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Abstract

In this thesis we study the possible rotation of galaxy-members in clusters, developing, testing and
applying a novel algorithm. Finding rotational modes in galaxy clusters would lead to the necessity
of correcting the dynamical cluster mass calculation. Such a correction is important in cosmological
research, which use cluster masses as cosmological probes. To validate our algorithms we construct
realistic Monte-Carlo clusters in order to confirm whether our method provides robust indications
of rotation. We also compare our method to that of other studies found in the literature. We
then apply our methodology on a sample of Abell clusters, selected such that the different Bautz-
Morgan types, corresponding to distinct evolutionary phases of the clusters, are represented equally.
We select galaxy cluster members using the SDSS spectroscopic database. We apply several tests
indicating possible rotation on each cluster and we derive conclusions regarding its rotation or not, its
rotational centre, rotation axis orientation, rotational velocity amplitude and, finally, the clockwise
or counterclockwise direction of rotation on the plane of the sky. We find 23 rotating (or possibly
rotating) clusters (ie., ∼ 50%) either within 1.5 Mpc or within 2.5 Mpc distance from the cluster
centre out of the total 45 clusters in our sample. We also find that out of the 23 rotating clusters five
have strong indications of substructures, which implies that the rotation signal could well be due to
coherent motions of the substructures themselves. Therefore, a secure fraction of rotating clusters
(at least in our sample) is ∼40%. In an attempt to identify the causes of cluster rotation we correlate
our rotation indicators with the cluster dynamical state provided either by their Bautz-Morgan type
or by their X-ray isophotal shape. We find no correlation for the sample within a 1.5 Mpc radius
from the cluster centre. However, for the case of an outer radius of 2.5 Mpc we do find an anti-
correlation between X-ray isophotal sphericity and our rotational indicators, showing that rotation
correlates with clusters that are dynamically unrelaxed. If this interpretation was correct, we should
have found similar correlations also for the 1.5 Mpc radius case. The fact that we have not, suggests
that the apparent rotation at the outer radius is produced by coherent motions of substructures,
infalling in the dynamically young clusters.
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1 Theoretical and observational prerequisites

In this chapter we will present the basic Cosmological background on which structure, and thus
cluster, formation takes place.

1.1 The Standard Cosmological Model

Today, theoretical and observational cosmologists have established the current cosmological model
for the Universe. It describes the evolution of the Universe from the Big Bang until today, as it passes
trough several epochs, as we summarize below.

1.1.1 From the Big Bang until today

Lemaitre has stated that the universal expansion of space implies that it had smaller dimensions at
earlier stages (cf. [50]). If the expansion is adiabatic, as is believed today, the Universe should have been
denser and hotter in the past.

After the Big Bang (∼ 1010 years ago), high temperatures prevail in the Universe and matter is
ionised. The stage that lasts until 10−44 sec is the Planck epoch, when the particles are in a state of
quantum uncertainty. A quantum cosmology theory is needed to specify the procedures that take place
at that time.

The Planck epoch is followed by the inflationary epoch, when the expansion of the Universe passes
through an exponential accelerated phase (cf. [63]). Its dimensions grow rapidly, until the age of 10−34

sec. The inflationary phase succeeds in solving many problems of the Standard Cosmological model,
such as the monopole problem, the horizon problem, the initial fluctuations problem and the flatness
problem. During the inflation, the Universe is in a false vacuum state and its inertial mass approaches
zero. The total potential energy and the pressure is negative, which leads to the exponential expansion
of the Universe.

The inflation epoch is followed by another brief stage, the reheating epoch. The expansion occurring is
not adiabatic and the Universe is not at thermodynamic equilibrium. The accelerated expansion energy
is converted in thermal energy that simultaneously fills the Universe with matter particles, including
photons.

The following epoch is the radiation epoch, which lasts for thousands of years after the inflation
epoch. During this epoch, relativistic particles with high energies dominate. At the early stages, matter
is fully ionised, due to high temperatures that occur. Three individual stages are distinguished in
chronological order: the quark epoch, the hadron epoch and the lepton epoch. During the quark epoch,
quarks dominate; during the hadron epoch, nuclear particles (protons, neutrons) dominate, and during
the lepton epoch, electrons, positrons, neutrinos and other leptons dominate the Universe. At the
early lepton stage, protons and neutrons are equal in numbers, but this equilibrium is broken as the
temperature falls. When this stage ends (at the age of Universe ∼1 sec), the ratio of protons to neutrons
is ∼4:1, a fact that designates the final proportion of the light elements. Light nuclei can now start
synthesize, such as nuclei of Deuterium, Helium and Lithium. By the time of a few seconds of the
Universe age, 25% of the total baryonic matter is in the form of Helium-4 nuclei. The synthesis is
completed 102 sec after the Big Bang (cf. [60] and [90]).

At the end of the radiation epoch occurs the equivalence phase between radiation and matter. This
designates the beginning of the matter epoch, where non-relativistic particles with low energies domi-
nate the Universe. Atoms are fully ionised as the temperature is higher than 4 · 103 K approximately.
Collisions between photons and ions take place and the Universe is opaque to radiation; photons and
ions are in thermal equilibrium. When the temperature drops lower than 4 · 103 K, at 105 years approx-
imately, recombination occurs. Electrons are now binding to ions, the collisions with photons are much
fewer and the Universe becomes transparent to radiation. The photons’ energy is very low, due to the
expansion, and corresponds to an almost perfect black body radiation spectrum with a temperature of
2.7 K. Therefore, the CMB radiation is relic radiation; a photograph of the Universe at the moment
of recombination. For that reason, the CMB radiation is highly isotropic; only a bipolar anisotropy
has been observed, which originates from the peculiar motion of our Local Group with respect to the
cosmological rest frame (cf. [84] and [67]).
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At 8 · 109 years after the Big Bang, the Universe enters an accelerated expansion epoch. This accel-
erated expansion is confirmed through the use as standard candles of supernovae type Ia observations.
The relation between luminosity distance and redshift of the supernovae led to a negative value of the
deceleration parameter q (cf. [66] and [87]). Cosmologists in order to provide a cause for the accelerated
expansion have introduced the �dark energy�, a repulsive sort of matter with negative gravitational en-
ergy (cf. [65]). Nowadays, it is believed that the Universe is flat (k = 0) and dark energy constitutes
about ∼70% of the matter in Universe (ΩΛ ∼ 0.7), while the rest ∼30% (Ωm ∼ 0.3) is cold dark matter
(∼ 25%) and baryonic matter (∼ 5%) (cf. [2]).

1.1.2 Dynamical Cosmology

The Universe is homogeneous and isotropic on the large scales. This means that there is not a
privileged position or a preferred direction in the Universe. This theory is called �The Cosmological
Principle� (cf. [100], [20] and [62]). Many observational evidence confirm the Cosmological Principal
and the Big Bang theory we previously presented; the most important of these are:

1. The Universe expands and the redshifts1 of the galaxies are proportional to their apparent magni-
tudes and, consequently, to their distances. Edwin Hubble observed this relation (cf. [41]), which
can be expressed as

~x = R(t)~r (1)

where ~x is the physical coordinate, ~r is the co-moving coordinate (moving together with the ex-
pansion) and R(t) is the expansion factor. This relation results to the �Hubble law�,

~v = H(t)~x

where H(t) is the Hubble function, and for the present time H(t0) = H◦ is the Hubble constant

H◦ = 100h
km

sec ·Mpc

where h ∼ 0.7 (cf. [2]),

2. The highly isotropic cosmic microwave background radiation (CMB), whose spectrum corresponds
to the spectrum of a black body with temperature ∼2.73 K, which is considered the temperature
of the Universe (cf. [89]).

Figure 1: The CMB radiation taken from Planck satellite. The temperature deviations from 2.73 K is
about 10−5 K.

3. The observed light element abundances (Hydrogen, Helium, Deuterium) correspond to the pre-
dicted from the theory ones (cf. [45]).

1Redshift, z, is the fractional shift of the light spectrum of a source.
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Within the context of this homogeneous and isotropic model, we can derive the cosmological evolution
using either Newtonian gravity or Einstein’s field equations. We will use the former theory of gravity in
this section. The cosmological parameters that are used below are:

� the total density of the Universe fluid, whatever its constituents

ρtot =
3H2
◦

8πG
= 1.88 · 10−29h2gr · cm−3 (2)

� the cosmological density parameter; the fractional density of the Universe,

Ω =
ρ

ρcr

� the deceleration parameter q; the rate at which the material content of the Universe is slowing
down its expansion.

The homogeneity assumption is expressed as ∇ρ = 0, where ρ is the density of the homogeneous and
isotropic fluid, while the isotropy assumption is expressed as ∇ · ~v = 3H(t) = 3Ṙ/R. Using the mass
continuity equation,

∂ρ

∂t
+∇ · (ρ~v) = − p

c2
∇ · ~v

with p the pressure of the homogeneous and isotropic fluid and c the speed of light in vacuum, which is
formed under the homogeneity and isotropy assumptions,

ρ̇+ 3
(
ρ+

p

c2

) Ṙ
R

= 0 (3)

and the Newton’s equation of motion,

R̈ =
GM

R2

with G the gravitational constant, we can derive the Friedmann equation

Ṙ2

R2
+
kc2

R2
=

8πGρ

3
+

Λc2

3
(4)

where k is the curvature of space and Λ is the cosmological constant. For a flat Universe with zero
curvature, the Friedmann equation can be formed to

R̈

R
= −4πG

3

(
ρ+

3p

c2

)
+

Λc2

3

The different species of particles that dominated through different epochs of the Universe are described
by distinct equations of state, which can all be parametrized to

p = w〈v2〉ρ

where 〈v2〉 is the velocity dispersion of the fluid elements. For dominant contribution from relativistic
particles, w = 1/3, whereas for contribution from non-relativistic, w = 0. For a given equation of state
p = p(ρ), the Friedmann equation can be solved to give the time evolution of R(t). If we use this equation
of state into the mass continuity equation (3), we get

ρ ∝ R−3(1+w)

and the Friedmann equation for the dust epoch (neglecting the radiation contribution) can be formed as

Ṙ

R
= H◦

[
Ωm (1 + z)

3
+ Ωk (1 + z)

2
+ ΩΛ

]1/2
⇒ H(z) = H◦E(z) (5)

where the contribution of the curvature k and Λ to the total density parameter are respectively,

Ωk = − kc2

H2
◦R

2
◦
, ΩΛ =

Λc2

3H2
◦
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From equation (5) for the present epoch we can obtain

Ωm + Ωk + ΩΛ = 1

We can prove that this equation is valid for every epoch, using equation (4). From the definition of the
cosmological redshift, as the ratio of the detected wavelength to the emitted one, which is

1 + z =
λ◦
λ1

=
R(t◦)

R(t1)
⇒ dR

R◦
= − dz

(1 + z)2

and the Friedmann equation (5), we can deduce the age of the Universe for each cosmological model,
from the equation

t◦ =
1

H◦

∫ ∞
0

dz

(1 + z)E(z)

In the ΛCDM model, where k ' 0, the Hubble function in (5) is written

H(z) = H◦

[
Ωm (1 + z)

3
+ ΩΛ

]1/2
(6)

1.1.3 Structure formation

The structure we observe today in the Universe has been formed by the gravitational instability of
density fluctuations that must have existed in the early stages of the Universe. A region of size r, with
density ρ(r), has a density contrast δ,

δ =
δρ

ρ
=
ρ(r)− ρ̄

ρ̄
(7)

where ρ̄ is the mean density. These fluctuations are amplified due to the gravitational instability and,
if they detach from the Hubble expansion, they condense to galaxies, clusters, etc. The crucial length
scale that determines the evolution of the irregularities in the expanding Universe is the Jeans length; it
is the critical length where the two opposing forces balance.

In the case of a general collisional fluid, we should take into account its pressure and also the expanding
background. We use the continuity equation, the Euler equation and the Poisson equation, which are
respectively

∂ρ(~x, t)

∂t
+∇ · [ρ~v(~x, t)] = 0

∂~v(~x, t)

∂t
+ ~v · ∇x~v = −∇xΦ− ∇xP

ρ(~x, t)

∇xΦ = 4πGρ(~x, t)

where ρ(~x, t) is the density, p(~x, t) is the pressure and ~v(~x, t) is the velocity of the fluid which moves
in a gravitational potential Φ. In an expanding Universe, the proper x and co-moving coordinate r are
related with equation (1), which by differentiation gives the velocity

~v(~x, t) = H~x+ v(~x, t)

where v is the peculiar velocity due to local gravitational potentials. The density can now be written
using equation (7) as

ρ(~x, t) = ρ̄(1 + δ(~x, t))

Changing coordinates to co-moving ones, using the perturbed velocity and density, we obtain after
linearise the following equations of motion(

∂δ

∂t

)
r

+
1

R
∇rv = 0(

∂v

∂t

)
r

+Hv = −∇rδΦ
R
− v2

s

ρ̄R
∇rδ

∇2
rδΦ = 4πGρ̄δ
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where vs =
√
dp/dρ is the sound velocity, from which we derive the general differential equation of

perturbation growth

δ̈ + 2
Ṙ

R
δ̇ = 4πGρ̄δ +

v2
s

R2
∇2δ (8)

In the matter-dominated Universe, for the collisionless component (dark matter) with p = 0, vs = 0, this
equation reduces to

δ̈ + 2
Ṙ

R
δ̇ = 4πGρδ

whose solution is
δ(x, t) = A(x)t2/3 +B(x)t−1

The first term is the growing mode and the second is the decaying mode which dominates only for a short
time. Also δ ∝ R, since in the Eds model R ∝ t2/3. We appreciate that the second term of the general
equation (8) in the right side is the Hubble drag, a pressure term which acts against the gravitational
growth of the perturbations. For the case of baryonic matter, for when equation (8) is valid, we use the
Fourier tranformation of equation (8), which is

δ̈k + 2
Ṙ

R
δ̇k = 4πGρδk

[
1− πv2

s

λ2Gρ̄

]
Now, growth occurs when

λ > λJ = vs

(
π

Gρ̄

)1/2

while in the opposite case, the perturbation will oscillate. The Jeans length λJ corresponds to mass

M > MJ =
4π

3
ρm

(
λ

2

)3

=
1

6
πρm

[
vs

(
π

Gρ̄

)1/2
]3

where the subscript m refers to the mass component. The Jeans mass depends on the sound velocity vs,
the matter density, the mean density of the Universe and, consequently, to the cosmic time. Thus, we
can find a relation of the size of the perturbations that can grow at different epochs of the Universe.

Another important mass scale that determines the growth of the perturbations is the Hubble mass
scale. This is the maximum scale within which fluctuations can interact with each other and there is
enough time to grow. It is defined as

MH =
4π

3
ρλ3

H ∝
(
t

R

)3

Therefore, in order for a perturbation to grow, it should have a mass that satisfies the relation

MJ .M .MH

While baryonic fluctuations have started evolving after the recombination moment, the dark matter
fluctuations have started evolving before this moment, and the baryonic component was driven in the
gravitational potentials created by the dark matter component. Dark matter weakly interacts with others
forms of matter and radiation. The perturbation analysis is the same as for the baryonic fluctuations,
with the only exception that all species of perturbations are included (baryonic, radiation, dark matter).

In order to go beyond the linear evolution of perturbations one has to use the crude but useful spherical
collapse model. The spherical perturbation is an easy case to examine, although real perturbations have
small deviations from sphericity. For the collapse model of the perturbations we will consider spherical
perturbation with radius and density given from r = R(1+a) and ρ = ρ̄(1+ δ) respectively. We consider
that the perturbation consists of shells, which conserve their mass with time and do not cross each other.
The quantity

ε =
ṙ2

2
− GM

r
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for every shell determines its behavior. For ε < 0, the expansion of the perturbation decelerates and
then recontracts. For ε > 0, the perturbation expands forever, like an open cosmological model. Thus,
for a perturbation to collapse, ε < 0 is needed, which can be interpreted as

δ >
3

5(1 + z)

(
1

Ω◦
− 1

)
The evolution of the spherical density perturbation using linear theory (linear approximation ψ) will be

δL '
(

3

4

)2/3
3

5
(ψ − sinψ)2/3

by which we can derive the following epochs:

� The onset of the non-linear regime (when δl ≈ 0.57)

� The onset of collapse - Maximum expansion (when δl ≈ 1.06)

� The full collapse (when δl ≈ 1.686). Perturbation turns around, collisionless matter collapses
rapidly and a stable distribution in virial equilibrium is produced. This process is called violent
relaxation. The radius of the final structure is exactly the half of the radius at maximum expansion.

1.2 Large Scale Structure

1.2.1 Galaxies

Galaxies are the basic unit of distribution of matter in the Universe. They are concentrations of stars,
dust and gas in various proportions and have sizes of a few kpc. Galaxies are classified by Hubble in
1926 mainly by their shape (cf. [37], [38], [39] and [40]). His classification is shown in the �tuning-fork�
diagram (fig. 2) and includes the three main categories, ellipticals, spirals and irregulars, as well as
subcategories for every category. The position of every galaxy in the tuning-fork is determined by the
size of its nucleus and spiral arms. The galaxies in the left are called early-type galaxies, while the ones
in the right are the late-type galaxies (cf. [98]). The observed fraction of the galaxy types are 10%
ellipticals, 20% SO’s, 65% spirals and 5% irregulars.

Figure 2: The tuning-fork diagram of the galaxy classification of Edwin Hubble.

Elliptical galaxies are ellipsoidal systems with little gas, old population of stars and a wide variety of
mass; we observe dwarf ellipticals with M ∼ 107M� and supergiant ellipticals with M ∼ 1012M�. Their
surface brightness distribution follows de Vaucouleurs model (cf. [22])

Is = Iee
−7.67

[
( r
re

)
0.25−1

]
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where re is the effective radius that encloses the half of the total light. I(r) falls off slower than r−2 for
r < re and more rapidly for r > re. This formula also fits the bulges of SO’s.

Figure 3: Example of two elliptical galaxies: ESO 325-G004 on the left and M87 on the right.

Spiral galaxies consist of their disk, the bulge and the halo. The disk is very thin, only a few hundred
of pc’s, has a large amount of gas and many star-forming regions. The spiral structure has formed by
the rotation of density waves that produce shocks in the gas regions and, therefore, star formation. The
surface brightness of the stars falls exponentially with radius r

Is = I◦e
−r/b

where b is the scale-length of the disk.

Figure 4: Example of two spiral galaxies: NGC 1300, a barred galaxy, on the left and M31 (Andromeda
galaxy) on the right.

