 10�4 Hz. This is far outside theLIGO/VIRGO band. However, as a result of their lose of orbital energy to gravitational5



waves, the PSR1913+16 neutron stars are gradually spiraling inward. If we wait 108 years,this inspiral will bring the waves into the LIGO/VIRGO band (� 10 Hz to 103 Hz). As thetwo stars continue their inspiral the wave's frequency will then increase over a time of about15 min from 10 Hz to 103 Hz, at which point the two stars will collide and coalesce. It isthese last 15 minutes of the inspiral, with � 16:000 cycles of waveform oscillation, and the�nal coalescence that the LIGO/VIRGO seeks to monitor.The important question that arises is how many of these systems exist in our Galaxyand generally in the close Universe. According to estimates by Narayan, Piran, Shemi andPhinney based on statistics of binary pulsar searches and discoveries, in our Galaxy thereis one every 100.000 years. Extrapolating out through the Universe we �nd that we have tolook out to a distance of 200 Mpc (give or take a factor � 2) to have some hope to detectsuch waves in a reasonable time.The observationally inferred coalescence rate is roughly 100 times smaller than the birthrate of the NS/NS binaries' progenitors; that are massive, compact, main-sequence binaries.Therefore, either 99% of progenitors fail to make it to the NS/NS state (e.g, because ofbinary disruption during a supernova), or else they do make it, but they wind up as a classof NS/NS binaries that has not yet been discovered in any of the pulsar searches. If thelatter is the case, then the coalescence rate in our galaxy will be one per 1000 years and sothe LIGO/VIRGO will have to look out to about 40 Mpc rather than 200 Mpc to see a fewcoalescing binaries per year.1. Inspiral wave forms and the information they carryNeutron stars and black holes have such intense gravity that is exceedingly di�cultto deform them. Correspondingly, as they spiral inward in a compact binary, they donot gravitationally deform each other signi�cantly until several orbits before their �nalcoalescence. This means that the inspiral wave forms are determined to high accuracy byonly a few parameters: the masses and spin angular momentum of the bodies and their6



initial orbital parameters (the parameters when the wave enters the detector).Although tidal deformations are negligible during inspiral, relativistic e�ects can be veryimportant. If we neglect those e�ects and approximate gravity as Newtonian we will getthe following for a binary system: (We assume that the two bodies move on circular orbitsaround their center of mass). The kinetic energy of each body, and the total kinetic energyof the system are, respectively,T1 = G�m22R ; T2 = G�m12R ; Ttot = Gm1m22R ; (1)where m1; m2 are the masses of the two stars, � is the reduced mass of the system � =m1m2=m1 +m2 and R is the distance between the two stars. The potential energy of thesystem is : V = �Gm1m2R : (2)So the total energy of the system isEtot = �Gm1m22R : (3)But we know from general relativity that the energy loss rate is given bydEdt = �15Gc5 h ���Iij ���Iiji = 325 G4c5 M3�2R5 : (4)By combining the above equation with Eq. (3) and by solving with respect to R we get theexpression below for R(t):R(t) =  256G3m1m2M5c5 !1=4 (tc � t)1=4; (5)where c is the speed of light, M is the total mass and tc is the so called coalescence time,which is the time the two stars will coalesce. Taking under consideration the relation between! and R we get the expression for !(t), which is!bin(t) = aM�5=8(tc � t)�3=8; (6)where a = G�5=8 �2565c5 ��3=8 and M is the so called chirp mass de�ned as M� � M31M32M1+M2�1=5.7



From the above equation we are able to �nd the phase of the wave, which is � = R !(t)dt.After integration we obtain,�bin(t) = �85aM�5=8(tc � t)5=8 + �c; (7)where �c, is an initial phase. The �nal step is to get the strain of the gravitational waveh(t), which is, according to the Newtonian quadrupole moment approximation,h(t) = Q(�; �;  ; i)�MDR(t) cos�Z !wavdt� ; (8)where, Q(�; �;  ; i) is a factor depending on the geometry of the detector-binary system andD is the distance to the source. If we use equations (5) and (7) then we obtain for the strainof the gravitational wave (neglecting the geometry parameter Q):h(t) = 2D  5c5256G3!1=4M5=4(tc � t)�1=4 cos��165 aM�5=8(tc � t)5=8 + �c� : (9)Here notice that the frequency of the gravitational waves emitted is double the frequency ofthe binary, !wav = 2!bin and therefore �wav = 2�bin, this is because the quadropole momentrepeats when the masses move through one half of their orbit. The shape of the waveformis shown in Fig. 2.
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FIG. 2. The waveform of Eq. (9). The amplitude and the frequency of the wave are increasingwith time.As one can see from the diagram, the amplitude and the frequency of the signal areincreasing as the binary bodies spiral closer and closer together. Because of that, the signalis referred to as `chirp' (a term that comes from the radar technique). The ratio of theamplitudes of the two polarizations is determined by the inclination i of the orbital planeto the line of our sight from the relationAmp(hx)Amp(h+) = 2 cos i1 + cos2 i : (10)The shapes of the individual waves, are determined by the orbital eccentricity. In ourcase of a circular orbit the rate at which the frequency sweeps, df=dt, is determined solely,in the Newtonian approximation, by the binary's chirp mass. The amplitude of the twowaveforms are determined by the chirp mass, the distance to the source, and the orbital9