Figure 5: Example of an irregular galaxy: NGC 1569.
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Luminosity distribution
The galaxy luminosity function Φ(L)dL is the number density of galaxies with observed luminosity
in the integral (L,L + dL). The Schechter function (cf. [85]) best fits the observational data of
galaxies

Φ(L) =
φ∗
L∗

(
L

L∗

)α
e−L/L∗

where L is the luminosity of the galaxy, α = −1.23 ± 0.02, φ∗ = 0.9 ± 0.07 · 10−2h3Mpc−3 and
L∗ is calculated from the luminosity with absolute magnitude M∗ relation presented in 1.3.1 by
using M∗ − 5 log h = −20.73± 0.04, all calculated in the r band (cf. [56]). Constant L∗ separates
the power law from the exponential law, the faint from the bright galaxies. The mean luminosity
density that corresponds to this function is

〈L〉 =

∫
LΦ(L)dL ≈ 2 · 108hL�Mpc−3

The distance that corresponds to the knee of the luminosity function is the characteristic distance
and can be defined, by neglecting cosmological corrections, as

D∗ = 100.2(m◦−M∗−25)

where M∗ is the absolute magnitude that corresponds to L∗. There is also the Φ(M)dM form of
the Schechter function, which is the number density of galaxies with absolute magnitude in the
integral (M,M +dM). The shape of the luminosity function is constant with environment for each
individual Hubble type:

� All giant types of galaxies (spirals, ellipticals, SO’s) have a maximum in their luminosity
function. Spirals and SO’s have a Gaussian distribution of luminosities.

� Dwarf elliptical galaxies are approximately the 70% of the population in galaxy clusters.

� The luminosity function of individual types of galaxies are similar in high and low density
regions.

� The galaxies’ relative abundance has an environmental dependence; higher fraction of ellipti-
cals and SO’s are observed in high density regions. It is not yet known whether this is caused
by an evolutionary effect or a galaxy formation process.

Peculiar velocity field
The velocities of the galaxies relatively to the origin in the expanding Universe with expanding
coordinates r = x/R(t) are

v = rṘ(t) +R(t)ṙ

where R(t)ṙ is their peculiar velocity. The peculiar velocity field of the outermost parts of the
galaxies, using the linear theory, is

v(r) =
2g(r)

3Ω0.4
◦ H◦

where g(r) is the peculiar gravitational acceleration.

1.2.2 Clusters of galaxies

Galaxy clusters are large groups of galaxies, the most X-ray luminous objects in the sky (along
with AGN’s) and are the largest gravitationally bound structures in the Universe. They contain great
amounts of dark matter, hot gas and hundreds of galaxies. Clusters with less than 10-20 galaxies are
called groups of galaxies (cf. [57]). Cluster’s gas is at very high temperatures ∼ 106 − 107 K, ionised
and emitting X-rays. Diffuse radio emission has also been found in clusters (cf. [48] and [31]. Clusters
are great tools for studying large-scale structure, testing structure formation theories and extracting
cosmological information (cf. [17] and [4]), as we will analyse below.

Clusters can be classified by several schemes. A first scheme is that of regular and irregulars. Regular
clusters are about ∼50% of the clusters. They have smooth and symmetric structure, small fractions
of spiral galaxies (< 20%), high central density (≥ 103Mpc3), high X-ray luminosity and high velocity
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dispersion (∼ 103km/s). They are believed, due to their observational properties, to be in virial equi-
librium. Irregular clusters have evident substructures, higher fraction of spiral galaxies (& 40%), lower
X-ray luminosity and lower velocity dispersion.

A distinct class of clusters is the one that contains those which have a central huge bright galaxy
called BCG or cD. This galaxy is a giant elliptical with mass & 1012M� and might have multiple nuclei.
They might have grown up by galactic cannibalism, by gulping galaxies that spiral towards the cluster
center (cf. [55] and [7]). Another opinion states that they might have been created in special locations
where clusters are eventually formed by anisotropic accretion of matter (cf. [101]).

In addition, a classification of clusters has been made by Bautz & Morgan (1970) [10]. There are five
Bautz-Morgan types of clusters. Bautz-Morgan type I clusters are dominated by a central, supermassive
cD galaxy, with extensive optical emission. It was found that these clusters are characterized by a
higher number density of galaxies than clusters of other types and that they are dynamically more
evolved. Bautz-Morgan type II clusters have their brightest galaxy being intermediate between cD and

Figure 6: A Bautz-Morgan type I cluster, Abell 2029 in X-rays (left) and optical wavelengths (right).

normal giant ellipticals. Type III clusters have no members significantly brighter than the general bright
population, with type I-II and type II-III being intermediate cases.

Figure 7: Left: Coma cluster, a representative of Bautz-Morgan type II clusters. Right: Virgo cluster, a
representative of Bautz-Morgan type III clusters.

Galaxy clusters are flattened structures, even more flattened than the elliptical galaxies, which reflects
the initial conditions of their formation and the tidal effects that take place in their early stage of
formation; anyway, as we have already mentioned, the initial perturbations in the Universe where not
perfectly spherical (cf. [6]). The mean ellipticity is ∼ 0.5 and most of them are prolate (cf. [8]). The
huge gravitational potential of the cluster causes galaxy members to have large virial velocities and the
�finger of God�effect occurs; an apparent elongation of the cluster is observed along the line of sight.

A notable feature of clusters is that the seem to point to each other up to 20-30 h−1 Mpc distance
(cf. [12]). Irregular clusters, which are dynamically young, tend to be more aligned with their neighbors
and are usually found in high-density regions (cf. [69] and [88]).
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1.2.3 Superclusters, filaments and voids

Superclusters are aggregations of clusters of galaxies, galaxies and groups. They are the largest
isolated structures in the Universe, but not dynamically relaxed. Galaxy clusters have peculiar velocities
approximately 103 km/s, which allows them to move during the Hubble time no more than 10h−1Mpc,
a distance smaller than the size of a typical supercluster; therefore, galaxy clusters have not immigrated
from their initial supercluster. This fact make superclusters ideal probes of the initial conditions that
created cosmic structures.

Superclusters have a typical size of ∼ 30 − 50h−1Mpc. The vast majority of them appear to be
flattened. In addition, several studies have found elongated bridges of galaxies that connect the rich
ones; these are the filamentary and sheet-like structures which are more obvious is 3D surveys (cf.
[104],[25],[99], [9] and [96]). In radial velocity surveys, regions with density below the average value have
been observed, which are called voids (cf. [64]). Very few galaxies exist in the voids, they are relatively
empty of luminous matter, but it is not certain whether dark matter exists in there. It is extremely
difficult to identify voids in 2D projections of the sky.

Figure 8: Millennium simulation of the Universe (z = 0). This slice is 15h−1Mpc thick. Superclusters,
filaments and voids are obvious.

1.2.4 Clustering of large scale structure

Galaxy formation theories predict that giant and dwarf galaxies are spatially segregated, since the
bright ones are formed at the highest density peaks. Also, it was believed that, dwarf galaxies that have
low luminosities could be filling the voids. Nevertheless, Thuan et al. (1987) ([93]) found that dwarf
galaxies outline the structures defined by the bright ones and do not fill the voids.

Studies of the galaxy correlation function for different Hubble types have shown that late type galaxies
are less correlated than early types, which are less correlated than the dwarf irregular galaxies; dwarf
ellipticals are the most correlated and most popular in galaxy clusters. Therefore, bright or low luminosity
galaxies are not better or worse tracers of the underlying mass distribution; all different luminosity
galaxies are differently biased tracers of the mass.

Clusters of galaxies are also spatially correlated. However, there are several biases that produce
inaccuracies in the correlation functions; the enhanced clustering of rich Abell clusters was found to be
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contaminated by the sample of foreground and background galaxies (cf. [23], [61] and [92]). In summary,
in the Abell cluster catalogue the extended region of the clusters tend to increase the galaxy density
around them and nearby clusters are revealed that otherwise would not fulfill the selection criteria (cf.
[52]). An unbiased catalogue is a catalogue in X-rays (for example, the XMM cluster survey), where
clusters’ emission is diffuse and has one peak; clusters, along with AGN’s, are the most X-ray luminous
objects in the sky.

1.3 Observational prerequisites

1.3.1 Apparent magnitudes and distances

In order to conduct surveys of extragalactic objects, such as galaxies, we should measure the distance
of the objects we study using their redshift, taken from observational data. This distance also depends
on the cosmological model we assume, as is shown below.

Apparent magnitude
The information we get for the Universe comes of the photons we receive. Therefore, we define the
apparent luminosity l of a source at distance r from the Earth, with absolute luminosity L, as

l =
L

4πr2
(9)

In this relation the loss of energy while propagating in the Universe is not taken into account.
With the knowledge of l and L we are able to calculate the distance of the source. To measure the
apparent magnitude of a source we use a logarithmic system, by which an object with magnitude
1 is 100 times brighter than an object with magnitude 6. Thus, the definition of the apparent
magnitude m of an object with apparent luminosity l at distance r and its absolute magnitude M
with absolute luminosity L are, respectively,

m = −2.5 log10 l + c1

M = −2.5 log10 L+ c2

where c1 and c2 are constants that depend on the filter. The value m − M is called distance
modulus µ and is defined by

µ = m−M = 5 log10 r + c3 (10)

where c3 is fixed to have a value -5 when M is the apparent magnitude of the star with distance
10 pc and a value 25 when the star is at distance 10 Mpc (used in extragalactic astronomy).

The definition of the apparent magnitude is filter dependent, as our observations cover a range
(ν − dν, ν + dν) of spectral frequencies and not the whole electromagnetic spectrum. This range
depends on the sensitivity of the detector, the frequencies that are allowed to pass the atmosphere
which can be all modeled by a sensitivity mask Fν (or filter). Thus,

mFν = −2.5 log10

(∫ ∞
0

FνIνdν

)
+ c

For Fν = 1 the apparent magnitude is called bolometric magnitude.

Proper distance
The proper distance is the distance that light travels along a null geodesic. A light signal is
emitted at a galaxy at some time and is received by an observer at another time; these two events
are connected only by the light signal. Since all observers measure the same speed of light, this
distance is a fundamental one. From the Robertson-Walker metric

ds2 = c2dt2 −R2(t)

[
dr2

1− kr2
+ r2

(
dθ2 + sin2 θdφ2

)]
where R(t) is the expansion factor, k is the curvature and (r, θ, φ) are polar coordinates, we have,
at time t,

dpro(t) = R(t)

∫ r1

0

dr√
1− kr2

= R(t)r1, for k = 0
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where R(t) is the scale factor and r1 is the dimensionless co-moving coordinate distance of galaxy
L1. For the present time t0, it is dpro ≈ R(t0)r1, where

r1 '
1

R(t0)

∫ z

0

c

H(z)
dz

Luminosity distance
The apparent luminosity l of a source is the product of the rate of the received photons

n

δt0
=

n

δt1(1 + z)

where t0 is the time of the emission and t1 is the time of the reception, of the photon energy

hc

λ0
=

hc

λ1(1 + z)

where λ0 is the emission wavelength and λ1 is the reception wavelength, and of the reverse of
the surface area of the detector 4πR2(t0)r2

1, where r1 is the dimensionless co-moving coordinate
distance of the emitter,

l =
n

δt1(1 + z)

hc

λ1(1 + z)

1

4πR2(t0)r2
1

The total luminosity emitted by the source is

L =
n

δt1

hc

λ1

Using equation (9) we can find the distance r of the source, which is now called luminosity distance
dL

dL = (1 + z)

∫ z

0

c

H(z)
dz

If we have bolometric magnitudes (luminosities integrated over all frequencies), then relations (9)
and (10) are changed, because of the expansion of the Universe, to

lbol =
Lbol

4πr2
1R

2(t0)(1 + z)2

mbol −Mbol = 5 log10 dL + 25

Angular diameter distance
The corresponding distance of the angle that the length x of an extragalactic object subtends at our
location is the angular diameter distance, dθ. The edges of the object have coordinates (r1, θ1, φ1)
and (r1, θ1 + dθ1, φ1). The angular diameter distance is defined as

dθ =
x

δθ
= r1R(t1) =

r1R(t0)

1 + z
=

1

1 + z

∫ z

0

c

H(z)
dz (11)

From all the above distance definitions we can conclude that

dprop = (1 + z)dθ =
dL

1 + z

which, for r1 � 1 and z � 1, it is valid that

dprop ≈ dθ ≈ dL ≈ R(t0)r1
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1.3.2 Biases and systematics on apparent magnitudes

K-correction
As we have mentioned above, the magnitude measurements of the objects are not the bolometric
ones, but they are magnitudes affected by the expansion of the Universe. As a result, a correction
in the calculation of the bolometric magnitude should be inserted. This correction comes up due
to the fact that, when we measure the magnitude of an object at large distance at a particular
wavelength λ◦, we receive light emitted from a different part of the spectrum. The object could be
brighter or fainter in this part compared with λ◦. If L(λe)dλe is the energy per unit time emitted
by the source in the range (λe, λe + δλe) and the energy per unit time per unit are received is
l(λ◦)dλ◦, then, by using equation (9) and the luminosity distance, we have

l(λ◦)dλ◦ =
L(λ◦/(1 + z))dλ◦

4π(1 + z)d2
L

The combination of the detector sensitivity, atmospheric and galactic absorption and other effects
bring on energy losses as a function of the wavelength, which can be all included in the factor
F (λ◦), the sensitivity mask. The measured flux would be

l =

∫ ∞
0

F (λ◦)l(λ◦)dλ◦

Therefore, the measured magnitude for emitted energy in the range (λe, λe + δλe) and received
energy in the range (λ◦, λ◦ + δλ◦) would be

m◦ −M◦ = 5 log10 dL + 25 +K◦(z) (12)

where K◦(z) is the K-correction,

K◦(z) = −2.5 log10

[∫
F (λ◦)L(λ◦/(1 + z))dλ◦∫

F (λ◦)L(λ◦)dλ◦

]
+ 2.5 log10(1 + z)

By knowing the sensitivity mask, we can calculate the K-correction by integrating. For spiral
galaxies, a typical value at z = 1 is K ∼ 2.

Galactic absorption
The interstellar gas and dust of our Galaxy absorb light from background sources. Dust scatters
more efficiently the blue light, so the background light appears redder. The simplest model of this
effect shows that the flux lν of an extragalactic source, transversing a Galactic layer of thickness
ds at an angle b from the equatorial plane, suffers losses

δlν
lν
∝ ds csc(b)⇒ dlν

ds
= −κν lν csc(b)

where κν is the absorption coefficient at the spectral frequency ν. By integrating we have

lν = l◦ν exp(−A csc |b|)

where l◦ν is the incident, lν is the observed flux and A =
∫
κνds is the optical thickness. The

observed flux of the object would now be corrected to

ltrue =
l

exp(−A csc |b|)
=

L

4πr2
exp(−A csc |b|)

The value of A varies with the frequency band; for the visual we have A ∼ 0.2. Equation (10) now
gives

rtrue ≈ rraw exp(−A csc |b|/2)

This means that the distance of an extragalactic object can be overestimated at low galactic
latitudes if this effect is not taken into account.
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Malmquist bias
When we try to determine distances of extragalactic objects by using apparent magnitude limited
samples, such as the Tully-Fisher, Faber-Jackson or Dn-σ relations, we tend to pick a larger fraction
of bright objects as we look in greater distances; we sample the brighter end of the luminosity
function. It’s effect on the distance estimation can be approximated by rcor (see [70])

rcor ≈ rraw101.382σ2/5

which means that the distances we calculate are smaller than the true ones. As the distance
increases, a smaller fraction of the brighter end of the luminosity function is sampled.

Luminosity evolution
As we look in greater distances, we observe objects that are younger. The luminosity of galaxies is
a function of the time the light was emitted. The luminosity of distant objects should be corrected
to take into account their luminosity evolution.

By using the luminosity distance, the K(z) correction and the Galactic absorption correction, we
obtain a general distance modulus relation

m−M = 5 log10 dL + 25 +K(z)− 1.086A csc |b|+ ...

where any other correction can be added.

1.3.3 Methods of measuring distance

In order to measure distances we use different methods that vary depending on the distance scale of
the object. We describe the most frequently used methods, starting from the local to universal distance
scales (cf. [81] and [82]).

Trigonometric parallax
It is used to measure the distance of nearby stars out to 60 pc approximately. It is based on the
fact that every six months we observe the stars from different point of view, due to the fact that
the Earth is on the opposite side of its orbit around the Sun. The parallax angle is the apparent
shift of position of object against the background of distant objects. For nearby stars, the parallax
angle p is small, so the distance d measured in parsecs is the inverse of the parallax measured in
arcseconds, d = 1/p.

Main sequence fitting
This method uses the fact that the stars in the globular clusters in our Galaxy are at a similar
distance and occupy a certain area on the H-R diagram; their spectral stellar type and absolute
luminosity are uniquely correlated. Therefore, having measured the distance of one globular cluster,
someone can determine the distance of any other globular cluster by observing its relation of spectral
type distribution with apparent magnitude and compare it with the one of the standard globular
cluster.

Cepheid variable stars
This method can extend our distance measures up to 20 Mpc approximately, a local extragalactic
distance scale. Cepheid stars exhibit a strong relation between their intrinsic luminosity, L, and
their pulsation period, P , L ∝ P 1.3. By determining their luminosity, one can measure their
distance through the distance modulus equation (10). This method provides the link between the
local galactic indicators and the extragalactic ones (cf. [32]).

Scaling relations
Many scaling relations between a distance dependent and a distance independent have been found
for indicators at large distances. It was shown that they are distance independent. The Tully-Fisher
relation associates the rotational velocity V , of a spiral galaxy to its total infrared, Lir, or blue,
Lb, luminosity, Lir ∝ V 4 and Lb ∝ V 2.4−2.8 respectively (cf. [95]). For elliptical galaxies, there are
two similar scaling relations: the Faber-Jackson relation (cf. [29]), which associates the absolute
luminosity L of the galaxy, to the stellar velocity dispersion, σ, L ∝ σ3−4, and the Dn− σ relation
(cf. [24]), which associates its diameter Dn, to the stellar velocity dispersion, Dn ∝ σ1.2−1.3.
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Maximum Supernova SNIa brightness
Type Ia supernovae are binary systems, whose white dwarf accretes matter from the red giant,
until it reaches the Chandrasekhar limit and explodes (cf. [51]). Those objects have constant
maximum luminosity that can be seen out to cosmological distances and for that reason they are
great distance indicators for large distances. By measuring their apparent luminosity and already
knowing the absolute one, we can calculate their distance.