inclination. Thus, by measuring the two amplitudes (in the Newtonian approximation),the frequency sweep, and the harmonic content of the inspiral waves, we can determine thesource's distance, chirp mass, inclination and eccentricity (if there is any).2. Coalescence waveforms and their informationThe waves from the binary's �nal coalescence can bring us new types of information. Inthe case of a BH/BH binary, the coalescence will excite large-amplitude, highly nonlinearvibrations of spacetime curvature near the coalescing black-hole horizons |a phenomenonof which we have little understanding today. Especially fascinating will be the case of twospinning black holes whose spins are not alligned with each other or with the orbital angularmomentum. The dynamical evolution of such a complex con�guration of coalescing space-time warpage (as revealed by its emitted waves) might bring us surprising new insights intorelativistic gravity. Moreover if the sum of the BH masses is fairly large ' 40 to 200M�,then the waves should have frequencies of about 200 to 40 Hz where the LIGO/VIRGObroad-band interferometers have their best sensitivity and can best extract the informationsthe wave carry. The challenge of computing the waves from such a coalescence, via super-computer simulations, appear to be almost as di�cult as detecting them, especially if theholes are spinning and their spins and their orbital angular momentum are not alligned, asI said above. High priority is given to the development of such simulations, so that, whenthe LIGO/VIRGO detectors begin to monitor BH/BH coalescences, comparison of theoryand experiment can be used to unravel the details of the nonlinear vibrations of spacetimecurvature.The �nal coalescence of NS/NS binaries should produce waves that are sensitive to theequation of state of nuclear matter so that coalescences have the potential to teach us aboutthe nuclear equation of state. Unfortunately, the �nal NS/NS coalescence will emit itsgravitational radiation in the kHz frequency band (800 Hz < f < 2500 Hz) where photonshot noise will prevent them from being studied by the LIGO/VIRGO interferometers, but10



only by resonant bars and spherical detectors. A number of research groups [19] are engagedin numerical astrophysics simulations of NS/NS coalescence, with the goal not only to predictthe emitted gravitational waveforms and their dependence on equation of state, but also tolearn whether such coalescences power the 
-ray bursts that have been a major astronomicalpuzzle since their discover in early 70s. NS/NS coalescence is currently a popular explanationfor the 
-ray bursts because (1) the bursts are isotropically distributed on the sky, (2)they have a distribution of number versus intensity that suggests they might lie at near-cosmological distances, and (3) their event rate is roughly the same as that predicted forNS/NS coalescence. If LIGO/VIRGO were now in operation and observing NS/NS inspirals,they could report de�nitely whether or not the 
 bursts are produced by NS/NS binaries;and if the answer were yes, then the combination of the 
-bursts data and gravitational-wave data could bring valuable information that neither of them could bring by itself. Forexample, it would reveal when, to within a few msec, the 
-burst is emitted relative to themoment the NS's �rst begin to touch; and by comparing the 
 and the gravitational-wavetimes of arrival, we might test whether gravitational waves propagate with the speed of lightto a fractional precision of ' 0:01sec=3� 109lyr = 10�19.A NS spiraling into a BH of mass M � 10M� should be swallowed more or less as awhole. However, if the BH is less massive than roughly 10M�, and especially if it is rapidlyrotating, then the NS will tidally disrupt before being swallowed. Little is known aboutthe disruption and corresponding waveforms. To model them with any reliability will likelyrequire full numerical relativity, since the circumferences of the BH and the NS will becomparable and their physical separation at the moment of disruption will be of the order oftheir separation. As with the NS/NS coalescence their waves should carry information aboutthe equation of state information and will come out in the kHz band where their detectionwill require interferometric gravitational detectors working in dual recycling mode.
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B. Spinning neutron stars|PulsarsAn axisymmetric object rotating rigidly about its symmetry axis has no time-varyingquadropole moment, and hence does not radiate gravitational radiation.If the principal moments of inertia of an object are I1, I2, I3, then radiation will beproduced if it rotates about the principal axis e3 and is nonaxisymmetric (I1 6= I2). Al-ternatively, it can radiate if it is axisymmetric (I1 = I2), but the rotation axis is not asymmetry axis e3. I shall consider the �rst case �rst, whose physical application could be apulsar whose rigid crust can support a \mountain". A set of coordinates x0i, rotating withthe object (body coordinates) is related to an inertial coordinate system xi with commonorigin at the center of the mass by the rotation matrix:x0 = Rx (11)where, Rij = 0BBBBBB@ cos� sin� 0� sin� cos� 00 0 1
1CCCCCCA (12)and � = 
t; 
 = constant (no applied torques). The inertia tensor in the inertial coordinateshas components given by I = RT I 0R; (13)where I 0 is a diagonal matrix with diagonal elements I1, I2 and I3. I will use 1,2,3 to denotecomponents in the body frame and x,y,z for the inertial frame. The components of theinertia tensor in the inertial frame areIxx = I1 cos2 �+ I2 sin2 � = 12(I1 � I2) sin 2�+ const; (14a)Ixy = Iyx = 12(I1 � I2) sin 2�; (14b)12



Iyy = 12(I2 � I1) cos 2�+ const; (14c)Izz = const; (14d)Ixz = Iyz = Izx = Izy = 0; (14e)since TrI 0 = TrI = I1 + I2 + I3 = constant, we can use Iij instead of Iij in the energy lossformula and thus we getdEdt = �15Gc5 hI���2xx + I���2yy + I���2zzi= � 120Gc5 (2
)6(I1 � I2)2hcos2 2�+ 2 sin2 2�+ cos2 2�i= �325 Gc5 (I1 � I2)2
6: (15)If the object can be approximated by a homogeneous ellipsoid with semi axes a,b,c thenI1 = 15M(b2 + c2); (16a)I2 = 15M(a2 + c2); (16b)I3 = 15M(a2 + b2); (16c)For a small asymmetry(i.e, a ' b), we may writedEdt ' �325 Gc5 I23 �2
6 (17)where the ellipticity � is de�ned by � = (a� b)(a+ b)=2 : (18)Now turn to the case of rigid rotation about a nonprincipal axis, but assume I1 = I2,for simplicity. Choose the �xed direction of the angular momentum vector J to be along ez13



in the inertial frame. The transformation to the body coordinates is given in terms of theEuler angles byRij = 0BBBBBB@ cos cos�� cos � sin� sin cos sin�+ cos � cos� sin sin � sin � sin cos�� cos � sin� cos � sin sin�+ cos � cos � cos sin � cos sin � sin� � sin � cos � cos �
1CCCCCCA (19)In free precession, the symmetry axis e3 and the angular velocity vector rotate aboutez with constant angular velocity _� = J=I1, e3 maintaining a constant angle � with respectto ez. In addition the angular velocity vector precesses about e3 with angular velocity_ = (I1� I3) _� cos �=I3 = constant, as seen in the body frame. Equations (13) and (19) giveIxx = I1(cos2 �+ cos2 � sin2 �) + I3 sin2 � sin2 �= 12(I1 � I3) sin2 � cos2 2�+ constant; (20a)Ixy = Iyx = 12(I1 � I3) sin2 � sin 2�; (20b)Ixz = Izx = �(I1 � I3) sin � cos � sin�; (20c)Iyy = �12(I1 � I3) sin2 � cos 2�+ constant; (20d)Iyz = Izy = (I1 � I3) sin � cos � cos�; (20e)Izz = I3 + (I1 � I2) sin2 � = constant: (20f)Writting � = 
t, 
 = _� = constant, we �nddEdt = �15Gc5 hI���2xx + I���2yy + 2I���2xy + 2I���2xz + 2I���2yzi= �15Gc5 (I1 � I3)2h14 sin4 �(2
)6(2 cos2 2�+ 2 sin2 2�) + 2
6 sin2 � cos2 �(cos2 �+ sin2 �)i= �25Gc5 (I1 � I3)2
6 sin2 �(16 sin2 � + cos2 �): (21)14



For a small \wobble angle" �, we getdEdt ' �25Gc5 (I1 � I3)2
6�2: (22)Note that for rotation about a principal axis (Eqs. (15) and (17)) the frequency of theradiation is 2
. In the case of Eqs. (21) and (22), however, the dominant radiation is atfrequency 
, since the cos2 � term comes from Ixz and Iyz. In the general case of combined\mountain" and \wobble" radiation, dE=dt is given by the sum of Eqs. (15) and (21),provided the \mountain" and the \wobble" are small.As a neutron star settles down into it's �nal state, its crust begins to solidify (crystalize).The solid crust will assume nearly the oblate axisymmetric shape that centrifugal forces aretrying to maintain, with poloidal ellipticity �p � !2. However, the principal axis of the star'smoment of inertia tensor may deviate from its spin axis by some small \wobble angle" �w,and the star may deviate slightly from axisymmetry about its principal axis; i.e., it mayhave a slight ellipticity �e � �p in its equatorial plane.As this slightly imperfect crust spins, it will radiate gravitational waves with frequencytwice the frequency of the rotation, f = 2fr with h � �e, and the wobble angle will couple to�p producing waves at f = frot + fprec (the precessional sideband of the rotation frequency)with amplitude h � �w � �p. For typical neutron-star masses and moments of inertia, thewave amplitudes areh � 6� 10�25  frot500Hz!2  1kpcr ! �e or �w�p10�6 ! : (23)The neutron star gradually spins down, due in parts to gravitational-wave emission butperhaps mainly due to electromagnetic torques associated with its spinning magnetic �eldand pulsar emission. The spin-down reduces the strength of centrifugal forces, and therebycauses the star's poloidal ellipticity �p to decrease with resulting breakage and resolidi�cationof its crust's crystal structure. In each starquake, �w; �e and �p will all change suddenly,thereby changing the amplitudes and frequencies of the star's two gravitational \ spectrallines " f = 2frot and f = frot + fprec. After each quake, there should be a healing period15



in which the star's 
uid core and solid crust, now rotating at di�erent speeds, graduallyregain synchronism. By monitoring the amplitudes, frequencies, and phases of the twogravitational-wave spectral lines, and by comparing them with timing of the electromagneticpulsar emission, one might learn much about the physics of the neutron star interior.But how large the quantities �e and �w � �p will be? Rough estimates of the crystalshear moduli and breaking strengths suggest an upper limit in the range �max � 10�4 to10�6, and it might be that typical values are far below this. We are extremely ignorant,and correspondingly there is much to be learned from searches for gravitational waves fromspinning neutron stars. C. SupernovaeTraditionally supernovae are classi�ed into two classes: type I supernovae (SNI) andtype II supernovae (SNII). Type II supernovae represent the core collapse of a massive starand the shock-driven rebound expansion of an optically luminous shell. In a few instancesit is certain that the collapsed core is a neutron star. Type I supernovae are di�erent. Thetraditional view is that a type I supernovae is the nuclear detonation of a white dwarf, afterit has accreted matter from a companion. There appear to be many reasons why this maynot be correct however. The white dwarf has the choice of collapsing or detonating and thechoice is determined by detailed properties of degenerate matter. The best guess today isthat it is likely that at least a fraction of accreting white dwarfs will collapse, but only to aneutron star, since white dwarf mass is insu�cient to allow collapse to a black hole.Supernovae 1987A discovered on February 23, 1987, represented a historic landmark inastronomy. The supernovae occured in a nearby irregular dwarf galaxy, the Large MagellanicCloud, at a distance of about 50 Kpc. In this instance neutrinos from the inverse �-decayassociated with the collapse were observed by several huge detectors originally designed totest for the radioactive decay of protons. This is the �rst instance of direct observation ofcore collapse. 16