Surface brightness fluctuation
The discreteness of stars within galaxies that are observed by a detector depend on the distance
of the galaxy. We can measure the fluctuations of the starlight pixel by pixel and calibrate the
relation to finally provide the distance of the galaxy.

Sunyaev-Zeldovich effect
This method is a direct one, as it does not depend on the measurement of local distances for
calibrations. Clusters of galaxies contain hot gas that emits thermal Bremsstrahlung spectrum in
5 · 107 − 108 K. The gas distorts the CMB spectrum by Compton scattering, which increases the
brightness of the CMB at the longer wavelength range and decreases its brightness in the shorter
wavelength range (cf. [91]). By measuring the X-ray flux, gas temperature and angular separation
of the cluster on the sky, we can deduct its distance (cf. [13]).

1.4 Clusters as cosmological probes

Clusters are the larger gravitationally bound objects in the Universe and are used in various types
of research. They are used to study the evolution of their galaxy members, the creation and evolution of
AGN’s and supermassive black holes in them, the proportion and distribution of the chemical elements
and other applications. On the other hand, due to their great size, they are effectively used in cosmology
for many reasons, the most important of which is the measurement of the cosmological parameters.

A rotational mode in clusters would contaminate the velocity dispersion measured, which is used to
calculate its mass through the Virial theorem. For this reason, it is important to measure the component
of rotation in the velocity distribution of the clusters and accurately calculate its velocity dispersion. The
cluster mass is widely used in cosmology and astronomy studies. Below we discuss the most important
cosmology applications that use the cluster mass.

1.4.1 Mass-to-light fraction observations

Every astronomical object is characterized by its mass-to-light ratio, M/L, which is scaled to the
fraction value for the Sun, M�/L�. If the fraction of the object is larger than the Sun’s one, this
object should consist of a greater portion of dark matter than the Sun. Different classes of extragalactic
objects, such as galaxies and clusters, has been proved to have different quantities of mass-to-light ratio.
If we estimate the universal luminosity density and calculate the mass-to-light ration of a certain class of
objects, we can calculate its contribution to the matter density cosmological parameter Ωm. A universal
value of the mass-to-light ratio can lead to the computation of Ωm.

Galaxy clusters widely apply to this method under the quite substantial assumption of virial equilib-
rium. In a virialised cluster its kinetic energy, K, is equal to the half of its potential V :

K = −1

2
V ⇒ 1

4

GM(R)

R
=

1

2
v2
k ⇒M(R) =

2v2
kR

G
(13)

where M(R) is the cluster mass, R is its radius, v2
k is the velocity dispersion and G is the gravitational

constant. Consequently, the calculation of mass-to-light ratio is based on the measurement of the velocity
dispersion of the clusters to find their mass and on number-galaxy weighted luminosity estimation. In
[70] has been found that

(M/L)cl ≈ 320+170
−85 hM�/L� (14)

In order to find a global value for Ωm we use the total density ρtot we have mentioned in (2), and the
mean luminosity density 〈L〉 calculated by integrating the Schechter luminosity function (cf. [85]).

M

L
=

ρ

〈L〉
=

Ωmρtot
〈L〉

' 1400ΩmhM�/L�
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We expect that galaxy clusters represent the Universal mass-to-light ratio value, as they are the deepest
potential wells and accumulate matter from large volumes. This is supported by the fact that there is an
increasing trend of the mass-to-light ratio value with scale that reaches a plateau at the value of clusters
(cf. [3] and [5]). The value of Ωm we extract from (14) is

Ωm ' 0.23+0.12
−0.06

1.4.2 Cluster baryon fraction

Galaxy clusters are believed to accrete matter during formation in such scales that there is no
segregation between baryonic and dark matter. As a result, the ratio of the baryonic to total matter
ΩB/Ωm on clusters in representative of the universal value. Galaxies are about the 5% of the cluster
mass, while the intracluster gas is about 20%. The addition of those values provides an estimation of
ΩB . We can measure the total mass Mtot of the cluster by assuming that the gas traces the cluster mass
and the former is in hydrostatic equilibrium; its pressure Pgas balances the gravitational force:

dPgas
dr

= −ρgas
GMtot

R2

where ρgas is the gas density profile and R its radius. Now, using the relation

ΩB
Ωm

=
MB

Mtot

we can constrain Ωm (cf. [102] and [27]), which has been found for h = 0.72,

Ωm ' 0.35± 0.05

1.4.3 Rate of cluster formation evolution

The rate of the perturbations growth varies in universes with different Ωm. For example, the
perturbation growth factor in universes with ΩΛ > 0 present redshift dependence. Nevertheless, in the
present epoch it is indistinguishable from the open Universe Ωm = 1 − ΩΛ (cf. [47]). Therefore, there
is necessity to constrain Ωm using the evolution of indicators of cluster formation, especially in ranges
where the evolution differs for different models. Ideally we would study the evolution of the cluster mass
function, but observationally we can study indicators such as their luminosity function, temperature
function and morphology. As a next step, we use the Press-Schechter formalism (cf. [72]) to estimate
the cosmological parameters in the cluster mass function that enter through the power spectrum of the
perturbations.

From the study of the evolution of the X-ray luminosity function of galaxy clusters, it has been found
that a

Ωm ' 1

model is expected (cf. [34]). Studying the evolution of the temperature function of the X-ray emitting
gas through the iron line emission (cf. [75]) there has been found evolution (cf. [26] and [36]) which leads
to

Ωm ' 0.7− 1

or no evolution (cf. [97] and [15]), which leads to

Ωm ' 0.3− 0.5

models. Luminosity-temperature relation is expected to evolve in time in a way depending on the
cosmological model (cf. [18]). Many studies have found no evolution of the relation, while another study
have found that its evolution matches a

Ωm ∼ 0.35

model (cf. [16]).
In an open or flat Universe we expect that clusters are relaxed and do not present indications of

substructures. On the other hand, in a critical density model, clusters should continue to form until
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now and be dynamically activate (cf. [76], [28] and [46]). These expectations could be used in order
to constrain the cosmological parameters. Unfortunately, it is difficult to identify cluster substructures
due to projection effects and we are not certain about the relaxation time of cluster mergers (cf. [83]).
However, we can use some merging criteria (cf. [78], [79], [103] and [86]) that can constrain Ωm that are
based to the fact that galaxies are non-collisional, while gas is collisional:

1. the difference in the peak of gas and galaxy distributions

2. elongation of the X-ray isophotals perpendicularly to the merging direction

3. temperature gradients

The first two indicators are expected to last up to 1 Gyr approximately.
Another morphology evolution criteria that has been observed is the cluster ellipticity. It has been

found that cluster ellipticity decreases with redshift in the recent past, z . 0.15, which can be interpreted
by a low-Ωm Universe (cf. [54] and [68]), because merging and anisotropic accretion through filaments
would have stopped long ago. The temperature of the X-ray emitting gas as well as its luminosity also
follow the same trend (cf. [77]), as it has been confirmed (cf. [68]). However, increase in the clusters’
velocity dispersion in lower redshifts due to the virialisation has not been found (cf. [33]). Non-relaxed
clusters seem to present increased velocity dispersion due to possible large peculiar velocities of the
substructures (cf. [80]).
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2 Cluster rotation

2.1 Previous work on cluster rotation

In this section we display some of the previous work on galaxy cluster rotation of galaxy-members
or intracluster medium either using observational data or simulations.

Hwang & Lee (2007) [42] search for indications of rotation using spectroscopic data from SDSS and
2dF-GRS. The cluster rotation is reduced to galaxy-members rotations and intracluster gas rotation.
They assume that rotation originates either from cluser mergers or from the global rotation of the
Universe. The rotating clusters should present spatial segregation of the galaxies with larger and smaller
velocities than the mean cluster velocity and should present one peak in the density map. Six clusters
were found to rotate. In this study, Hwang & Lee have also found that the rotating clusters are at
dynamical equilibrium and have not undergone a recent merger.

Kalinkov et al. (2008) [43] in their study, they are trying to find the maximum gradient in the velocity
field of Abell 2107 and they assume that the direction of the maximum linear correlation coefficient
presents the major axis of the cluster. The minor axis would be its rotation axis. They use subsamples of
cluster’s galaxy-members, arranged by their projected distance from the cluster centre. Each subsample
contains members of previous subsamples out to projected distance d. This cluster has been widely
studied by Oegerle et al. (1992) [59] and already have been found indications of rotation. Generally,
Materne et al. (1983) [53] have shown that is very difficult to distinguish a rotating cluster to two
overlapping ones either because they merge or they depart from each other. Abell 2107 was found not
to consist of two overlapping clusters, due to the one narrow peak in its velocity histogram. The most
important indication of rotation is that the positional angle of the axis with the maximum gradient in the
velocity field almost coincides with the positional angle of the axis with the larger elongation. However,
there is the case that tidal effects would take place in the cluster from structures that are infalling in the
cluster centre; nevertheless, those kind of structures were not detected. In the study, the rotation period
has been calculated, 2.4 ·109 yrs and its corrected mass due to rotation has been computed, 2.8 ·1014M�
(initial mass 3.21 · 1014M�).

Hamden et al. (2010) [35] are measuring the tangential motion of clusters aiming to map the mean
line-of-sight motion of a cluster and detect perspective rotation induced by the projection of the cluster’s
tangential motion into the line of sight. The most prominent signal would be detected in clusters
with large angular extent, symmetric velocity distribution and large number of members. They use
three different approaches: measure the line-of-sight motions of individual members, taking spectra of
intracluster gas and mapping distortions of the CMB.

Bianconi et al. (2013) [11] study models where the intracluster medium rotates differentially in a
massive galaxy cluster. The evaluate through X-ray brightness maps the isophote flattening due to the
gas rotation. They constrain the rotational velocities using different rotation laws, rotation curves of
clusters and ellipticity profiles of observed clusters.

Chluba & Mannheim (2002) [19] and Cooray & Chen (2002) [21] are studying the effect of the cluster
rotation on the temperature and polarisation of CMB, the kinetic SZ effect (Sunyaev-Zeldovich effect).
The main results of this effect is the shift of the position of the peak on the temperature fluctuation
relative to the cluster centre and the tilt of the direction of the plane of linear polarisation. The SZE
has three manifestations: the thermal SZE, due to inverse Compton scattering of the CMB photons off
the hot intracluster medium, the kinetic SZE, due to the peculiar velocity of the cluster with respect
to the rest frame of the CMB and the rotation-kinetic SZE, due to the rotation of the cluster. Chluba
& Mannheim study the rotation-kinetic SZE and the fluctuation of the temperature and polarisation of
the CMB. in order to measure the rotational properties of the clusters. They use multi-frequency data
to measure the position of the peak of the temperature fluctuation. The relative change of the CMB
radiation intensity due to the rotation-kinetic SZE is bipolar. The tilt of the polarisation plane is not
frequency dependent and the rotation-kinetic SZE contribution is more severe in the Wien part of the
CMB spectrum.

In the work of Fang et al. (2008) [30] hydrodynamical simulations were used to compute the rotation
contribution in the non-thermal pressure of the intracluster gas. It was found that this contribution is
comparable to the random turbulent motion’s. However, the rotation motion is not big enough to be
detected through the Doppler effect. The simulation results were compared to observed ellipticity profiles
of clusters. In real clusters, the rotation velocities of galaxies in the inner region are much smaller that
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hose in simulations. In the outer region, the rotational velocities are larger in real clusters or the latter
are more centrally concentrated.

2.2 Rotation identification

We will describe the details of two methods used in an attempt to quantify a rotation mode in clusters
of galaxies. The first method is developed in this thesis, while the second one is based on Hwang & Lee
(2007) [42].

2.2.1 Our method of rotation identification

We introduce a method of identifying the possible rotation of galaxies in galaxy clusters, which can
measure the velocity amplitude of rotation and the angle of its rotation axis, projected on the plane of
the sky, by using the individual galaxy-member velocities.

Let us assume a cluster of a certain mass containing a certain number of galaxies. Each galaxy has
its own three dimensional velocity relatively to the cluster center, while only the line-of-sight velocity
component can be measured through the redshift of the galaxy. The basic idea is to split the projected
cluster galaxy angular distribution vertically in two semicircles, while galaxies are rotated consecutively
by an angle θ according to the Euler transformations for two-dimensional rotation. Angle θ sets off from
the horizontal axis and increases counterclockwise. The relative transformation equations of the galaxies
are:

ra′ = ra · cos θ − dec · sin θ
dec′ = ra · sin θ + dec · cos θ (15)

where (ra, dec) are the original celestial coordinates of each galaxy and (ra′, dec′) are the new coordinates.
A visual illustration of this is provided in figure 9.

Having now two distinct groups of galaxies (one for dec′ > 0 and one for dec′ < 0), we calculate
the mean line-of-sight velocity of each one (vmean1, vmean2) and the difference between the two mean
velocities vdif = vmean1 − vmean2. Consequently, we obtain the velocity difference vdif as a function
of the angle θ. We will use the graph of vdif (θ), which we will call rotation diagram, as our primary
indication for the presence or not of a rotation mode. Of course an interesting issue, which we address
further below, is also related to the orientation of the rotational axis with respect to the line of sight.

Figure 9: An illustration of our method. The galaxies with coordinates (ra, dec) are turned by angle θ
and their new coordinates are (ra′, dec′). The cluster is then split in two semicircles, 1 and 2.
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For a rotating cluster, this diagram should show a periodic trend and the rotation axis would be at
the angle θ of the maximum velocity difference vdif . For example, assume a counterclockwise rotating
cluster whose rotation axis is at θ = 90◦. We will start rotating the galaxy-members at angles between
0◦− 180◦ with a step of 10◦. For θ = 0, we will not observe any significant velocity difference; ideally, at
the absence of noise, it would be zero (vdif = 0). As θ increases, the velocity difference should increase
until it reaches the maximum value at θ = 90◦. In this case, the galaxies in the right semicircle would
seem to depart and the galaxies in the left semicircle would seem to approach us, with respect to the
cluster center. The amplitude of the rotation signal will decrease as θ increases to 180◦ and increase
again at θ = 270◦ until it approaches zero at θ = 360◦. In figure 10 we show the expected graph vdif (θ)
for an ideally rotating cluster with rotation amplitude 600 km/s and rotation axis at θ = 90◦. The ideal
rotation in this case is achieved by attributing a constant rotational line-of-sight velocity to the galaxy
members; the galaxies of the left semiphere (with respect to the vertical rotation axis) are attributed
vlos = −300 km/s, while the galaxies of the right semisphere are attributed with vlos = 300 km/s.

If a non-rotating cluster has one or more subgroups that approach or depart with respect to the
center, then, in the rotation diagram we will observe one or more peaks (or dumpings) in one of the
semicircles at the corresponding angle θ of the peak (or dumping). There is a case where rotation and
substructures cannot be easily distinguished: two subgroups of galaxies that move inside the cluster and
whose line-of-sight velocity component happens to show a periodic signal. But this case is not likely
to happen since it requires a fine tunning. In general, the expectations for a non-rotating cluster, with
no infalling substructures, is expected to have a random rotation diagram (no systematic dependence of
vdif (θ) on θ) with small values of velocity difference.

Figure 10: The ideal rotation signal of a clockwise rotating galaxy cluster with an amplitude
vdif = 600km/s (rotation axis at θ = 90◦).

2.2.2 The method of Hwang & Lee

Below we will compare our method with that of Hwang & Lee (2007) [42]. To this end we present the
details of the latter method. Hwang & Lee use a sinusoidal relation to compute the angle of the rotation
axis Θo and the rotational velocity vrot:

vp(Θ) = vsys + vrot · sin(Θ−Θo) ,

where vp is the observed radial velocity of each galaxy, vsys is the peculiar velocity of the cluster and Θ
is the projected on the plane of the sky position angle of each galaxy, setting off from North to East.

From now on we set vsys = 0, because the recessional velocity of every galaxy is subtracted from the
mean cluster velocity. As long as the velocities vp are known (from the redshifts of the galaxies), we
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need to calculate the angle Θ of every galaxy, using its coordinates (ra, dec) (translated to the cluster
rest-frame, ie., for a cluster center at (0, 0)).

dec > 0 dec < 0
ra > 0 Θ = arctan(ra/dec) Θ = arctan(ra/dec) + 180o

ra < 0 Θ = arctan(ra/dec) Θ = arctan(ra/dec) + 180o

We then use a χ2 minimization procedure to determine the correct values of Θo and vrot. Namely,
we use a grid of Θo and vrot and calculate χ2 for each pair:

χ2 =
∑
i

(vpi − vlosi)2

σ2
i

(16)

where vlosi is the line-of-sight velocity of every galaxy and σi its measurement error. For the purpose of
these tests and since we use ideal velocities we set σi = 1.

2.3 Validation of our method

Before applying our method to real galaxy cluster data, we should validate and confirm that it can
provide unambiguously an indication of rotation.

To this end, we construct, using the Monte-Carlo simulation method, a virialised cluster with a mass
of 4 × 1014M�, radius Rcl = 1 Mpc, core radius rc = 0.1 Mpc and having a King’s profile density
distribution

ρ(r) =
ρ0

(1 + (r/rc)2 )
3/2

, (17)

where ρ(r) is the density included within radius r and ρ0 is the density in the center of the cluster. To
estimate the value of ρ0 we use the cluster mass Mcl,

M(Rcl) =
4

3
πR3ρ(R)⇒Mcl =

4

3
πR3 ρ0

(1 + (r/rc)2 )
3/2

from which we extract the ρ0 = 6.56036×10−12 kg/km3. Although it is known that the NFW (Navarro-
Frenk-White [58]) profile is a more accurate representation of the dark matter and/or galaxy density
profile of clusters of galaxies, while the King’s profile is applicable mostly to the intracluster gas (cf.
[44]), it is acceptable to use the latter for the purpose of testing our methodology. To construct the
cluster using this galaxy distribution we follow the usual �rejection method� (eg., see Numerical Recipes
in Fortran 77, [73], pg. 281) procedure:

� Take random values (uniform distribution) between −Rcl and Rcl for the coordinates (x, y, z) of
each galaxy and find the distance r from the center of the cluster (0, 0, 0). Turn down the mock
galaxies that have r > Rcl.

� Find ρ(r) from the King profile (equation (17)).

� For each selected �mock� galaxy estimate the probability that it falls within the expectation of the
King profile.

� Take a random value ρ2 in the interval (0, ρ0). Reject the galaxies that have ρ2 > ρ.