The strengths of gravitational waves from a supernovae depend crucially on the degreeof non-sphericity in the stellar collapse that triggers it, and somewhat on the speed of thecollapse. Perfectly spherical collapse will produce no waves; highly non-spherical collapsewill produce strong waves. The main source of non-sphericity during collapse is angularmomentum. Little is known about the degree of non-sphericity in type II but currentprejudice suggests that the typical type II might be quite spherical and thus poorly radiating.About type I on the contrary, if are due to explosion of an accreting white dwarf, theexplosion is accompanied by collapse of the stellar core to a neutron star, then the whitedwarf might be rapidly rotating due to the accretion, and the centrifugal forces might thencause it to collapse very non-spherically and radiate strongly.Our knowledge about the strengths of the waves and the waveforms from supernovae ispoor. The �gures below show some typical calculated waveforms, all showing the generalcharacter of burst source; extremely brief pulses with duration of only a few cycles. The leftcurve shows several epochs labeled FF in which h+(t) varies approximately as jt � t0j�2=3,corresponding to free-fall motion; and these free-fall epochs are separated by three briefperiods with sharply reversed peaks (labeled P in the diagram) corresponding to a sharpacceleration in the direction opposite to the free fall. The natural and correct interpretationof the diagram is that these waves are produced from collapse to a neutron star in whichthe stellar core bounced sharply three times. The fact that the three sharp peeks are allin the direction (up, not down) indicates that the sharp bounces are along the same axis.Surely the other axis that projects on our sky should have bounced as well, or at leaststop its collapse; so there should be at least one sharp peak in the down direction. Andindeed there is; it is superposed on the central up peak (region labeled E in the diagram).The interpretation of that is that the star was centrifugally 
attened by rotation; its polecollapsed fast and bounced three times (up peaks P) while its equator collapsed more slowlyand bounced once (down peak E). The entire event lasts only 50 ms. The right curve showsthe waveform where the collapse has excited quadropole oscillations of the neutron star.Near sinusoidal oscillations are excited at 1.4 kHz, and rapidly damped out.17



Now turn to the formation of black holes due to a star's collapse. It is very likely thatblack holes exist in our universe with masses throughout a range 2M� � M � 1010M�.The holes of lowest mass can only form by direct collapse of a star. Those of higher mass,however, can form by many ways (direct collapse; gradual growth from a small hole byaccretion; collision and coalescence of small holes; etc).In one respect collapse to a black hole is better understood than collapse to a neutronstar; the �nal object is much simpler, and correspondingly the waves from its vibrations, ifthey are triggered by the collapse, are far better understood. Detailed calculations suggest,in fact, that black hole vibrations are rather easy to trigger and that when they are triggered,the most slowly damped one or two quadropole modes will dominate. Thus, while the detailsof the initial burst of waves may depend on unknown details of the collapse, the late-timebehavior will have a well established damped oscillatory form, from which one can reado� the mass of the hole with excellent accuracy and it's angular momentum with modestaccuracy.If collapse to a black hole radiates with an e�ciency �E=Mc2 = � and the hole is at adistance ro, and has mass M , then the characteristic frequency and amplitude of its waveswill be fc ' 15�M = (1:3� 104Hz) MM�! ; (24a)hc ' 1:0� 10�20 � �0:01�1=2  103 Hzfc !�Mpcro � : (24b)If the collapse is axisymmetric, then the e�ciency � probably doesn't exceed the value of7�10�4. However, in the non-axisymmetric case the e�ciency might be at the range 0.01-0.1.
18



III. DETECTION OF GRAVITATIONAL WAVESA. GENERAL REMARKSThe frequency band of gravitational waves can be divided into four regions:1. The high-frequency band (HF: f � 104 to 1 Hz).In this frequency band lies the stellar collapse to a neutron star or a black hole inour Galaxy and distant galaxies; the rotation and vibrations of neutron stars (pulsars)in our Galaxy; the coalescence of neutron star and stellar-mass black hole binaries indistant galaxies.2. The low-frequency band (LF: f � 1 to 10�4 Hz).The low-frequency band should be populated by waves from short-period binary starsin our Galaxy; from white dwarfs, neutron stars and small black holes spiralling intomassive black holes (M � 3� 105 to 3� 107) in distant galaxies; and from the inpiraland coalescence of supermassive black-hole binaries (M ' 100 to 108M�).3. The very-low frequency band (VLF: f � 10�7 to 10�4 Hz).The only compact bodies that can radiate in the very-low frequency band at f � 10�7Hz are those with M � 1011M�. Conventional astronomical wisdom suggests thatcompact bodies this massive cannot exist, and therefore the only strong waves in theVLF band and below are stochastic background produced by cosmic strings, phaseradiations and the big bang.4. The extremely-low frequency band (ELF: f � 10�15 to 10�18 Hz).Gravitational waves in the ELF band should produce anisotropies in the cosmic mi-crowave background radiation.
19