A realisation of one such Monte-Carlo cluster can be seen in figure 11.
Every galaxy is given a three dimensional velocity which could be: (a) one with a random orientation

with respect to the cluster center of mass and an amplitude given by the Virial expectation, (b) a
rotational velocity with amplitude being a fraction of the Virial expectation, or (c) the vectorial sum of
both of them.

Another useful property of the cluster, which we will come across later, is the velocity dispersion vσ.
It is defined by the relation

v2
σ ==

1

n− 1

n∑
i=1

(vlos − vm)
2 ⇒ vσ =

√√√√ 1

n− 1

n∑
i=1

(vlos − vm)
2

(18)
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Figure 11: (a) The 3D cluster, (b) the density ρ as a function of the cluster-centric distance r, (c)
velocity as a function of the distance r from the cluster center.

where n is the number of galaxy-members and vm is the mean line-of-sight velocity of the cluster. Velocity
dispersion is a way to express the level of mobility of the galaxies in the cluster and is related to the
cluster gravitational potential via the Virial theorem.

2.3.1 Ideal 2D rotation

Initially, we will check our method in ideal conditions, ie., using a cluster with an ideal (projected
on the plane of the sky) rotation of the galaxy members. Galaxies in one of the semicircles (dec > 0)
are assigned a constant line-of-sight velocity of vlos = −300 km/s and in the other semicircle (dec < 0)
are assigned vlos = 300 km/s. Therefore, the rotation amplitude of this configuration is 600 km/s. In
order to investigate also sampling effects we produce the rotation diagrams for a cluster with 50 and 1000
galaxies, in figures 12 and 13 respectively, where we also check for different orientations of the rotation
axis.

Our method (red lines in the figures) seem to recover sufficiently well both the expected rotation
amplitude and the orientation of the rotation axis (corresponding to the peak of the vdif (θ) diagram)
for both cases (figures 12 and 13). For the high-sampling case (figure 13), the Hwang & Lee’s method
identifies the rotation axis accurately but not the rotation amplitude, which is found to be approximately
400 km/s instead of 600 km/s; i.e., it recovers only ∼ 2/3 of the input one. The same is true for the low
sampling case (figure 12), but there is also a deviation of the recovered rotation axis angle with respect
to the input one. Observing the results of these two cases we can conclude, as anticipated, that the
richer the cluster the easier the rotation signal can be identified and the more accurately the rotation
properties can be estimated.

It is interesting to note that based on the rotation diagrams we can deduce the clockwise or anti-
clockwise nature of the rotation, from the quadrant of the angle θ of the maximum velocity difference.
If the angle θ is in the first or third quadrant (0 ≤ θ < 90 or 180 ≤ θ < 270), the rotation is clockwise;
otherwise (90 ≤ θ < 180 or 270 ≤ θ < 360), the rotation is counterclockwise.

2.3.2 A more realistic rotation in 3D

To have a more realistic rotation profile of the cluster, we assign to each galaxy a random orientation
(virial in amplitude) velocity and, in addition, a rotation velocity as a percentage of the virial one. From
the components vx, vy, vz of the overall velocity of a galaxy, v (figure 14), we calculate the line-of-sight
velocity of each galaxy from the relation:

vlos = vx · cosφ+ vz · cos(90◦ − φ)

where φ is the vertical angle between the line of sight and axis x. For φ = 0, the line of sight coincides with
the x-axis; as angle φ increases, we take into account in the line-of-sight velocity also the z-component
of the velocity. For φ = 90◦, the line of sight coincides with the z-axis (figure 14).
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Figure 12: The results of our method (red lines) and of the Hwang & Lee’s method (blue lines) for a
cluster with 50 galaxies with θ the angle of the rotation axis setting off from the horizontal axis and

increasing counterclockwise.

Assuming that the cluster is dynamically relaxed (virialised) we can estimate the amplitude of the
expected 3-dimensional velocity, vk, of each galaxy from (13), which depends on its distance from the
cluster center of mass:

v2
k =

1

2

GM(r)

r
⇒

vk(r) =

√
1

2

GM(r)

r
=

√√√√2

3

Gπρ0r2(
1 +

(
r
rc

)2)3/2 , (19)

where M(r) is the mass within a sphere of radius r. Each component vkx , vky , vkz of the virial velocity
vk(r) is randomly orientated2 such that it satisfies the relation (19).

The amplitude of the rotational velocity is set as a percentage of the virial velocity, while its counter-

2We use the ran1 random number generator from the Numerical Recipes in Fortran 77, [73], pg. 271.
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Figure 13: As in figure 12 but for a cluster with 1000 galaxy-members.

clockwise direction is set by the velocity components vrotx , vroty , vrotz , which emerge from the relations

~vrot · ~r = 0

v2
rot = v2

roty + v2
rotx

The first relation comes from the fact that the coordinate vector ~r is perpendicular to the rotation velocity
vector ~vrot. The second one comes from the analysis of the ~vrot in its coordinates. The z-component
of the velocity is set 0, in order the rotational velocities to be perpendicular to the rotation axis z.
Consequently, we obtain the following relations for the components vrotx , vroty , vrotz :

vrotz = 0

y > 0 y < 0

x > 0 vroty =
(
x2v2

rot/(x
2 + y2)

)1/2
vroty =

(
x2v2

rot/(x
2 + y2)

)1/2
x < 0 vroty = −

(
x2v2

rot/(x
2 + y2)

)1/2
vroty = −

(
x2v2

rot/(x
2 + y2)

)1/2
vrotx = −y

x
vroty

We now wish to investigate the effect of different orientations of the 3-dimensional rotational axis
with respect to the line-of-sight. To this end, we set the rotation axis at angle θ = 90◦ from the horizontal
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Figure 14: The triaxial coordinate system and the line of sight direction (blue line). Y axis remains
intact.

axis. We will turn the rotation axis with respect to the vertical position, so that it forms an angle φ with
the line of sight in the interval (0◦, 90◦) until it is aligned with the line of sight. Firstly, we will apply this
procedure to a cluster with 1000 galaxies of which the rotational velocity is 30% of the corresponding
virial velocity vp (but no virial velocities are assigned). The results for different values of the orientation
of the rotation axis with respect to the line-of-sight are shown in figure 15. From equation (19), we have
that the 3D rotation amplitude is ∼ 600 km/s.

Figure 15: The rotation diagram for a cluster with a 3D rotational velocity of 600km/s as the rotation
axis shifts from perpendicular to parallel to the line of sight (φ = 0◦ − 90◦). Left Panel: Results based

on our method. Right Panel: Results based on Hwang & Lee’s method.

As we expect, the rotation signal becomes weaker (the rotation amplitude decreases) as the angle φ
increases. The counterclockwise direction of rotation is apparent in figure 15 from the occurrence of the
peak in 90◦. For φ = 90◦, rotation cannot be identified, as the rotation component of the velocity of
the galaxies is perpendicular to the line of sight and thus it cannot be observed. Our method gives a
flat rotation diagram in this case, as it should, while the Hwang & Lee’s method gives a �fake� signal
showing a rotation axis at θ = 270◦. Their method appears again, as in the ideal 2D case presented
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previously, to have problems in recovering the correct input rotation amplitude for any value of φ.
We will now repeat the same test, using a cluster with 1000 galaxies, but having both a virial and

a rotational velocity component. The latter are set to 30% of the former one. The results are shown in
figure 16.

Figure 16: Similar rotation diagram as in figure 15 but now for a cluster with a more realistic 3D
velocity, composed of a random oriented virial component and a rotational component, being ∼ 30% of

the former.

As expected the rotation signal decreases as a function of increasing φ. Furthermore, the accuracy
of the recovered rotation axis angle is fairly good (it decreases slightly with increasing of φ). When the
rotation axis and the line of sight are aligned, our method gives a noisy rotation diagram, indication
of no rotation, as indeed expected due to the orientation of the cluster, but again the Hwang & Lee’s
method has the same problems as discussed in the previous case (fake rotation signal at φ = 90◦ and
underestimation of the rotation amplitude at lower-φ’s).

As a next step, we are testing the effect on the rotation signal of the rotational center, not coinciding
with the cluster center, but being in a small distance from it, for reasons that may have to do with a recent
merging effect, for example. We use the same simulated cluster with 1000 galaxies, which have virial
velocity and rotational velocity (the 30% of the virial one). We study nine different rotational centers,
whose one or both coordinates are 0.1 Mpc distant from the cluster center; we rotate the galaxy-members
around the new rotational center. We compare those signals to the signal from the real rotational center,
which is (0,0) - the cluster center. We also show the results of Hwang & Lee (figure 17).

The rotation signal appears to have only small variations in the rotation amplitude and rotation axis
for the different rotational centers near the real rotational center (0,0). This result is also valid for the
Hwang & Lee’s method.

2.3.3 A more realistic rotation in 2D

We return now to investigate systematics related to the identification of rotation on the plane of
the sky. We therefore keep the rotation axis perpendicular to the line of sight (φ = 0) and rotate it at
different angles θ, on the plane of the sky, as we did for the ideal 2D rotation in the previous section.
The galaxies will be assigned with virial and rotational velocities (30% of the former). To study sampling
effects we will again use two cases; a cluster with 1000 (figure 18) and a cluster with a 50 galaxies (figure
19).

Black lines correspond to the input rotation signal and as we can see in figure 18, both methods recover
well the orientation of the rotational axis, while only our method manages to recover fully the amplitude
of the rotational velocity (as seen also in the previous tests). However, as can be seen in figure 19 both
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Figure 17: The rotation diagram for a cluster with a 3D rotational velocity of 600km/s for nine different
rotational center candidates. The real rotational center is the (0,0). Left Panel: Results based on our

method. Right Panel: Results based on Hwang & Lee’s method.

methods have difficulties in determining accurately the rotation amplitude and the orientation angle of
the axis for the case of a cluster with only 50 members. There is considerable noise in the rotation signal
in our method due to sampling effects and the dominance of the virial, with respect to the rotational,
velocity of galaxies. We can see cases (θ = 90◦, θ = 270◦) where the recovery is satisfactory, and cases
(θ = 135◦, θ = 225◦) where it is not. Therefore, sampling effects are important and using clusters with
a small number of galaxy redshifts should be avoided.

A next test for systematics is to to simulate 50 Monte Carlo clusters, all with the same statistical
properties but of which the rotational velocity is an increasing fraction of the virial one (0% − 100%),
keeping the rotation axis set to θ = 45◦. We are going to calculate the mean and standard deviation of
the recovered rotation amplitudes and angles of rotation axis, in order to find the range for a successful
application of our method. In order to investigate further also the sampling issue discussed earlier, we
simulate 4 sets of clusters containing Ng = 1000, 50, 30 and 10 galaxies for each case, respectively, and
apply the above procedure for all sets.

In figures 20, 21, 22 and 23 we present the mean and standard deviation of the recovered rotation
amplitudes (left panels) and of the recovered rotation axis angle (right panels) as a function of the ratio
vrot/vvirial, where vvirial ' 1800 km/s. In the ideal case of very good sampling (figure 20), we see that
our method correctly recovers the rotation amplitude with negligible uncertainty except for the case of
no rotational velocity (0% of virial), while the already identified problem of the Hwang & Lee’s method,
that of underestimating the rotation amplitude, is shown here as well to be independent of vrot/vvirial.
Generally, we observe that in all different Ng cases our method recovers more accurately the rotational
velocity amplitude for vrot/vvirial > 0.2, while the Hwang & Lee’s method performs slightly better
in recovering, on average, the correct angle of orientation axis (especially for the low sampling cases;
Ng = 30, 10). In the lower sampling cases (Ng = 30, 10) the uncertainties are very large and recovery of
the underlying rotation mode extremely inaccurate.

A general result from this analysis is that one may not expect to recover the characteristics of an
existing rotation mode if the amplitude of the rotation is less than ∼ 10% − 20% of the virial velocity
and the sampling of the cluster members is low (less than ∼ 30 galaxies/cluster).

As a final test for systematics, we are simulating 1000 Monte-Carlo clusters, with a small number
of galaxy-members (20 in this case) and with no rotational velocities, only virial ones. The aim is to
compute the fraction of clusters that will be found to rotate, while this rotation signal would be false. As
we analyse in forthcoming sections, 2.4.4 and 2.6.1, we use two different groups of indications of rotation;
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Figure 18: The results of our method (red lines) and of Hwang & Lee’s method (blue lines) for a cluster
with 1000 galaxies. The angle θ of the cluster rotation axis sets off from the horizontal axis increasing

counterclockwise. Black lines is the expected signal for a cluster with ideal rotation of the same
amplitude (no virial velocities).

the former one indicates that the cluster is rotating (probKS < 0.01, χ2
id . 1, χ2

r > 1 and χ2
id/χ

2
r � 1)

and the latter indicates a possible rotating clusters (probKS < 0.08, χ2
id . 1, χ2

r > 1 or probKS < 0.08,
χ2
id . 1, χ2

r < 1,χ2
id/χ

2
r < 0.25). To this end, we have found that 51 out of 1000 clusters were found

to be rotating clusters (5.1% of the sample) and 110 out of the 1000 were found to be possibly rotating
clusters (11%, the former clusters are included in this value). Those fractions are small enough to let
us conclude that the rotation signal of ever a poor cluster is not likely to be fake, but real, even if this
signal is weak.

2.4 Observational data

2.4.1 Data acquisition

We have selected a random subsample of the Abell clusters (cf. [1]) with z . 0.1 so that it covers
relatively homogeneously all five Bautz-Morgan morphology types. The clusters in our sample are shown
in the table 1. The cluster data (redshift, right ascension, declination) are from the NASA-NED database
(ned.ipac.caltech.edu).
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Figure 19: As in figure 18 but for a cluster with 50 galaxy-members.

In order to acquire the galaxy-members of each cluster from the SDSS spectroscopic database (Sloan
Digital Sky Survey, skyserver.sdss3.org/dr9), we compute the limits of an equal-area rectangular region
that has a diameter equal to 2.5 h−1Mpc on rest frame. For that reason, we calculate the angular
diameter distance dθ for each cluster (in Mpcs) taken from (11) with the Hubble function H(z) taken
from (6). The angular diameter θ of a linear distance 2.5 Mpcs from the center of the cluster (column 5
of table 1), using its angular diameter distance, is

sin θ =
2.5

dθ
⇒ θ = arcsin

(
2.5

dθ

)
Initially, we need to equal-area rectangular region centered on the center of every cluster. The equal

area will be achieved by projecting the region (−ra, ra), (−dec, dec) of the celestial sphere in a plane
which crosses the cluster center. This is because of the curvature of the celestial sphere, and the effect
increases as the declination moves away from the equator. The projected region will have boundaries

upper limit lower limit
rac − θ cos(decc) rac + θ cos(decc)
decc − θ decc + θ

where (rac, decc) are the equatorial coordinates of the center. After computing the boundaries of this
rectangular region, we extract the SDSS galaxy-data of the above region for every cluster.
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Figure 20: Case with Ng = 1000 with blue and red symbols representing results of our and Hwang &
Lee’s method, respectively. Left Panel: Recovered rotation amplitudes as a function of vrot/vvirial.

The black line indicates the input rotation amplitude. Right Panel: Recovered rotation axis angle as a
function of the ratio vrot/vvirial. The black line indicates the actual angle of the rotation axis.

Figure 21: Same as in figure 20 but for Ng = 50.

The SDSS data consist of objects that are found in the square region we requested, but spanning
any redshift. For every object there is information for the redshift z, its right ascension and declination,
the apparent magnitude in five bands (we download only the r-band) and other information that we
are not concerned with. Firstly, we will keep the objects that are declared as galaxies, with measured
redshift, that is in a range of ±0.01 of the central redshift of each cluster (known from NASA NED);
this means we assume that galaxies in the cluster will have a maximum velocity of 3000 km/s relatively
to the center, which is a fact only in a few extreme cases.

The rotation analysis is then performed using galaxies within a circular region around the center with
a certain radius (1.5 or 2.5 Mpc). The angular distance θgal of every galaxy from the cluster center is
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Figure 22: Same as in figure 20 but for Ng = 30.

Figure 23: Same as in figure 20 but for Ng = 10.

estimated by the cosine law of the spherical triangle galaxy-cluster-earth’s pole:

cos θgal = cos(90o − dec) · cos(90o − decc) + sin(90o − dec) · sin(90o − decc) · cos(ra− rac)

where (ra, dec) are the equatorial coordinates of the galaxy and (rac, decc) are the equatorial coordinates
of the cluster center. The linear distance r of the galaxy from the center is calculated using the triangle
that is formed by the cluster center, the galaxy and the observer, and is

r = dθ · sin θgal

where dθ is the angular diameter distance of the cluster. In this way, every galaxy with r > 1.5 Mpc or
r > 2.5 Mpc will be rejected from being considered a cluster member.