B. DETECTORS1. BAR DETECTORSThe construction of bar detectors for gravitational radiation is based on the issue ofresonance that we know from basic physics. Each body has a normal-mode frequency f0which depends on the size and the material of which is made. So our task is to constructbodies from material that have normal-mode frequency equal or similar to the frequenciesof gravitational waves we wish to detect. In that case when a gravitational wave hits thedetector we have resonance and we might be able to monitor the wave.In order to understand the function of the bar detector, I analyze the case of a sim-ple quadrupole oscillator consisting of two masses connected by a spring, as a detector ofgravitational waves. I want to calculate what oscillation amplitude the incident wave canexcite and how much energy is absorbed by the wave. As we know the observable drivingforce on the oscillator is the tidal force. Suppose that a plane wave is incident on the simplequadrupole placed on x-axis with equilibrium positions x = �b which vibrates along thisaxis and the direction of incidence is perpendicular to that and parallel to one of the princi-pal axes of the tidal deformation �eld. If the displacement of the two masses remains alwayssmall (j x� b j� b), then the equation of motion of one of the masses, say, the mass on thepositive x-axis, is m�x = mk2Awav!2bei!t �m
 _x�m!20(x� b) (25)where, the �rst term of the right hand of Eq. (25) is the tidal force, the second is the frictionforce and the third is the harmonic oscillator force; !0, is the natural frequency of the freeoscillations and 
 is the damping rate associated with the frictional forces acting on theoscillator. The steady-state solution of the above equation isx� b = 12kAwav!2bei!t�!2 + !20 + i
! (26)where k = p16�G. The steady state response of the oscillator has a sharp maximum atthe frequency ! = !0. Hence gravitational waves of this frequency are in resonance with20



the natural oscillations of the system. As a measure of the sensitivity of the detector it isoften convenient to use a parameter called the cross section. The scattering cross section isde�ned as the ratio of the power reradiated to the incident 
ux , that is�scatt(!) = power reradiatedincident flux (27)and is a parameter that measures the e�ciency of the oscillator's scattering the radiation inall directions. The incident 
ux in this case is Awav!2=2c and the power reradiated is� d �Edt !rad = 16G15c5 (mAb)2!6 (28)where A, is the amplitude of the oscillation. Taking A from Eq. (26) and substituting it inthe above equation and then in Eq. (27) we obtain for the scattering cross section,�scatt = 15�c22 (
rad)2 1(!2 � !20)2 + 
2!2 ; (29)where 
rad is 
rad = 16G15c5mb2!4: (30)Note that �scatt is independent of the amplitude of the incident wave; this is what makesthe cross section useful as a measure of how much the quadrupole scatters radiation out ofthe incident wave.For the purpose of detecting gravitational waves we are more interested in the energyabsorbed from the oscillator than in the one scattered. This means that we want to knowwhat power the oscillator delivers to the (mechanical) frictional forces in the oscillator. Ina similar way we can de�ne the absorption cross section as�abs(!) = power lost to mechanical frictionincident flux : (31)We can establish a connection between �abs and �scatt, if we note that the total dampingrate 
 is given by two terms,
 = � 1E  d �Edt !tot = � 1E  d �Edt !mechanicalfriction � 1E  d �Edt !radiation = 
m + 
rad (32)21



Thus by de�nition �scat and �abs must stand in the ratio 
m=
rad, that is,�abs = 
m
rad�scat: (33)If we assume that 
m � 
rad then 
m ' 
 and the �abs is�abs = 152 �c2

rad 1(!2 � !20)2 + 
2!2 : (34)The above calculations were made for a quadrupolar oscillator oriented in the most favorabledirection in the tidal �eld of the wave. The line of vibration of the masses was taken bothperpendicular to the direction of incidence and parallel to one of the principal axes of thetidal deformation �eld. For an oscillator whose masses are constrained to vibrate along aline making an angle � with the direction of incidence (z-axis) and an angle � with one ofthe principal axes of the tidal �eld the component of the tidal force along this line is reducedby a factor sin2 � cos 2�as compared with the most favorable case. This factor is easy to understand; the magnitudeof the tidal force is proportional to the transverse dimension of the system (� sin �) ; takingthe component of this force along the line of vibration results another factor sin �; �nally,the factor cos 2� simply represents the angular dependence of the (radial) tidal �eld strengthin the transverse plane. The cross section depends on the square of the component of thetidal force along the line of vibration; hence the reduce factor is sin4 � cos2 2�. Taking themean value over all angles of the above factor we get14� Z sin4 � cos2 2�d
 = 415 (35)Consequently if the wave arrives with an arbitary orientation then the mean ��abs is��abs = 2�c2

rad 1(!2 � !20)2 + 
2!2 (36)Although those calculations have been made for the special case of a simple linearquadrupole, the results are also valid for an arbitary mass system vibrating in a mode22



of cylindrical symmetry. More precisely, since the amplitude of the time-dependent part ofthe quadrupole tensor is some symmetric matrix Q0kl, it can be diagonalized by a trans-formation to principal axes. By cylindrical symmetry we mean that two of the diagonalelements of the diagonalized matrix are equal. If we take the axis in the z-direction, thenQ011 = Q022 and since the trace must be zero, Q033 = �2Q011.For that reason, a bar detector is usually a cylinder (called resonant mass). The resonantmass is typically made from an alloy of aluminum and weights several tones, but somehave been made of niobium or single crystal silikon with masses well below a tone. Tocontrol thermal noise, the resonant mass is usually cooled cryogenically to liquid-heliumtemperatures or below.The cross-section of a bar detector as a function of frequency is given in Fig. 3.
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FIG. 3. The cross section of a bar detector as a function of frequency. The maximum is verysharp at the normal-mode frequency. The numbers and units on the diagram are arbitary.This resonance has a width of only �f ' 
=2� ' 10�2Hz. Consequently the frequenciesof the wave and the normal-mode of the cylinder must agree to one part in ' 105. This isquite unlikely. Probably, the best we can hope is that the radiation contains a spread offrequencies which overlaps the detector resonance; the spread of frequency of the radiation23



is likely to be much larger than the width of resonance.The resonant-mass antenna is instrumented with an electromagnetic transducer andelectronics, which monitor the complex amplitude of one or more of the mass's normalmodes. When a gravitational wave passes through the mass, its frequency components neareach normal-mode frequency f0 drive that mode, changing its complex amplitude; and thetime evolution of the changes is measured within some bandwidth �f by the transducerand electronics. Current resonant mass antennas are narrow-band devices (�f=f0 � 1) butin the era of LIGO/VIRGO, they might achieve bandwidths as large as �f=f0 � 1=3Resonant mass antennas for gravitational radiation were pioneered by Joseph Weberabout 35 years ago and have been pushed to even higher sensitivities later. At presentthere is a network of such antennas, cooled to 3K, and operating with an rms noise levelfor broad-band gravity-wave bursts of hrms ' 6� 10�19. The network includes an aluminumcylinder called EXPLORER at the University of Rome, Italy; an aluminum cylinder atLouisiana State University, USA; and a niobium cylinder at University of Perth, Australia.This network has been in operation, searching for waves, for several years.The next generation of resonant-mass antennas is now under construction at the Univer-sity of Rome and at the University of Legarno, Italy. There are several-ton aluminum barscooled to 0.05K; their rms sensitivity for wave bursts are � 10�20.A subsequent generation, which hopefully will operate in the LIGO/VIRGO era, is beingdiscussed and planned. These are 1 to 100 tone spheres cooled at � 0.01-0.05K, withsensitivity goals of � 10�22. Such antennas might be built by an American collaboration, aBrazilian collaboration, an Italian collaboration called \Omega" , and a Dutch collaborationcalled \Grail". Their spherical or nearly spherical shapes make them omnidirectional andshould give them several times higher sensitivities that can be achieved by cylinders at thesame frequency. The name of this program is TIGA (Truncated Icosahedral Gravitational-wave Antenna).The present consept of the TIGA project is to built a \xylaphone" of four aluminiumalloy spheres with diameters ranging from 2 to 3 meters. The largest sphere will then weigh24



about 40tons and have the lowest quadropole frequency of about 900 Hz. A three-modeantenna transducer system will allow a fractional bandwidth of about 900 Hz. If bothfoundamental and second harmonic quadropole modes are instrumented, a frequency rangeof 800 to 2700 Hz will be covered.The attractiveness of such antennas in the LIGO/VIRGO era lies in their ability tooperate with impressive sensitivity in the uppermost reaches of the high-frequency band,� 103 to 104 Hz, where photon shot noise debilitates the performance of interferometricdetectors. The �gure below shows the projected rms noise curves of TIGA detectors, eachinstrumented to operate at the \standard quantum limit" for such a detector (a nontrivialexperimental task). For comparison is shown the rms noise of the �rst LIGO interferometer,which of course is not optimized for the kHz band.
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FIG. 4. The rms noise curves ~h (f) for a `xylaphone' of TIGA gravitational-wave detectors forsignals of random polarization and direction. Shown in comparison the noise curves for the �rstLIGO interferometer (dashed curve).2. LIGO-VIRGO INTERFEROMETERSThe other kind of detector for gravitational waves is based on the issue of interferometryknown from optics. A laser interferometer gravitational wave detector consists of four masses25



that hang from vibration-isolated supports as shown in �gure 5, and the indicated opticalsystem for monitoring the separation between the masses. Two masses are near each other, atthe corner of an \L", and one mass is at the end of each of the L's long arms. The arm lengthsare nearly equal, L1 ' L2 = L. When a gravitational wave, with frequencies high comparedto masses, passes through the detector, it pushes the masses back and forth relative to eachother as though they were free from their suspension wires, thereby changing the arm-lengthdi�erence, �L � L1 �L2. If the waves are coming from overhead or underfoot and the axisof the + polarization coincide with the arm's directions, then it is the + polarization thatdrives the masses, and �L(t)=L = h+(t). More generally, the interferometer is sensitive toa linear combination of the two wave �elds:�L(t)L = F+h+(t) + F�h�(t) � h(t): (37)The coe�cients F+ and F� are of the order of unity and depend in a quadrupolar manner onthe direction to the source and the orientation of the detector. Usually they are called beam�patternfunctions. The combination h(t) of the two waveforms is called the gravitational�wave� strain that acts on the detector; and the time evolutions of h(t), h+(t), and h�(t)are sometimes called waveforms.The detector's masses at present are made of transparent fused silica (quartz), thoughother materials might be used in the future. The masses' inner faces (shown white in thediagram) are covered with high-re
ectivity dielectric coatings to form the indicated mirrors,while the masses' outer faces are covered with anti-re
ection coatings. The two mirrorsfacing each other on each arm form a Fabry-Perot cavity. A beam splitter splits a carefullyprepared laser beam in two, and directs the resulting beams down the two arms. Eachbeam penetrates through the antire
ection-coating of each arm's corner mass, through themass, and through the dielectric coating (the mirror); and thereby |if the length of thearm's Fabry-Perot cavity is accurately adjusted |the beam gets trapped in the cavity. Thecavity's end mirror has much higher re
ectivity than it's corner mirror, so the trappedlight leaks back out through the corner mirror, and then hits the beam splitter where it26



recombines with light from the other arm. Most of the recombined light goes back towardthe laser (where it can be re
ected back into the interferometer by a so called light recyclingmirror, labeled R), but a tiny portion goes toward the photodiode.