We are studying circular areas as well as circular rings of the cluster. We want to find out whether
the cluster’s rotation comes from the outer parts or from the inner parts. If the virialised clusters seem
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Cluster name Redshift z ra (deg) dec (deg) Ang. diam. (deg)
A85 0.055061 10.4075 -9.3 0.62381
A168 0.045000 18.7908 0.2 0.75419
A279 0.079700 29.0929 1.1 0.44366
A646 0.129200 125.5400 47.1 0.28974
A671 0.050200 127.1221 30.4 0.68027
A690 0.078800 129.8092 28.8 0.44825
A734 0.071900 135.1613 16.3 0.48731
A957 0.043600 153.4888 -0.9 0.77711
A971 0.092900 154.9446 41.0 0.38652
A1027 0.069001 157.7354 53.4 0.50606
A1177 0.031600 167.3654 21.7 1.05688
A1213 0.046900 169.1213 29.3 0.72528
A1291 0.052700 173.0413 56.0 0.64993
A1468 0.084400 181.4088 51.4 0.42126
A1516 0.076900 184.7388 5.2 0.45831
A1569 0.073500 189.0779 16.6 0.47760
A1650 0.083838 194.6925 -1.8 0.42380
A1656 0.023100 194.9529 28.0 1.43106
A1738 0.115400 201.2967 0.2 0.31932
A1775 0.071700 205.4817 26.4 0.48855
A1795 0.062476 207.2521 26.6 0.55462
A1800 0.075500 207.4225 28.1 0.46604
A1913 0.052800 216.7158 16.7 0.64878
A1983 0.043600 223.1833 16.7 0.77711
A1991 0.058700 223.6258 18.6 0.58767
A2029 0.077280 227.7333 5.7 0.45626
A2079 0.068984 232.0196 28.9 0.50617
A2089 0.073130 233.1721 28.0 0.47981
A2107 0.041148 234.9125 21.8 0.82100
A2124 0.065625 236.2471 36.1 0.52998
A2147 0.035000 240.5717 15.9 0.95812
A2199 0.030151 247.1604 39.6 1.10575
A2244 0.096800 255.6833 34.0 0.37262
A2255 0.080600 258.1292 64.1 0.43916
A2356 0.116100 323.9429 0.1 0.31765
A2428 0.085100 334.0613 -9.4 0.41813
A2593 0.041300 351.1292 14.6 0.81813
A2670 0.076186 358.5571 -10.4 0.46221

Table 1: The clusters we have studied. The first column is the Abell name of the cluster, the second is its
redshift, the third is its right ascension of the center in degrees, the fourth is the declination of the
center in degrees and the fifth is the angular diameter of 2.5 Mpc in the redshift of the cluster in

degrees. All these data are taken from NASA-NED.

to be the most usual rotating clusters, due to an initial acquired angular momentum, then the extraction
of the inner area in our rotation study will cause the rotation signal to weaken. On the other hand, if the
rotation in clusters is caused by mergers, then we would expect that the outer parts of the cluster would
have a more prominent rotation velocity distribution and the extraction of the inner cluster-members
from the study would cause the rotation signal to strengthen. As a result, there are cases where we
want to study the probable rotation in circular annuli, excluding the central regions where projections
along the line-of-sight are more severe. Furthermore, we wish to also study the outskirt regions of the
clusters. Consequently, we will investigate the cluster rotation for each cluster using four different angular
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configurations (there are some cases where an additional configuration is used, as explained in each case):

1. the circular area within 1.5 Mpc radius

2. the circular ring with inner boundary 0.3 Mpc and outer boundary 1.5 Mpc

3. the circular area within 2.5 Mpc radius

4. the circular ring with inner boundary 0.5 Mpc and outer boundary 2.5 Mpc

Before we apply our rotation algorithm we wish to clear our galaxy members of possible outliers,
which could affect our results. To this end we plot the relative to the cluster-center galaxy velocity
frequency distribution for each cluster, which has a mean value of 0. We expect that a virialised cluster
should have roughly a Gaussian frequency distribution. Therefore a Gaussian is fitted to the data using
the usual χ2 minimization procedure and then all galaxies that have velocities > 3σ away from the mean
are rejected. This procedure is repeated iteratively until no galaxies are rejected.

2.4.2 Cluster richness

In order to determine the cluster richness, we will calculate the number of bright galaxies of each
cluster, using the Schechter luminosity function mentioned in the introduction. We use the Φ(M) form,
with M∗ taken from Montero-Dorta & Prada (2008) [56],

M∗ − 5 log h = −20.73± 0.04

for the SDSS galaxies in the r band. The corresponding magnitude m∗ is calculated by equation (12),
but with an additional evolutionary correction component

m∗ −M∗ = 5 log dL + 25 +K(z) + EC(z)

The values of K-correction as well as the evolutionary correction we enter is taken from Poggianti (1996)
[71] for the r band. Galaxies with magnitude smaller than m∗ are the bright ones for each cluster. The
number of bright galaxies compared with the overall number of galaxies stands for the cluster richness.

2.4.3 Choosing the correct rotational center

The clusters are now ready to be studied with our method, which we discussed in section 2.2.1.
Instead of using the (ra, dec) coordinates of the galaxies, we use the equal-area projection of the galaxy
distribution:

y ⇒ ra · cos(decc)

x⇒ dec

We also use the line-of-sight velocities of the galaxies, which are calculated from their redshift z using
the relation

vlos = c · x
Generally, the center of mass of the cluster, which we have used in all the above procedures (taken

from NASA-NED), is not necessarily the rotational center of the cluster. For that reason, we apply our
method of rotation identification to the cluster using 9 different possible rotational centers, which form
a rectangle whose center is the center of mass of the cluster. In figure 24 this configuration is shown.
The distances (dy, dx) are calculated for every cluster from the relations:

dy = 20% · cluster radius · cos(decc)

dx = 10% · cluster radius

where decc is the declination of the cluster center and cluster radius is 1.5 or 2.5 Mpc. Thus, the rotation
algorithm is applied 9 times for each cluster, using the equations (15), in the form

y′ = y · cos θ − x · sin θ
x′ = y · sin θ + x · cos θ
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Figure 24: The formation of the different rotational centers (black dots) that we study for each cluster.
dy,dx are the sides of the small rectangles (in this case dy=dx).

The line that splits the cluster in two semicircles is x′ = 0. But how do we identify the �correct�
rotational center?

In order to decide which is the rotational center of the cluster, we use as our basic criteria the
smoothest of the sinusoidal curve, which should represent better the ideal rotation with the maximum
amplitude observed in the data-curve. The latter, which we call ideal rotation diagram, is introduced by
the following procedure:

For every rotational center, we find the angle θ where the maximum rotational velocity vmax is
observed in the rotation diagram. This angle splits the cluster in two semispheres; we attach to each
galaxy of the first semisphere a velocity vlos = vmax/2 and to each galaxy of the second semisphere
a velocity vlos = −vmax/2. We now repeat our algorithm of rotation identification using those ideal
line-of-sight velocities for the galaxies of the cluster and create the ideal rotation diagram. The next step
is to conduct a statistical test (χ2 minimization) to compute the real, vi, and ideal, vidi , rotation curves
and quantify their difference. We use relation (16), which now is,

χ2 =
∑
i

(vi − vidi)2

σ2
i

(20)

where the error σ2
i is given by

σ2
i = σ2

vi + σ2
vidi

σvi is the error of computing the rotational velocity of the data

σvi =

√(
vdisp1i√
n1i

)2

+

(
vdisp2i√
n2i

)2

where vdisp1i and vdisp2i are the velocity dispersions of the galaxies in semicircles 1 and 2 respectively
and n1i and n2i are the number of galaxies in semicircles 1 and 2 respectively, each time they are rotated
by angle θ. The velocity dispersions are found using the equation (18). σvidi is the error of computing
the ideal rotational velocity of the data and is calculated using exactly the same relations, only this time
the galaxies are attributed with the ideal rotational velocities. The center whose difference χ2 has the
smaller value (smaller difference between the curves) is the one we identify as the rotation center.

2.4.4 Rotation identification

After having chosen the �best� rotational center, it is time to make a decision whether a cluster is
rotating or not. We will combine several tests in order to draw the safest conclusion for each cluster. We
will use parameters such as the ideal rotation curve we mentioned before, the random rotation curve and
a Kolmogorov-Smirnov test. The procedures described below have been applied to each of the clusters.
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A first test is provided by using the ideal rotation curve for the selected center and compute the χ2

value between the real and ideal rotation curve, which will now name χ2
id.

The next test is to perform a similar χ2 comparing between our data rotation curve and one that
corresponds to the random rotation curve. To this end, we keep the same coordinates of the galaxies
of the cluster, but we shuffle their line-of-sight velocities randomly. Then, our algorithm of rotation is
applied on them, again using the selected rotational center of the cluster. This process is repeated 10000
times and the final rotation curve, vri , of this cluster is the mean of all the random rotation curves, vrij ,

and its error σvri is the statistical standard deviation of the mean.

vri =
1

n

n∑
j=1

vrij

σvri =

√√√√ 1

n− 1

n∑
i=1

(
vrij − vri

)2

where n = 10000. We calculate the value of χ2 between the real rotation curve and the random curve, as
we did for the ideal curve in (20). The reason of conducting this test is that we can measure the statistical
importance of the possible rotation of a cluster by comparing χ2

id with χ2
r. If the first is significantly

smaller than the second, then we can claim that the rotation model represents the data rotation curve
more efficiently. If the opposite occurs, then the cluster in not likely to be rotating. The ratio χ2

id/χ
2
r

is also a useful parameter for concluding the rotation. The smaller this ratio is (as it approaches zero)
while the value of χ2

id/df (df are the degrees of freedom) remains . 1, the better the cluster is described
by our rotation model.

We are also applying the Kolmogorov-Smirnov two-sample test (the algorithm kstwo is taken from
Numerical Recipes in Fortran 77, [73], pg. 619) to the distributions of the line-of-sight velocities of the
galaxies of the two semicircles of the cluster for each angle θ. This test calculates the probability that
the two distributions have the same paternal distribution. The bigger the probability the more likely is
the two distributions to belong to the same distribution. For a rotating cluster, we expect the smaller
probability to occur at the angle of the maximum velocity difference of the rotation diagram.

As a result, we have four parameters that can be used to deduce the rotation of the clusters:

� χ2
id/df between the real and ideal rotation curve, which should be less or equal to 1 for a rotating

cluster,

� χ2
r/df between the real rotation curve and random curve, which should be � 1 for a rotating

cluster,

� χ2
id/χ

2
r , which should approach zero for a rotating cluster, and

� the Kolmogorov-Smirnov probability between the redshift distribution of the two semicircles of
maximum velocity difference, which should have a significantly small value (< 0.01), at the angle
θ of the maximum velocity difference of the rotation diagram.

2.5 Application on individual clusters and results

Below we report our results for each cluster of our sample, separately. We have constructed eight
diagrams for each cluster: a set of two plots for each of the four angular configurations. The first plot
displays the rotation diagram for each of the 9 tested rotational centers, while the second plot displays,
for the finally selected rotational center, the spatial distribution of the galaxies (in the upper left panel),
the histogram of the line-of-sight velocities along with the fitted Gaussian (in the upper right panel), the
rotation diagram with the real, ideal rotation and random rotation curves (and their uncertainties) in
the bottom left panel, and the Kolmogorov-Smirnov probability diagram as a function of rotation angle
θ in the bottom right panel.

Note that in the upper left panel, where we plot the spatial distributions of galaxies, the faint crosses
represent the rejected galaxies due to the angular criteria, the black crosses indicate the rejected galaxies
due to velocity criteria, while the blue and red dots represent galaxies moving towards and away the
observer, respectively. The black square is the NASA-NED cluster center and the black triangle is the
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final rotational center. We present all the rotation center diagrams discussed above as an example only
for one case, that of Abell 85. For every other cluster we present the diagram of the final rotational
center for a radius 1.5 Mpc and, if this diagram does not show rotation mode, but at another radius
configuration does, we present also the final rotational center diagram for that configuration too. All
such plots, for all clusters, except for Abell 85, are shown in the appendix.

Along with the diagrams, we present tables of the results of the χ2 minimization tests and Kolmogorov-
Smirnov probability test we conducted for each of the angular configurations. Tables 2, 3, 4 and 5 also
show the number of galaxies finally included as cluster-members, their mean redshift, which is the new
cluster redshift, the rotation amplitude, which is the maximum velocity difference vdif in the rotation
diagram, the direction or rotation (clockwise is represented by value 1 and counterclockwise is repre-
sented by value 2) and the angle θ of the rotation axis, which is the angle of the maximum velocity
difference. Some clusters have a and b components, which are the substructures as studied in section
2.5.6. In addition, table 2 and 4 contain less clusters, because some clusters had less than 10 members
in those configurations and were not studied at all.

Abell clusters are sorted by their Bautz-Morgan type to present the results, and there is a final
category of clusters that are likely to have two or three substructures, which are studied individually.

2.5.1 Bautz-Morgan type I clusters

Firstly, we present the results of the Bautz-Morgan type I clusters, which are characterized by a
higher number density of galaxies than clusters of other types and are dynamically more evolved, as we
mentioned in section 1.2.2.

Abell 85
Abell’s 85 X-ray image (figure 25) can confirm its Bautz-Morgan type: it has a spherical shape, as
is expected for a virialised cluster.

Figure 25: The X-ray isophotals of Abell 85 taken from Einstein IPC (1999).

It has a NASA-NED redshift 0.055061 and is a rather rich cluster; the number of members varies
from 60 to 155 for each angular configuration. Below we present the rotation diagrams for all the
four angular configurations. We remark that the cluster seems to show a rotation signal in 1.5 Mpc
and 0.3-1.5 Mpc configurations (as confirmed by the Kolmogorov-Smirnov probability diagram,
table 2 and 4), but this signal disappears at the other two configurations, where the outer radius
of the cluster is 2.5 Mpc and more outer galaxy-members are included. This trend can be caused
from a possible different velocity distribution of the outer galaxies with respect to the inner ones;
maybe they are falling in the cluster center and thus these velocities reflect infall velocities. Our
result is that Abell 85 is a probable rotating cluster within a 1.5 Mpc radius.

Abell 690
Abell 690 has a NASA-NED redshift 0.0788 and contains few members. We present the 1.5 Mpc
radius configuration, where a weak rotation signal can be identified as well as on the other configu-
rations. Values of χ2 fraction at tables 2, 3, 4 and 5 show that the rotation diagram of this cluster
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Figure 26: The rotation diagrams for all the candidate rotational centers for Abell 85 (r < 1.5 Mpc).
Black lines are the real rotation curves and red lines are the ideal rotation curves. Above each panel we

indicate the coordinates (dy, dx) of the rotational center.
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Figure 27: Abell 85 with a radius of 1.5 Mpc. The title of the figure indicates the coordinates of the final
selected rotational center (dy, dx) and the number of galaxies included in the study.
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Figure 28: Abell 85 with a radius of 2.5 Mpc. The title of the figure indicates the coordinates of the final
selected rotational center (dy, dx) and the number of galaxies included in the study.
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Figure 29: Abell 85 with radius between 0.3 and 1.5 Mpc. The title of the figure indicates the coordinates
of the final selected rotational center (dy, dx) and the number of galaxies included in the study.
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Figure 30: Abell 85 with radius between 0.5 and 2.5 Mpc. The title of the figure indicates the coordinates
of the final selected rotational center (dy, dx) and the number of galaxies included in the study.
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Cluster z nmem vrot/km · s−1 Rot. axis θ/◦ Rot. dir. probKS χ2
id/df χ2

r/df χ2
id/χ

2
r

A85 0.055180 68 228.9 20 1 0.010875 0.10101 0.8088 0.125
A168 0.044975 142 60.2 330 - 0.183787 0.1347 0.0597 2.256
A279 0.079800 66 479.9 140 2 0.015100 0.1413 1.3526 0.104
A646 0.126789 19 239.7 300 - 0.341447 0.0826 0.0907 0.911
A671 0.047440 44 80.9 330 - 0.367889 0.0481 0.0956 0.503
A690 0.080212 40 214.1 270 2 0.099250 0.0934 0.2694 0.347
A734 0.074386 14 310.9 120 - 0.102396 0.0684 0.3120 0.219
A957 0.044902 61 341.7 300 - 0.112386 0.0859 0.6095 0.141
A971 0.092674 38 321.0 320 - 0.094171 0.1715 0.1312 1.308
A1177 0.032136 38 233.5 190 1 0.040671 0.2482 1.2181 0.204
A1213 0.046824 68 83.1 340 - 0.187147 0.2408 0.1346 1.788
A1291a 0.051032 43 486.1 340 2 0.000175 0.0700 2.3912 0.029
A1291b 0.058009 39 430.8 230 1 0.105567 0.0623 0.9273 0.067
A1413 0.138170 10 306.4 210 - 0.180311 0.1357 0.1351 1.004
A1468 0.084903 26 256.1 0 1 0.002684 0.0388 0.5730 0.068
A1516 0.076980 37 147.8 340 - 0.197631 0.1648 0.2869 0.574
A1569a 0.069389 28 336.4 90 2 0.021409 0.1774 1.1275 0.157
A1569b 0.079419 27 242.5 200 1 0.026556 0.0883 0.5605 0.158
A1650 0.083056 39 190.8 290 - 0.087363 0.1524 0.2038 0.748
A1656 0.023236 482 178.8 220 1 0.042582 0.1372 0.5855 0.234
A1691 0.072370 59 463.1 190 - 0.052466 0.1696 0.7669 0.221
A1738 0.116653 24 506.9 100 2 0.011671 0.0985 0.9831 0.100
A1775a 0.065371 22 478.9 270 2 0.009365 0.1125 1.7262 0.065
A1775b 0.075206 55 165.9 240 - 0.298312 0.2228 0.2771 0.804
A1795 0.062689 84 287.5 260 - 0.062623 0.2790 0.3836 0.727
A1800 0.075949 48 278.7 190 - 0.170881 0.1562 0.4235 0.369
A1913 0.053028 102 447.5 50 1 0.000008 0.2416 2.4736 0.098
A1983 0.045365 103 67.0 60 - 0.194663 0.0699 0.1272 0.550
A1991 0.058928 69 135.3 160 - 0.368198 0.1653 0.3821 0.433
A2029 0.078864 52 324.9 310 - 0.060347 0.0465 0.4959 0.094
A2079 0.066018 60 245.8 140 - 0.198195 0.0840 0.1838 0.457
A2089 0.073433 55 168.0 250 - 0.242238 0.3096 0.1579 1.961
A2107 0.041323 110 525.2 160 2 0.000706 0.0965 1.8334 0.053
A2124 0.066183 60 138.3 240 - 0.309192 0.2136 0.0974 2.193
A2147 0.035735 223 268.9 140 2 0.000282 0.333 0.9859 0.337
A2199 0.030488 212 366.4 90 2 0.001061 0.1468 1.9951 0.074
A2244 0.099414 69 472.2 230 - 0.083436 0.0866 0.4017 0.215
A2255 0.079756 65 974.2 50 1 0.000046 0.1184 1.6329 0.073
A2356 0.118824 33 490.7 220 - 0.060384 0.1610 0.3696 0.436
A2399 0.057446 82 248.2 250 1 0.002198 0.1098 0.9272 0.118
A2428 0.083962 32 115.5 210 - 0.509875 0.1778 0.0739 2.407
A2593 0.041806 103 271.8 220 - 0.040228 0.1156 0.812 0.142
A2670 0.076136 93 450.0 250 1 0.002885 0.0938 0.9227 0.102

Table 2: The clusters with 1.5 Mpc radius. The first column is the Abell name of the cluster, the second
is the mean redshift of the members, the third is the number of members included, the fourth is the

rotation amplitude, the fifth is the angle θ of the rotation axis, the sixth is the minimum value of the
Kolmogorov-Smirnov probability, and the last three columns are χ2

id, χ2
r, χ2

id/χ
2
r respectively.