FIG. 5. A simple schematic diagram of a laser interferometer gravitational wave detectorWhen a gravitational wave hits the detector and moves the masses, thereby changingthe lengths L1 and L2 of the two cavities, it shifts each cavity's resonant frequency slightlyrelative to the laser frequency, and thereby changes the phase of the light in the cavity and thephase of the light that exits from the cavity toward the beam splitter. Correspondingly, therelative phase of the two beams returning to the splitter is altered by an amount �� / �L,and this relative phase shift causes a change in the intensity of the recombined light atthe photodiode, Ipd / �� / �L / h(t). Thus, the photodiode output current is directlyproportional to the gravitational wave strain h(t). This method of monitoring h(t), is capableof very high sensitivity, as we shall see below.The technology and techniques for such interferometers have been under developmentfor more than 20 years and plans for km-scale interferometers have been developed the past20 years. Two km-scale systems have recently been approved for construction: the Ameri-can LIGO (\Laser Interferometer Gravitational-wave Observatory"), and the French/ItalianVIRGO (named after the Virgo cluster of galaxies).LIGO will consist of two vaccum facilities with 4-kilometer-long arms, one in the north-27



western part of the USA and the other in the southern-east part of the USA. VIRGOentails one vaccum facility in Pisa, with 3-kilometer-long arms. Both LIGO and VIRGO arescheduled for completion in the late 1990s.LIGO alone, with it's two sites which have parallel arms, will be able to detect anincoming gravitational wave, measure its two waveforms, and locate its source to within a� 1� wide annulus on the sky. LIGO and VIRGO together will be able to locate the source(via time delay, which will be discussed in Sec. IV) to within a 2-dimensional error boxwith size between several tens of arcminutes and several degrees, depending on the sourcedirection and on the amount of high-frequency structure in the waveforms; and they will beable to monitor both waveforms h+(t) and h�(t).The accuracies of the direction measurements and the ability to monitor more thanone waveform will be severely compromised when the source lies anywhere near the planeformed by the three LIGO/VIRGO interferometer locations. To get good all-sky coveragewill require a fourth interferometer at a site far out of that plane; Japan and Australia wouldbe excellent locations, and research groups are carrying out research and development oninterferometric detectors, aimed at such a possibility.Interferometers are plugged by non-Gaussian noise, e.g. due to sudden strain releases inthe wires that suspend the masses. This noise prevents a single interferometers, by itself,from detecting with con�dence short-duration gravitational-waves bursts. The non-Gaussiannoise can be removed by cross correlating two or more interferometers at widely separatedsites.The principal sources of displacement noise are seismic vibrations of the ground beneaththe interferometer, and thermally-induced vibrations of the test masses and of the wiresthat suspend them. Another source of noise in the phase shift is the photon shot noise dueto random times at which the light's photons arrive at the photodiode. Figure 6 shows thespectra that are expected from these three noises in the �rst interferometers that will operatein LIGO. At frequencies above 200 Hz, shot noise dominates; between 200 Hz and 40 Hz,thermal noise in the suspension wires dominates; and below 40 Hz, seismic noise dominates.28



During LIGO' s operation, step-by-step improvements will be made in the control of thethree noise sources, thereby pushing the overall noise spectrum downward from the \�rst-interferometer" level toward the \advanced interferometer" level shown in Fig. 6.
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FIG. 6. The expected noise spectrum in each LIGO's �rst 4-km interferometers (upper solidcurve) and in more advanced interferometers (lower solid curve). The dashed curves show var-ious contributions to the �rst interferometers' noise. Plotted horizontally is gravity wave fre-quency f ; plotted vertically is ~h(f), the square root of the spectral density of the detectors outputh(t) = �L(t)=L in the absence of a gravity wave. The rms noise in a bandwidth �f at a frequencyf is hrms = ~h(f)p�f .The strongest gravitational waves that arrive at Earth several times per year are expectedto have strengths h � 10�22. Correspondingly, LIGO is designed to achieve rms noiselevels hrms = ~h(f)p�f ' 3 � 10�22 in the �rst detectors, and � 10�23 in more advanced29