approaches better an ideal rotation curve than a random one. However, the rotation cannot be
confirmed by the Kolmogorov-Smirnov probability tests, although they are more optimistic in the
2.5 Mpc and 0.5-2.5 Mpc configurations.
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Cluster z nmem vrot/km · s−1 Rot. axis θ/◦ Rot. dir. probKS χ2
id/df χ2

r/df χ2
id/χ

2
r

A85 0.056332 155 128.4 200 - 0.195518 0.1519 0.2251 0.675
A168 0.044839 184 157.1 70 - 0.133911 0.1860 0.3245 0.573
A279 0.079889 79 407.4 130 2 0.033038 0.2042 1.1632 0.176
A646 0.126861 23 273.7 220 - 0.366184 0.1043 0.1338 0.779
A671 0.047484 57 160.3 130 - 0.218951 0.1090 0.4745 0.230
A690 0.080403 64 300.4 20 1 0.042322 0.1075 0.7917 0.136
A734 0.074449 20 265.1 130 - 0.207477 0.2286 0.5721 0.400
A957 0.044862 66 312.5 300 - 0.039013 0.0920 0.5598 0.164
A971 0.092879 41 201.2 90 - 0.297295 0.0720 0.0831 0.867
A1027 0.064109 19 465.6 310 - 0.108000 0.1776 0.3214 0.552
A1177 0.031783 51 377.3 130 2 0.000956 0.1011 2.0569 0.049
A1213 0.047149 105 236.8 170 - 0.066707 0.2268 1.0365 0.219
A1291a 0.050854 61 535.6 320 2 0.000001 0.1206 5.0179 0.024
A1291b 0.058268 55 688.5 220 1 0.002886 0.2386 3.7460 0.064
A1413 0.138392 15 221.1 100 - 0.540248 0.0653 0.1102 0.593
A1468 0.084823 28 233.6 0 1 0.018986 0.0701 0.4428 0.158
A1508 0.094757 13 501.7 120 2 0.006403 0.1752 3.1830 0.055
A1516 0.076861 55 121.2 270 - 0.165937 0.0888 0.2690 0.330
A1569a 0.070020 55 438.5 50 1 0.000835 0.0734 2.2497 0.033
A1569b 0.079366 31 240.1 190 1 0.026912 0.0943 0.8113 0.116
A1650 0.083098 56 115.7 300 - 0.087561 0.1009 0.1597 0.632
A1656 0.023499 578 51.0 230 - 0.094035 0.1349 0.1022 1.320
A1691 0.072552 77 318.6 200 - 0.06308 0.2015 0.5407 0.373
A1738 0.116645 25 399.8 80 1 0.037716 0.1480 0.5569 0.266
A1775a 0.065121 30 254.2 290 2 0.010504 0.0733 0.8811 0.083
A1775b 0.075322 77 218.3 160 - 0.046153 0.1196 0.7181 0.167
A1795 0.062594 123 216.6 160 - 0.131338 0.7245 0.2636 2.749
A1800 0.075375 85 213.2 320 - 0.226402 0.0771 0.2223 0.347
A1913 0.052850 140 481.8 50 1 0.000017 0.5962 4.7843 0.125
A1983 0.045326 146 42.4 90 - 0.073739 0.1316 0.0821 1.602
A1991 0.058844 92 77.4 220 - 0.363569 0.2011 0.1705 1.179
A2029 0.077224 145 252.8 50 - 0.052519 0.1681 0.4343 0.387
A2079 0.065881 93 138.7 290 - 0.408894 0.1046 0.1959 0.534
A2089 0.073709 76 225.0 190 1 0.003650 0.0646 0.5334 0.121
A2107 0.041771 135 224.6 170 2 0.025348 0.1201 0.7864 0.153
A2124 0.066328 82 382.4 30 - 0.087591 0.0778 0.7548 0.103
A2147 0.036179 388 255.8 250 1 0.000876 0.1616 1.3653 0.118
A2199 0.030602 320 381.8 70 1 0.000005 0.2251 3.1694 0.071
A2244 0.099290 84 417.2 280 - 0.019161 0.2325 0.3405 0.683
A2255 0.079580 79 335.8 60 - 0.095175 0.1520 0.3140 0.484
A2356 0.119131 47 332.9 230 - 0.181572 0.2979 0.3832 0.777
A2399 0.057539 103 281.7 240 1 0.000231 0.1864 1.3798 0.135
A2428 0.083963 44 169.7 140 - 0.259234 0.2307 0.2647 0.872
A2593 0.041807 152 153.4 190 1 0.041332 0.1398 1.0642 0.131
A2670 0.076027 120 293.5 250 1 0.018442 0.1965 0.7958 0.247

Table 3: The clusters with 2.5 Mpc radius. The first column is the Abell name of the cluster, the second
is the mean redshift of the members, the third is the number of members included, the fourth is the

rotation amplitude, the fifth is the angle θ of the rotation axis, the sixth is the minimum value of the
Kolmogorov-Smirnov probability, and the last three columns are χ2

id, χ2
r, χ2

id/χ
2
r respectively.

Abell 734
Abell 734 has a redshift of 0.0719 and very few members (10-20 depending on the configuration).
Its small richness causes large errorbars to show up in the rotation diagrams and, therefore, not
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Cluster z nmem vrot/km · s−1 Rot. axis θ/◦ Rot. dir. probKS χ2
id/df χ2

r/df χ2
id/χ

2
r

A85 0.055201 60 221.8 10 1 0.014495 0.0910 0.8010 0.114
A168 0.044930 114 76.7 320 - 0.168188 0.1471 0.1018 1.445
A279 0.079756 45 512.0 140 2 0.014518 0.2229 1.6295 0.137
A646 0.126666 17 346.5 300 - 0.278951 0.0808 0.1597 0.506
A671 0.047613 30 189.2 80 - 0.083635 0.1181 0.3286 0.359
A690 0.080331 30 192.0 270 2 0.342223 0.0860 0.1267 0.679
A734 0.074198 12 195.4 120 - 0.378833 0.1227 0.1450 0.846
A957 0.045270 38 423.8 310 - 0.156537 0.0699 0.7667 0.091
A971 0.092716 26 490.8 320 - 0.017970 0.2527 0.3229 0.783
A1177 0.032176 30 344.1 220 1 0.020980 0.1144 1.6668 0.069
A1213 0.046735 56 86.4 260 - 0.141352 0.1885 0.0927 2.032
A1291a 0.051058 35 482.2 340 2 0.000965 0.0610 1.8240 0.033
A1291b 0.058009 28 509.5 230 1 0.116581 0.0684 1.0219 0.067
A1413 0.138057 9 372.8 210 - 0.198367 0.1236 0.2012 0.614
A1468 0.084814 23 231.5 0 1 0.004049 0.0773 0.4204 0.184
A1516 0.076957 33 154.9 0 - 0.126991 0.1875 0.288 0.651
A1569a 0.069416 25 384.9 90 2 0.039843 0.1892 1.2179 0.155
A1569b 0.079176 23 174.1 90 2 0.251732 0.0749 0.3496 0.214
A1650 0.083092 34 190.7 290 - 0.091115 0.1728 0.2233 0.774
A1656 0.023322 394 226.2 220 1 0.029947 0.1544 0.686 0.225
A1691 0.072350 51 411.4 190 - 0.126964 0.2225 0.4937 0.451
A1738 0.116644 20 284.7 110 2 0.075909 0.0672 0.5191 0.129
A1775a 0.065371 22 478.9 270 2 0.009365 0.1125 1.7262 0.065
A1775b 0.074983 41 153.7 170 - 0.378213 0.1087 0.1741 0.624
A1795 0.062784 72 250.6 260 - 0.128078 0.2860 0.2035 1.405
A1800 0.076037 40 224.5 280 - 0.335052 0.1072 0.2294 0.467
A1913 0.053043 97 468.9 50 1 0.000008 0.1803 2.5935 0.070
A1983 0.045370 92 193.2 60 1 0.007554 0.1238 0.9597 0.129
A1991 0.058883 59 127.0 210 - 0.351775 0.1696 0.2921 0.580
A2029 0.078821 47 221.1 330 - 0.262640 0.1101 0.3984 0.276
A2079 0.066021 56 284.2 140 - 0.155385 0.0775 0.2447 0.317
A2089 0.073592 46 229.3 180 1 0.089105 0.1268 0.2754 0.460
A2107 0.041277 82 491.5 160 2 0.000176 0.0550 1.6297 0.034
A2124 0.066237 49 146.3 110 - 0.201610 0.1918 0.0658 2.914
A2147 0.035739 189 316.5 130 2 0.000118 0.306 1.2406 0.246
A2199 0.030482 179 424.4 90 2 0.000210 0.0804 2.1073 0.038
A2244 0.099523 62 349.1 240 - 0.163202 0.2010 0.2538 0.792
A2255 0.080032 53 860.9 60 1 0.000604 0.1185 1.5244 0.078
A2356 0.119265 28 847.1 210 - 0.028307 0.2016 0.8918 0.226
A2399 0.057434 68 275.6 250 1 0.003979 0.1177 0.9529 0.124
A2428 0.084034 27 202.8 130 - 0.372538 0.1318 0.2073 0.636
A2593 0.041886 85 343.7 220 1 0.008922 0.1181 1.3691 0.086
A2670 0.076105 82 495.6 250 1 0.006278 0.0978 1.2326 0.079

Table 4: The clusters in the 0.3-1.5 Mpc radius circular ring. The first column is the Abell name of the
cluster, the second is the mean redshift of the members, the third is the number of members included,

the fourth is the rotation amplitude, the fifth is the angle θ of the rotation axis, the sixth is the
minimum value of the Kolmogorov-Smirnov probability, and the last three columns are χ2

id, χ2
r, χ2

id/χ
2
r

respectively.

allowing to detect any possible rotation signal in any configuration. The stronger signal is that in
the 2.5 Mpc configuration, presented in the appendix, which could correspond to a rotation signal
confirmed by table 3.
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Cluster z nmem vrot/km · s−1 Rot. axis θ/◦ Rot. dir. probKS χ2
id/df χ2

r/df χ2
id/χ

2
r

A85 0.056264 127 126.3 120 - 0.297261 0.1190 0.2449 0.486
A168 0.044725 139 86.1 10 - 0.335141 0.1499 0.1444 1.038
A279 0.079957 54 411.5 130 2 0.054366 0.1186 1.0160 0.117
A646 0.126678 20 216.7 220 - 0.324131 0.0990 0.0967 1.024
A671 0.047673 38 111.8 340 - 0.146176 0.1367 0.2669 0.512
A690 0.080588 51 219.5 20 1 0.204829 0.0538 0.3585 0.150
A734 0.074331 18 162.7 240 - 0.545283 0.0783 0.2184 0.359
A957 0.045527 29 200.5 160 - 0.236582 0.1212 0.0753 1.611
A971 0.093290 24 604.8 330 - 0.086413 0.1021 0.3301 0.309
A1027 0.064109 19 465.6 310 - 0.108000 0.1776 0.3214 0.552
A1177 0.031753 38 481.0 120 2 0.000249 0.1419 2.7653 0.051
A1213 0.046992 74 169.8 200 - 0.082983 0.1812 0.5238 0.346
A1291a 0.050852 49 613.9 330 2 0.000006 0.1436 4.2446 0.034
A1291b 0.058836 34 790.0 190 1 0.001976 0.0689 3.0190 0.023
A1413 0.138537 12 146.7 110 - 0.338987 0.0354 0.0277 1.279
A1468 0.084831 18 569.3 0 1 0.002913 0.0768 1.6356 0.047
A1508 0.094757 13 501.7 120 2 0.006403 0.1752 3.1830 0.055
A1516 0.076798 48 98.8 270 - 0.487337 0.0972 0.1420 0.685
A1569a 0.070131 41 541.2 40 1 0.000281 0.0954 2.6523 0.036
A1569b 0.079181 24 134.0 120 2 0.236963 0.1187 0.2460 0.483
A1650 0.083125 46 251.4 280 - 0.035635 0.1318 0.7974 0.165
A1656 0.023254 519 178.3 160 2 0.060236 0.1208 0.8365 0.144
A1691 0.072680 56 303.4 190 - 0.143088 0.1230 0.3729 0.330
A1738 0.116505 16 247.0 130 2 0.046532 0.0157 0.4243 0.037
A1775a 0.065136 29 263.9 290 2 0.018096 0.0779 0.7264 0.107
A1775b 0.075225 57 356.5 150 - 0.003410 0.2339 1.5031 0.156
A1795 0.062643 101 384.8 150 - 0.031193 0.8605 0.5932 1.451
A1800 0.075223 71 242.2 320 - 0.200303 0.1962 0.2242 0.875
A1913 0.052774 119 491.4 50 1 0.000031 0.5750 4.5403 0.127
A1983 0.045280 121 134.9 50 - 0.057424 0.1187 0.5156 0.230
A1991 0.058729 77 91.5 130 - 0.345015 0.2355 0.0849 2.776
A2029 0.077281 120 378.4 60 - 0.006981 0.1236 0.8985 0.138
A2079 0.065776 82 118.9 150 - 0.409541 0.1764 0.0935 1.886
A2089 0.073732 64 317.8 190 1 0.000406 0.1335 1.3009 0.103
A2107 0.041681 97 236.1 150 2 0.053652 0.1556 0.5396 0.288
A2124 0.066428 61 318.1 40 - 0.068489 0.1855 0.4856 0.382
A2147 0.036252 328 317.2 240 1 0.000258 0.1698 1.8690 0.091
A2199 0.030610 264 435.9 70 1 0.000005 0.1514 4.0372 0.037
A2244 0.099076 63 431.3 300 - 0.005910 0.1845 0.4238 0.435
A2255 0.079132 46 277.4 280 - 0.177970 0.1316 0.1593 0.826
A2356 0.119494 38 294.6 330 - 0.389655 0.1457 0.3187 0.457
A2399 0.057433 80 179.7 260 1 0.022628 0.1574 0.4689 0.336
A2428 0.084030 34 161.3 140 - 0.363970 0.1023 0.1293 0.791
A2593 0.041838 127 162.8 190 1 0.079246 0.1772 1.2495 0.142
A2670 0.075962 94 292.5 280 2 0.013054 0.1860 0.6419 0.290

Table 5: The clusters in the 0.5-2.5 Mpc radius circular ring. The first column is the Abell name of the
cluster, the second is the mean redshift of the members, the third is the number of members included,

the fourth is the rotation amplitude, the fifth is the angle θ of the rotation axis, the sixth is the
minimum value of the Kolmogorov-Smirnov probability, and the last three columns are χ2

id, χ2
r, χ2

id/χ
2
r

respectively.

Abell 1027
Abell 1027, with NASA-NED redshift 0.069001 was only studied in the configuration 2.5 Mpc and
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0.5-2.5 Mpc, due to the very small number of members on the rest two configurations (below 5).
The large errorbars do not allow the detection of a possible rotation signal.

Abell 1177
Abell 1177 has a NASA-NED redshift 0.0316. It has approximately 40-50 members. We present
the 1.5 Mpc and 2.5 Mpc configurations. We can see a rotation signal in the 1.5 Mpc configuration
when looking the rotation diagram and table 2. The Kolmogorov-Smirnov probability diagram does
not show a certain rotation signal. This signal is shown by all means in 2.5 Mpc configuration.
Abell 1177 is a rotating cluster candidate.

Abell 1413
Abell 1413 has NASA-NED redshift 0.1427 and its spherical X-ray isophotals show a virialised
cluster. It has minimal number of members and rotation signal cannot be detected as shown in
the rotation diagram.

Abell 1468
Abell 1468 has 0.0844 NASA-NED redshift. In all configurations the rotation diagram corresponds
to a rotating cluster’s rotation diagram. This rotation is confirmed by the values of χ2

id/χ
2
r and

Kolmogorov-Smirnov probability of tables 2, 3, 4 and 5 that are consistent with rotation. Conse-
quently, Abell 1468 is a rotating cluster. We also study another angular configuration, the circular
area within 1 Mpc radius, in case the cluster radius is smaller and rotation would be detected.
However, the rotation signal is weaker in this configuration, which means that outer galaxies in
this cluster also have rotation velocity distribution (the results table is shown at the end of the
section and the diagram is in the appendix).

Abell 1508
Abell 1508 has an initial redshift 0.0966 and a minimal number of only 13 galaxy-members and
this is the reason it has been studied only in the 2.5 Mpc and 0.5-2.5 Mpc configurations. In the
appendix we present the rotation diagram of the 2.5 Mpc configuration, which presents a rotation
signal, which can be confirmed by the values of χ2

id, χ
2
r and χ2

id/χ
2
r of table 3. The same results

apply also for the 0.5-2.5 Mpc configuration. However, we cannot draw a safe conclusion about
the rotation or not of Abell 1508, since the rotation signal could easily be produced by two groups
infalling in their common center of mass from different directions along the line of sight. These
substructures can be seen in the spatial distribution of the galaxies in the appendix. This signal
would be verified if we possessed more data of galaxy-members.

Abell 1738
Abell 1738 has NASA-NED redshift 0.1154 and contains approximately 25 members. Again, the
small number of galaxy-members does not help us to make safe conclusions about its rotation. It
presents weak rotation signal in all configurations (the stronger is in the 1.5 Mpc configuration)
which is confirmed by tables 2, 3, 4 and 5.

Abell 1795
Abell 1795 has NASA-NED redshift 0.062476 and is a rather rich cluster. Its X-ray isophotals are
spherical as expected for a Bautz-Morgan I type cluster. No rotation signal or other indications of
rotation have been found in any of the four angular configurations.

Abell 1991
Abell 1991 has initial redshift 0.0587 and is also a rich cluster. No rotational signal in any configu-
ration seems to be confirmed, neither by the Kolmogorov-Smirnov probability diagram nor by the
χ2
id, χ

2
r and χ2

id/χ
2
r values.

Abell 2029
Abell 2029 has NASA-NED redshift 0.0773 and is also a rich cluster. It is a virialised cluster, as
seen from its X-ray isophotals. In the 1.5 Mpc and 0.5-2.5 Mpc configurations a rotation signal can
be detected, which is consistent with the value of χ2

id/χ
2
r of tables 2 and 5. In the other two angular

configurations a weaker signal is detected. We study the cluster also in the 1 Mpc configuration,
because it seems that the inner area of the cluster is denser and this could be its radius. This case
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is confirmed, and the rotation signal as well as the indications of rotation are stronger for this rich
cluster (the results table is shown at the end of the section and the diagram is in the appendix).

Abell 2107
Abell 2107 is another rich cluster with NASA-NED redshift 0.0411. There is a clear rotation signal
in both 1.5 Mpc and 0.3-1.5 Mpc configuration, which is obvious from the rotation diagram, the
Kolmogorov-Smirnov probability diagram and the χ2

id/χ
2
r values of tables 2 and 4. This signal is

weakened in 2.5 Mpc and 0.5-2.5 Mpc configurations as happened for the Abell 85. We assume
that the outer galaxies have a different velocity distribution, not virialised, and probably they are
infalling.