detectors. A wave strain h ' 10�22 will produce a displacement �L = hL ' 10�16 cm ofthe interferometer's mirror-endowed masses. 10�16 cm is awfully small: 1/1000 the diameterof the nucleus of an atom, and 10�12 the wavelength of the light being used to monitor themasses' motion. How can one possibly monitor such small motions?One adjusts the re
ectivities of the interferometer's inner mirrors so that the two armsstore laser light on average for about half a cycle of a � 100 Hz gravitational wave, whichmeans for about 100 round trips. The light in each arm thereby acquires a phase shift�� ' 100� 4��L� ' 10�9; (38)where � ' 10�4 cm is the wavelength of light. If the interference of the light from thetwo beams is done optimally, then this phase shift (equal and opposite in the two arms)can be measured at the photodiode to an accuracy that is governed by the light's photonshot noise, �� ' 1=pN , where N is the number of photons that enter the interferometerfrom the laser during the half-cycle of photon storage time. Thus, to achieve the requiredaccuracy, �� ' 10�9, in the face of photon shot noise, requires N = 1018 photons in 0.01second, which means a laser power of � 100 Watts.By cleverness, one can reduce the required laser power: The light is stored in the in-terferometer arms for only a half gravity-wave period (� 100 round tips) because duringthe next half period the waves would reverse the sign of �L, thereby reversing the sign ofthe phase shift being put onto the light and removing from the light the signal that hadaccumulated in the �rst half period. In just 100 round tips, however, the light is attenu-ated hardly at all. One therefore reuses the light over and over again. This is done by (i)operating the interferometer with only a tiny fraction of the recombining light going outtoward the photodiode, and almost all of it instead is going back toward the laser, and by(ii) placing a mirror between the laser and the interferometer in just such a position thatthe entire interferometer with each arms as two subcavities become an optical cavity drivenby the laser. Then mirror R recycles the recombining light back into the interferometer inphase with the new laser light, thereby enabling a laser of say 5 Watts to perform like one30



of 100 Watts or more.Turn from photon shot noise to thermal noise. How, one might ask, can somebodypossibly expect to monitor the mirror's motions at a level of 10�16 cm when the room tem-perature atoms of which the fused-silica mirrors are made vibrate thermally with amplitudes�lrms = qkT=m!2 ' 10�10 cm? The answer is that these individual atomic vibrations areunimportant. The light beam, with its � 5 cm diameter, averages over the positions of� 1021 atoms in the mirror, and with its 0.01 sec storage time it averages over � 1011vibrations of each atom. This spatial and temporal averaging makes the vibration of theindividual atoms irrelevant. Not so irrelevant, however, are the lowest-frequency normal-mode vibrations of the mirror-endowed masses (since this mode experience much less timeaveraging than the fast atomic vibrations). Assuming a mass m � (a few tens of kg), thesenormal modes have angular frequencies ! ' 105s�1, so their rms vibration amplitude is�lrms = qkT=m!2 ' 10�14 cm. This is 100 times larger than the signals we wish to moni-tor; but if this modes have high quality factor, then the vibrations will be very steady overthe interferometer's averaging time of 0.01 sec; and correspondingly these e�ects will averagedown by more than a factor 100. Similar considerations apply to the thermal noise in themasses suspention wires.Finally turn from thermal noise to seismic noise. At the LIGO sites, and most anyother quiet location on Earth, the ground is continually shaking with an rms displacement�lrms ' 10�8cm(100Hz=f)3=2. This is 107 times larger than the the motions one seek tomonitor. At frequencies above 10 Hz or so, one can protect the masses from these seismicvibrations by simple passive isolation stacks. Each element in the stack is a mass and aspring with normal-mode frequency f0 � (a few Hz). When seismic noise tries to drivethis harmonic oscillator far above its resonant frequency, the amplitude of its response isattenuated relative to the driving motion by a factor (f0=f)2. Thus, each oscillator in thestack will provide reduction 102 in �lrms, so a stack of four or �ve oscillators are enough toprovide the required isolation.The above rough estimates show that it is possible for interferometers to achieve the31



required sensitivities, hrms ' 10�22 and �L ' 10�16 cm. However, going out from theserough estimates to a real working interferometer, and doing so in the face of a plethora ofother noise sources, is a tremendous experimental challenge that has occupied a number ofexcellent experimental physicists since 1972.3. LISA : The Laser Interferometric Space AntennaLISA the Laser Interferometric Space Antenna is planned to operate the second decadeof the 21=st century. The main economic source of the program is ESA (European SpaceAgency) but members of the LISA team hope that NASA will join together with ESA sothat the project will be completed considerably sooner.LISA will consist of six compact drag-free spacecraft (i.e spacecraft that are shieldedfrom bu�eting by solar wind and radiation pressure, and that thus move very nearly ata geodesics of spacetime). All six spacecraft will be launched simultaneously by a singleAriane rocket. They would be placed into the same heliocentric orbit as the Earth occupie,but would follow 20� behind the Earth as shown in �gure 7. The spacecraft would 
y inpairs, with each pair at a vertex of an equilateral triangle that is inclined at an angle of 60�to the Earth's orbital plane. The triangle's arm length would be 5 million km (106 largerthat LIGO's arms). The six spacecraft would track each other optically, using one|WattLaser beams. Because of di�raction losses over the 5� 106 km arm length, it is not feasibleto re
ect the laser beams back and forth as is done in LIGO. Instead, each spacecraft willhave it's own laser; and the lasers will be phase locked to each other, thereby achievingthe same kind of phase|coherent out and back light as LIGO achieves with mirrors. Thesix laser, six spacecraft con�guration thereby functions as three, partially independent bypartially redundant gravitational-wave interferometer.
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FIG. 7. LISA's orbital con�gurationFigure 8 shows the expected noise and sensitivity of LISA in the same language as we haveused for LIGO (Fig 6). The curve at the bottom of the stippled region is hrms, the rms noise,in a bandwidth equal to frequency, for waves with optimum direction and polarization. Thetop of the stippled region is hSB = 5p5hrms, the sensitivity for high-con�dence detection(S=N = 5) of a broad-band burst coming from random direction, assuming Gaussian noise.
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