Abell 2199
Abell 2199 is a virialised and very rich cluster; contains hundreds of galaxies detected in the optical
band of the SDSS spectroscopic survey. It has NASA-NED redshift 0.030151. It shows great
indications of rotation in every parameter we use to deduct it and in every angular configuration.
The two peaks in its rotation diagram could mean that the rotation signal is caused by the presence
of substructures. Abell 2199 is a rotating cluster candidate.

2.5.2 Bautz-Morgan type I-II clusters

Bautz-Morgan type I-II clusters are intermediate cases between type I and II clusters, as we have
already mentioned.

Abell 279
Abell 279 has NASA-NED redshift 0.0797. This cluster presents rotation signal and has χ2

id/χ
2
r

values that are consistent with rotation in all configurations. This cluster is a rotating cluster.

Abell 957
Abell 957 has redshift 0.0436. Its rotation diagrams in 1.5 Mpc, 2.5 Mpc and 0.3-1.5 Mpc configu-
rations present weak rotation signal and weak indications of rotation have been found in tables 2,
3 and 4. However, the rotation signal along with the indications is completely lost in the 0.5-2.5
Mpc configuration. This would mean that the intermediate-distance galaxy members, in 0.3-0.5
Mpc distance from the cluster center, contaminate the rotation signal.

Abell 1650
Abell 1650 is a medium richness cluster in our study and has NASA-NED redshift 0.083838.
Rotation mode cannot be identified in three of the four angular configurations. In the 0.5-2.5 Mpc
configuration, a weak rotation signal is detected and also weak indications of rotation are found in
table 5. On the one hand, the cluster is rotating and the inner members contaminate the rotation
signal due to projection effects; on the other hand, this signal is caused by two substructures moving
at an angle along the line of sight at distance 0.5-2.5 Mpc from the cluster center.

Abell 2244
Abell 2244 is cluster with NASA-NED redshift 0.0968. In the 1.5 Mpc and 0.3-1.5 Mpc config-
urations its velocity (redshift) distribution is sparse and seems to consist of substructures; this
possibility is amplified due to the existence of multiple peaks in the rotation diagram of all the
configurations. There are indications of rotation and a weak rotation signal in 1.5 Mpc and 0.5-2.5
Mpc configurations, but they are not enough to conclude in the rotation of the cluster.

Abell 2670
Abell 2670 is a rich cluster with 0.076186 NASA-NED redshift. It displays strong rotation signal and
indications of rotation in χ2

id/χ
2
r values in 1.5 Mpc and 0.3-1.5 Mpc configurations. In the 2.5 Mpc

and 0.5-2.5 Mpc configurations, mupliple peaks appear in the rotation diagrams and Kolmogorov-
Smirnov probability diagrams, which show that maybe substructures exist in the outer region of
the cluster that also contaminate its rotation signal. We conclude that Abell 2670 is a rotating
cluster.
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2.5.3 Bautz-Morgan type II clusters

Bautz-Morgan type II clusters are the ones that have their brightest galaxy being intermediate
between cD and normal giant ellipticals.

Abell 971
Abell 971 has NASA-NED redshift 0.0929 and has ∼ 40 galaxy-members. Rotation signal cannot
be extracted from the rotation diagram of none of the angular configurations and there are no
indications of rotation in tables 2, 3, 4 and 5.

Abell 1656
Abell 1656 is the richest cluster in our study. It has NASA-NED redshift 0.0231. It presents weak
rotation signal and weak indications of rotation in the 1.5 Mpc, 2.5Mpc and 0.3-1.5 Mpc configu-
rations. The rotational mode is lost in the 2.5 Mpc configuration, probably due to contaminations
in the rotation velocity distribution of the outer and inner members. The cluster is studied also
in the 1 Mpc configuration, where the cluster is denser, and a greater rotation signal was found,
confirmed by the indications of rotation (the results table is shown at the end of the section and
the diagram is in the appendix). Abell 1656 is a rotating cluster.

Abell 1691
Abell 1691 has NASA-NED redshift 0.072093. There are weak indications of rotation and weak
rotation signal in all configurations, but they are not supported by the Kolmogorov-Smirnov prob-
ability diagram.

Abell 1800
Abell 1800 has NASA-NED redshift 0.0755. In 1.5 Mpc and 2.5 Mpc angular configurations, there
is weak rotation signal that is lost in the other two configuration. It is possible that the inner
galaxies contaminate the signal due to projection effects.

Abell 2089
Abell 2089 is a cluster with NASA-NED redshift 0.07313. In the 2.5 Mpc 0.5-2.5 Mpc configurations
a strong rotation signal is detected confirmed by the indications of rotation in tables 3 and 5. In
the 0.3-1.5 Mpc configuration the signal is weakened and in the 1.5 Mpc is completely lost. It is
possible that in the inner region of the cluster velocity-projections along the line of sight weaken
the rotation signal. Abell 2089 is a rotating cluster candidate.

Abell 2428
Abell 2428 is not a rich cluster with NASA-NED redshift 0.0968. No indications of rotation and
no detectable rotation signal exist in any angular configuration.

Abell 2593
Abell 2593 is a rich cluster with NASA-NED redshift 0.0413. It presents indications of rotation
in all configurations mainly in the χ2

id/χ
2
r values. In the 0.3-1.5 Mpc configuration especially, the

rotation diagram as well as the Kolmogorov-Smirnov probability diagram there is the strongest
evidence of rotation mode (see table 4). Abell 2593 is a rotating cluster.

2.5.4 Bautz-Morgan type II-III clusters

Bautz-Morgan type II-III clusters are intermediate cases between Bautz-Morgan type II and Bautz-
Morgan type III clusters.

Abell 168
Abell 168 is at NASA-NED redshift 0.045. It presents no indications of rotation in none of the four
angular configurations. The χ2 tests show that its rotation curve resembles more a random than
an ideal one.

Abell 1516
Abell 1516 is at NASA-NED redshift 0.0769. It does not show any strong rotation mode or any
other indications of rotation.
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Abell 2079
Abell 2079 is at 0.068984 NASA-NED redshift. It also does not show indications of rotation in
none of the angular configurations. The final rotation diagram of the 1.5 Mpc configuration is
shown in the diagram’s appendix.

Abell 2255
Abell 2255 is not a rich cluster, with NASA-NED redshift 0.0806. It provides a very strong
rotation signal (approximately 1000 km/s rotation amplitude) both in 1.5 Mpc and 0.3-1.5 Mpc
configurations, which is confirmed by the χ2 tests and the Kolmogorov-Smirnov probability test.
This signal is weakened and lost, as for Abell 85, in the 2.5 Mpc and 0.5-2.5 Mpc configurations.
Probably the outer members have different velocity distribution profiles and they are not yet
virialised. Abell 2255 is a strong candidate for a rotating cluster with a radius ∼ 1.5 Mpc.

Abell 2356
Abell 2356 is at NASA-NED redshift 0.1161. It is a distant cluster with few members that cause
large errorbars to show up in the rotation diagrams. The weak rotation signal cannot be confirmed
by the weak indications of rotation in all configurations and, therefore, we cannot safely conclude
in the rotation or not of Abell 2356.

2.5.5 Bautz-Morgan type III clusters

Bautz-Morgan type III clusters have no members significantly brighter than the general bright
population of galaxy members.

Abell 646
Abell 646 is at NASA-NED redshift 0.1292. It has few galaxy-members with available redshift on
SDSS, probably because of the fact that is a distant cluster. As a result, a rotation mode cannot
be detected in none of the angular configurations.

Abell 1213
Abell 1213 is at NASA-NED redshift 0.0469. It does not show indications of rotation in the 1.5
Mpc and 0.3-1.5 Mpc configurations. However, a rotation signal as well as indications of rotation
appear in the 2.5 Mpc and 0.5-2.5 Mpc configurations. The outer galaxy-members seem to have a
rotation velocity distribution , in comparison with the inner ones.

Abell 1913
Abell 1913 is a rather rich cluster with NASA-NED redshift 0.0528. It appears to be a rotating
cluster in all angular configurations, as a fact that is based on all the parameters that we use to
deduce rotation.

Abell 1983
Abell 1983 is another rich cluster of the study with NASA-NED redshift 0.0436. It does not provide
any indications of rotation in three of the angular configurations (1.5 Mpc, 2.5 Mpc and 0.5-2.5
Mpc). The χ2 tests indicate that the velocity distribution of the galaxy-members is more likely
random than ideally rotating in those configurations. However, a weak rotation signal and weak
indications of rotation are presented in the 0.3-1.5 Mpc configuration.

Abell 2147
Abell 2147 is a cluster containing hundreds of galaxies at NASA-NED redshift 0.035. It presents
indications of rotation by all means (rotation diagram, Kolmogorov-Smirnov probability diagram,
χ2 test values) in all configurations. It was also studied in the 1 Mpc configuration, where a
stronger rotation signal has been found (the results table is shown at the end of the section and
the diagram is in the appendix). Abell 2147 is a rotating cluster candidate.

Abell 2399
Abell 2399 is at NASA-NED redshift 0.0579. It also shows strong rotation indications in all
configurations and in all the parameters we use. The signal is a bit weakened in the 0.5-2.5 Mpc
configuration, possibly because of the different velocity distribution of some of the outer members.
The cluster has been studied in the 1 Mpc configuration, where we could detect a larger density in
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the spatial distribution diagram. We have detected a stronger rotation signal and more prominent
indications of rotation (the results table is shown at the end of the section and the diagram is in
the appendix). Abell 2399 is a rotating cluster candidate.

2.5.6 Clusters containing substructures

In this section we investigate clusters whose velocity distribution show substructures along the line
of sight. Substructure with the lowest mean redshift will be called a, the one with the next larger mean
redshift will be called b and so on.

Abell 671
Abell 671 is a Bautz-Morgan type II-II cluster at NASA-NED redshift 0.0502. In our velocity
distribution diagram (figure 88) it appears to consist of three substructures along the line of sight,
at slightly different redshifts. Because of the small number of members of the cluster, we only
can study the rotation of the largest and more close substructure, which has approximately 50
members. This substructure does not show clear indications of rotation in any of the parameters
we use. We would expect that the substructures had an amount of angular momentum that would
lead to rotation, but this does not seem to be the case in Abell 671.

Abell 1291
Abell 1291 is a Bautz-Morgan type II cluster at NASA-NED redshift 0.0527. This cluster shows
strong indications of substructures in the velocity distribution diagram. When we study the cluster
as one structure, it does not present rotation signal (2.5 Mpc configuration, figure 89). As a next
step, we study the two substructures of the cluster in all configurations, and we observe a rotation
mode in all of them and in both the substructure a and substructure b of the cluster. We show
the diagrams of the 2.5 Mpc configuration; figure 90 and 91. The two substructures seem to have
opposite directions of angular momentum - the one is rotating clockwise while the other rotates
counterclockwise. Finally, we study the case that substructure b consists of two substructures; we
study the rotation only of one of them (figure 92) - the second one is very small. We find that it
presents weaker indications of rotation. We assume that the two large substructures of the cluster
are two different groups in a very small distance, which have undergone a merge and now have
opposite angular momentum.

Lauer (1988) [49] has also found two interacting substructures in Abell 1291 and an additional
low-luminosity elliptical galaxy that does not interact with the other substructures. Blakeslee &
Tonry (1992) [14] have stated that Abell 1291 has undergone a merger and Ramella et al. (2007)
[74] have also detected its substructures.

Abell 1569
Abell 1569 is a Bautz-Morgan type II cluster at NASA-NED redshift 0.0735. The rotation diagram
of the cluster is very noisy and a weak rotation signal is detected. The velocity distribution
shows two main substructures that we study individually. Substructure a presents a prominent
rotation signal in all configurations. Substructure b presents a weaker signal, mainly detected in
1.5 Mpc and 2.5 Mpc configurations, which means that inner-member non-rotational velocities that
are projected on the plane of the sky contaminate the rotation signal. We also study the case of
substructure a in the 2.5 Mpc configuration consisting of two smaller substructures. We study them
also individually, but we cannot detect a rotation mode with certainty, as their galaxy-members
are few. There is a possibility that the rotation signal of substructure a is not due to rotation, but
due to the existence of the substructures.

Abell 1775
Abell 1775 is a Bautz-Morgan type I cluster at NASA-NED redshift 0.0717. When we study this
cluster individually it shows an very strong rotation signal, confirmed by all parameters we use.
This rotation signal is not due to rotation velocity distribution of the galaxies, but due to the
existence of substructures. Obviously, when looking at the velocity distribution, it consists of
two substructures that we study individually. Substructure a also presents rotation mode in all
configurations, but, on the contrary, substructure b presents strong rotation signal only in 2.5 Mpc
and 0.5-2.5 Mpc configurations.
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Abell 2124
Abell 2124 is a Bautz-Morgan type I cluster at NASA-NED redshift 0.065625. This cluster presents
a weak rotation signal in the 0.5-2.5 Mpc and 2.5 Mpc configurations, and weak indications of
rotation (the Kolmogorov-Smirnov test and the χ2 tests). In these two configurations it appears
to be consisting of two substructures, which we study; there is the case that its rotation signal is
due to those substructures. None of them though presents strong indications of rotation.

Cluster z nmem vrot/km · s−1 Rot. axis θ/◦ Rot. dir. probKS χ2
id/df χ2

r/df χ2
id/χ

2
r

A1468 0.084888 21 170.5 0. 1 0.062063 0.0899 0.2199 0.409
A2029 0.078977 31 534.5 320. 1 0.003741 0.0790 0.9737 0.081
A1656 0.023207 326 247.9 220. 1 0.003243 0.0644 0.8352 0.077
A2147 0.035760 128 423.3 160. 2 0.002562 0.0799 1.4618 0.055
A2399 0.057582 55 421.1 240. 1 0.000944 0.1187 1.7087 0.069

Table 6: The clusters that were also studied in the 1 Mpc radius circular area. The first column is the
Abell name of the cluster, the second is the mean redshift of the members, the third is the number of

members included, the fourth is the rotation amplitude, the fifth is the angle θ of the rotation axis, the
sixth is the minimum value of the Kolmogorov-Smirnov probability, and the last three columns are χ2

id,
χ2
r, χ2

id/χ
2
r respectively.

2.6 Basic results

2.6.1 Fraction of rotating clusters

In this section we present some basic statistics of the results of our study. In the 1.5 Mpc configuration
we have found that 13 out of the 43 clusters have strong indications of rotation (probKS . 0.01, χ2

id < 1,
χ2
r &> and χ2

id/χ
2
r � 1), which is the ∼30% of our sample. 11 of them presented strong indications

of rotation both in the 1.5 Mpc and 0.3-1.5 Mpc configurations (Abell 279, Abell 1291a, Abell 1738,
Abell 1775a, Abell 1913, Abell 2107, Abell 2147, Abell 2199, Abell 2255, Abell 2399, Abell 2670), one
of them presented strong indications of rotation only in the 0.3-1.5 Mpc configuration (Abell 1983) and
one of them presented weak indications of rotation (probKS . 0.04, χ2

id < 1 and χ2
id/χ

2
r < 0.4) on the

1.5 Mpc configuration and strong indications of rotation in the 0.3-1.5 Mpc configuration (Abell 2593).
Additionally, 6 more clusters presented weak indications of rotation in the 1.5 Mpc configuration (Abell
85, Abell 1177, Abell 1468, Abell 1569a, Abell 1569b, Abell 1656) and overall 19 out of the 43 clusters
presented at least weak indications of rotation either in the 1.5 Mpc configuration or the 0.3-1.5 Mpc
configuration. This is ∼44% of the sample.

We have found possible substructures in 3 of the clusters mentioned above (Abel 2199, Abell 2670,
Abell 1569a). If those substructures actually exist, then our previous fractions are a little changed. We
have 11 out of 43 clusters rotating (∼25% of the sample) and 16 out of 43 clusters at least possibly
rotating in the 1.5 Mpc or 0.3-1.5 Mpc configuration (∼37% of the sample). These fractions are also
shown in the table below.

1.5 Mpc and 0.3-1.5 Mpc configurations
Rotating clusters Possibly rotating clusters

No substructures ∼30% ∼44%
Clusters with substructures ∼25% ∼37%

In the 2.5 Mpc we have found 9 out of the 45 cluster that present strong indications of rotation
(Abell 1177, Abell 1291a, Abell 1291b, Abell 1508, Abell 1569a, Abell 1913, Abell 2147, Abell 2199,
Abell 2399), which is the 20% of the sample. Additionally, 10 more clusters present weaker indications
or rotation (Abell 279, Abell 1775a, Abell 2593, Abell 690, Abell 1468, Abell 1569b, Abell 1738, Abell
2089, Abell 2107, Abell 2670) and there is not a cluster that presents indications of rotation in the
0.5-2.5 Mpc configuration but not in the 2.5 Mpc one. Overall, 19 out of the 45 clusters of the sample
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are rotating either in the 2.5 Mpc or the 0.5-2.5 Mpc configuration, which is the ∼42% of our cluster
sample.

There is the possibility that 5 of the clusters mentioned above (Abell 2199, Abell 1508, Abell 1291b,
Abell 1569a, Abell 2670) may contain substructures and their rotation signal may not be realistic. Our
statistics would be affected in this case. If all the clusters that are possible to contain substructures do
contain, then 5 out of 45 clusters are rotating (∼11% of the cluster-sample) and 14 out of the 45 clusters,
the ∼31% of the sample, are possibly rotating. These results are summarized in the table.

2.5 Mpc and 0.5-2.5 Mpc configurations
Rotating clusters Possibly rotating clusters

No substructures ∼20% ∼42%
Clusters with substructures ∼11% ∼31%

Taking into account the rotation in all configurations, 15 out of 45 clusters are rotating (∼33% of the
sample) and 8 additional clusters are possible to rotate (overall ∼50% of the sample). If the substructures
detected actually exist, then 18 out of the 45 clusters are certainly or possibly rotating, the ∼40% of our
sample.

There are 3 cases where the rotation signal is strengthened when moving from the 1.5 Mpc config-
uration to the 2.5 Mpc configuration (Abell 1177, Abell 2399, Abell 1291b) and there are also 6 cases
where the exact opposite case occurs (Abell 279, Abell 1738, Abell 1775a, Abell 2107, Abell 2255, Abell
2670). In the former case we would conclude that the outer parts of the cluster are rotating and this
rotation was probably caused by recent mergers of clusters. In the latter case, one would conclude that
rotation is due to initial angular momentum of clusters, attributed during their formation and preserved
until their virialisation. It seems that the latter case is more likely to occur. However, due to the small
statistical sample of these events, we cannot conclude for the origin of rotation of clusters.

Finally, we do not find a preferable clockwise or counterclockwise direction of rotation among the
rotating or possibly rotating clusters, as we expected.

2.6.2 Special cases

There were some cases, where the 0-1 Mpc angular configuration was also studied. This occurred
for clusters that we had visual evidence their radius extended up to 1 Mpc. They either presented small
vacuum areas in their spatial distribution of galaxies or they had a denser core. Almost all of them
presented greater indications of rotation in this configuration, which confirms our speculation (Abell
2029, Abell 1656, Abell 2147, Abell 2399). The one that did not present more prominent rotation signal
consisted of a small number of members (Abell 1468).

2.7 Correlations between rotation parameters and virial index

We try to find correlations between several observational properties and indications of rotation of the
clusters. We use the Spearman Rank-Order Correlation Coefficient test (Numerical Recipes in Fortran
77, [73], p.635). In the next, rs is the correlation coefficient between two values and probrs the statistical
significance of this result. Positive correlation coefficient means positive correlation, while negative
correlation coefficient means anti-correlation; zero value means the two objects are not correlated. A
small value of probrs indicates a significant correlation or anti-correlation.

First of all, we find that the number of galaxies of a cluster is correlated with the number of its bright
galaxies; the larger the number of galaxies, the larger the number of bright galaxies. This confirms the
fact that rich clusters have a large number of bright galaxies. We also find that the number of galaxies
of the clusters is anti-correlated with their redshift, as we expected. As we observe at more distant areas
in the Universe, we observe less galaxies and, therefore, less rich clusters. These results come up in all
configurations; those for 1.5 Mpc and 2.5 Mpc configurations are shown in the table below and in figure
31 for the 2.5 Mpc configuration.

We would also like to confirm that the Bautz-Morgan type of the clusters is correlated with their
X-ray isophotals’ shapes. This means that the virial state of the cluster is reflected in its X-ray emission
shape; a virialised cluster should have spherical isophotals. This is confirmed in all configurations and
the results of the 1.5 Mpc and 2.5 Mpc configurations are shown.
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Angular config. rs probrs
Number of bright galaxies - Number of galaxies 0-1.5 0.512 0.00271688
Number of bright galaxies - Number of galaxies 0-2.5 0.644 0.00002289

Redshift - Number of galaxies 0-1.5 -0.561 0.00082995
Redshift - Number of galaxies 0-2.5 -0.559 0.00038962

Figure 31: Left: Number of galaxies as a function of cluster redshift. Right: Number of galaxies as a
function of the number of bright galaxies. Both are shown for the 2.5 Mpc configuration.

Angular config. rs probrs
X-ray isophotals - Bautz-Morgan type 0-1.5 0.426 0.02664495
X-ray isophotals - Bautz-Morgan type 0-2.5 0.459 0.01064785

We are now checking the correlation between the indications of rotation we use to deduct rotation. We
find that the value of the Kolmogorov-Smirnov probability, the value of the fraction of χ2 minimization
test between the ideal and real rotation diagrams to the χ2 minimization test between the random
and real rotation diagrams and the optical identification of rotation from the rotation diagram are all
correlated with each other in all angular configurations. As a result, all three can deduct rotation;
on condition that one of them shows rotational signal, the other two will also show rotational signal.
The results for the 1.5 Mpc and 2.5 Mpc configurations are shown in the table below; for the 2.5 Mpc
configuration also look at figure 32.

Angular config. rs probrs
Kolmogorov-Smirnov probability - Fraction of χ2 0-1.5 0.719 0.00000238
Kolmogorov-Smirnov probability - Fraction of χ2 0-2.5 0.826 0.00000000

Kolmogorov-Smirnov probability - Optical identification 0-1.5 0.790 0.00000005
Kolmogorov-Smirnov probability - Optical identification 0-2.5 0.833 0.00000000

Fraction of χ2 - Optical identification 0-1.5 0.784 0.00000007
Fraction of χ2 - Optical identification 0-2.5 0.860 0.00000000

We have found significant correlations between the rotation amplitude and the three indications of
rotation. The larger the rotation amplitude, the stronger indications of rotation appear on the cluster.
These results are valid in all configurations, but those for the 1.5 Mpc and 2.5 Mpc configurations are
shown; some of them are plotted in figure 32.

In the 2.5 Mpc configuration we have found correlation between the X-ray isophotal shape of the
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Angular config. rs probrs
Rotation amplitude - Kolmogorov-Smirnov probability 0-1.5 -0.719 0.00000240
Rotation amplitude - Kolmogorov-Smirnov probability 0-2.5 -0.644 0.00002233

Rotation amplitude - Fraction of χ2 0-1.5 -0.676 0.00001597
Rotation amplitude - Fraction of χ2 0-2.5 -0.623 0.00005003

Rotation amplitude - Optical identification 0-1.5 -0.571 0.00051731
Rotation amplitude - Optical identification 0-2.5 -0.485 0.00271012

Figure 32: Top Left: Rotation amplitude as a function of the Kolmogorov-Smirnov probability value.
Top Right: Rotation amplitude as a function of the value of the fraction of χ2 minimization test

between the ideal and real rotation diagrams to the χ2 minimization test between the random and real
rotation diagrams. Bottom: Rotation amplitude as a function of the optical rotation identification. All

are shown for the 2.5 Mpc configuration.

clusters and the fraction of χ2 minimization test values as well as the Kolmogorov-Smirnov probability
test values. The correlations indicate that there is dependence of the rotation with the virial state of the
cluster, which is associated with the X-ray isophotal shape and, consequently, the Bautz-Morgan type of
the clusters. It is more often that clusters with non-spherical isophotals seem to present indications of
rotation. There is also a correlation between the X-ray isophotal shape and the rotation amplitude of the
clusters; this means that if the isophotals are not spherical, the rotation amplitude detected is bigger.
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It is possible that the large angular momentum of the cluster has caused the distortion of the spherical
shape of the isophotals. These correlations are shown in the table below, for the 2.5 Mpc configuration.

Angular config. rs probrs
X-ray isophotal shape - Kolmogorov-Smirnov probability 0-2.5 -0.347 0.05999119

X-ray isophotal shape - Fraction of χ2 0-2.5 -0.494 0.00552332
X-ray isophotal shape - Rotation amplitude 0-2.5 0.455 0.01143488

Correlation has been found in the 1.5 Mpc configuration between the number of galaxies and the
optical identification as well as the number of bright galaxies and the optical configuration. There has
been also found correlation between the number of galaxies and the Kolmogorov-Smirnov probablility
test values. The smaller number of galaxy-members (or bright members) the cluster contains, the less
prominent its optical identification or Kolmorogov-Smirnov indication of rotation is. The results of the
correlations are shown for the 1.5 Mpc configuration in the table below.

Angular config. rs probrs
Number of bright galaxies - Optical identification 0-1.5 -0.308 0.08628161

Number of galaxies - Optical identification 0-1.5 -0.349 0.05016239
Number of galaxies - Kolmogorov-Smirnov probability 0-1.5 -0.368 0.03841897

We have also found some additional correlations in the 2.5 Mpc configuration: the cluster redshift
is correlated with both the Kolmogorov-Smirnov probability and the fraction of χ2 values. The more
distant the cluster is, the more difficult is to detect its rotation. In addition, we have found correlation
between the number of bright galaxies of the cluster and the angle of its rotation axis.

Angular config. rs probrs
Redshift - Kolmogorov-Smirnov probability 0-2.5 0.321 0.05650315

Redshift - Fraction of χ2 0-2.5 0.336 0.04500924

In the 0.3-1.5 Mpc configuration we found that the number of galaxy-members is anti-correlated
with the Kolmogorov-Smirnov probability value. This means that the smaller the number of members,
the most prominent is to deduct the rotation using the Kolmogorov-Smirnov probability test. We have
also found correlations between the Kolmogorov-Smirnov probability test value and the cluster redshift,
Bautz-Morgan type and number of bright members. This correlation mean that: the more distant and
less rich the object, the less prominent its rotation identification is, and, last but not least, the less
virialised the cluster, the stronger the Kolmorogov-Smirnov indication of rotation is.

Angular config. rs probrs
Redshift - Kolmogorov-Smirnov probability 0.3-1.5 0.321 0.05650315

Number of bright galaxies - Kolmogorov-Smirnov probability 0.3-1.5 0.336 0.04500924
Bautz-Morgan type - Kolmogorov-Smirnov probability 0.3-1.5 0.336 0.04500924

We have not found any correlations between the number of galaxies and the rotation amplitude,
as we should; we did not want our method to be biased by the number of members or richness of the
cluster. We have not also found correlation between the Bautz-Morgan type and the number of galaxies
or redshift, as we expected.
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3 Conclusions

In this thesis we studied the possible rotation of a sample of clusters. We developed a new algorithm
in order to be able to deduce rotation using the line of sight velocities of the galaxy members. We checked
the results of this algorithm by applying it on various constructed Monte-Carlo simulated clusters. We
also compared our results with the ones based on the Hwang & Lee’s method.

Afterwards, we applied our algorithm on a sample of Abell clusters on the SDSS spectroscopic
database. We used four parameters in order to deduce the rotation: the χ2 between the real and
ideal rotation curve, the χ2 between the real rotation curve and the random curve, their expectation
ratio and the Kolmogorov-Smirnov probability of galaxy velocities between the two semispheres of the
cluster. We calculated the rotation amplitude, direction of rotation axis, projected direction of rotation
and rotation center. We found 27 possible rotating clusters, some of them probably having the rotation
signal being due to substructures, among the 45 of our sample (∼60% of the sample). This result has
an outcome: calculations of the cluster mass in cosmological research using the virial equilibrium of the
cluster should be corrected to include the rotation of the galaxies, as we mentioned in section 1.4. This
is a very important result, as galaxy clusters are widely and effectively used as cosmological probes to
constrain cosmological parameters and determine the current cosmological model. Unfortunately, we
could not conclude for the origin of the rotation in clusters or on the parts of the clusters where the
rotation velocity distribution is more prominent.

Finally, we sought for correlations between the cluster rotation and its dynamical state. We found
that the three indications of rotation are correlated with each other as expected and, as a result, even
one of them can be used to deduce a possible cluster rotation. The amplitude of the rotation is also
correlated with the indications of rotation, which means that the larger the rotation amplitude, the more
significant are the indications of rotation. This implies that small amplitude rotation may not be easy to
identify, and thus it could pass undetected. We have also found correlation between the X-ray isophotal
shape of the clusters and the indications of rotation, which means that virialised clusters tend to show
less prominent indications of rotation. This hints to the cause of rotation being due to early anisotropic
accretion of matter having significant angular momentum.
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A X-ray isophotals

Figure 33: The X-ray isophotals of Abell 168, Abell 646, Abell 671, Abell 690, Abell 957 and Abell 1213
taken from Einstein IPC (1999).
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Figure 34: The X-ray isophotals of Abell 1291, Abell 1413, Abell 1569, Abell 1650, Abell 1656 and Abell
1775 taken from Einstein IPC (1999).
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Figure 35: The X-ray isophotals of Abell 1795, Abell 1913, Abell 1983, Abell 1991, Abell 2029 and Abell
2079 taken from Einstein IPC (1999).
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Figure 36: The X-ray isophotals of Abell 2089, Abell 2107, Abell 2124, Abell 2147, Abell 2199 and Abell
2244 taken from Einstein IPC (1999).
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Figure 37: The X-ray isophotals of Abell 2255, Abell 2356, Abell 2399, Abell 2593, Abell 2670 and Abell
1213 taken from Einstein IPC (1999).
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Figure 38: The X-ray isophotals of Abell 734 in the left (by Bagchi & Kapahi (1994)) and Abell 1691 in
the right taken from ROSAT.
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B Rotation diagrams

Figure 39: Abell 690 with radius of 1.5 Mpc. The title of the figure indicates the coordinates of the final
selected rotational center (dy, dx) and the number of galaxies included in the study.
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Figure 40: Abell 734 with radius of 2.5 Mpc. The title of the figure indicates the coordinates of the final
selected rotational center (dy, dx) and the number of galaxies included in the study.
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Figure 41: Abell 1027 with radius of 2.5 Mpc. The title of the figure indicates the coordinates of the final
selected rotational center (dy, dx) and the number of galaxies included in the study.
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Figure 42: Abell 1177 with radius of 1.5 Mpc. The title of the figure indicates the coordinates of the final
selected rotational center (dy, dx) and the number of galaxies included in the study.
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Figure 43: Abell 1177 with radius of 2.5 Mpc. The title of the figure indicates the coordinates of the final
selected rotational center (dy, dx) and the number of galaxies included in the study.
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Figure 44: Abell 1413 with radius of 1.5 Mpc. The title of the figure indicates the coordinates of the final
selected rotational center (dy, dx) and the number of galaxies included in the study.
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Figure 45: Abell 1468 with radius of 1.5 Mpc. The title of the figure indicates the coordinates of the final
selected rotational center (dy, dx) and the number of galaxies included in the study.
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Figure 46: Abell 1468 with radius of 1 Mpc. The title of the figure indicates the coordinates of the final
selected rotational center (dy, dx) and the number of galaxies included in the study.
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Figure 47: Abell 1508 with radius of 2.5 Mpc. The title of the figure indicates the coordinates of the final
selected rotational center (dy, dx) and the number of galaxies included in the study.
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Figure 48: Abell 1738 with radius of 1.5 Mpc. The title of the figure indicates the coordinates of the final
selected rotational center (dy, dx) and the number of galaxies included in the study.
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Figure 49: Abell 1795 with radius of 1.5 Mpc. The title of the figure indicates the coordinates of the final
selected rotational center (dy, dx) and the number of galaxies included in the study.
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Figure 50: Abell 1991 with radius of 1.5 Mpc. The title of the figure indicates the coordinates of the final
selected rotational center (dy, dx) and the number of galaxies included in the study.
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Figure 51: Abell 2029 with radius of 1.5 Mpc. The title of the figure indicates the coordinates of the final
selected rotational center (dy, dx) and the number of galaxies included in the study.
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Figure 52: Abell 2029 with radius of 1 Mpc. The title of the figure indicates the coordinates of the final
selected rotational center (dy, dx) and the number of galaxies included in the study.
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Figure 53: Abell 2107 with radius of 1.5 Mpc. The title of the figure indicates the coordinates of the final
selected rotational center (dy, dx) and the number of galaxies included in the study.
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Figure 54: Abell 2107 with radius of 2.5 Mpc. The title of the figure indicates the coordinates of the final
selected rotational center (dy, dx) and the number of galaxies included in the study.
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Figure 55: Abell 2199 with radius of 1.5 Mpc. The title of the figure indicates the coordinates of the final
selected rotational center (dy, dx) and the number of galaxies included in the study.
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Figure 56: Abell 279 with radius of 1.5 Mpc. The title of the figure indicates the coordinates of the final
selected rotational center (dy, dx) and the number of galaxies included in the study.
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Figure 57: Abell 957 with radius of 1.5 Mpc. The title of the figure indicates the coordinates of the final
selected rotational center (dy, dx) and the number of galaxies included in the study.
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Figure 58: Abell 1650 with radius of 1.5 Mpc. The title of the figure indicates the coordinates of the final
selected rotational center (dy, dx) and the number of galaxies included in the study.
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Figure 59: Abell 1650 with radius between 0.5 and 2.5 Mpc. The title of the figure indicates the
coordinates of the final selected rotational center (dy, dx) and the number of galaxies included in the

study.
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Figure 60: Abell 2244 with radius of 1.5 Mpc. The title of the figure indicates the coordinates of the final
selected rotational center (dy, dx) and the number of galaxies included in the study.
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Figure 61: Abell 2670 with radius of 1.5 Mpc. The title of the figure indicates the coordinates of the final
selected rotational center (dy, dx) and the number of galaxies included in the study.
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Figure 62: Abell 2670 with radius of 2.5 Mpc. The title of the figure indicates the coordinates of the final
selected rotational center (dy, dx) and the number of galaxies included in the study.
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Figure 63: Abell 971 with radius of 1.5 Mpc. The title of the figure indicates the coordinates of the final
selected rotational center (dy, dx) and the number of galaxies included in the study.
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Figure 64: Abell 1656 with radius of 1.5 Mpc. The title of the figure indicates the coordinates of the final
selected rotational center (dy, dx) and the number of galaxies included in the study.
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Figure 65: Abell 1656 with radius of 1 Mpc. The title of the figure indicates the coordinates of the final
selected rotational center (dy, dx) and the number of galaxies included in the study.
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Figure 66: Abell 1691 with radius of 1.5 Mpc. The title of the figure indicates the coordinates of the final
selected rotational center (dy, dx) and the number of galaxies included in the study.
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Figure 67: Abell 1800 with radius of 1.5 Mpc. The title of the figure indicates the coordinates of the final
selected rotational center (dy, dx) and the number of galaxies included in the study.
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Figure 68: Abell 2089 with radius of 1.5 Mpc. The title of the figure indicates the coordinates of the final
selected rotational center (dy, dx) and the number of galaxies included in the study.
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Figure 69: Abell 2089 with radius of 2.5 Mpc. The title of the figure indicates the coordinates of the final
selected rotational center (dy, dx) and the number of galaxies included in the study.
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Figure 70: Abell 2428 with radius of 1.5 Mpc. The title of the figure indicates the coordinates of the final
selected rotational center (dy, dx) and the number of galaxies included in the study.

96



Figure 71: Abell 2593 with radius of 1.5 Mpc. The title of the figure indicates the coordinates of the final
selected rotational center (dy, dx) and the number of galaxies included in the study.

97



Figure 72: Abell 2593 with radius between 0.3 and 1.5 Mpc. The title of the figure indicates the
coordinates of the final selected rotational center (dy, dx) and the number of galaxies included in the

study.
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Figure 73: Abell 168 with radius of 1.5 Mpc. The title of the figure indicates the coordinates of the final
selected rotational center (dy, dx) and the number of galaxies included in the study.
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Figure 74: Abell 1516 with radius of 1.5 Mpc. The title of the figure indicates the coordinates of the final
selected rotational center (dy, dx) and the number of galaxies included in the study.
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Figure 75: Abell 2079 with radius of 1.5 Mpc. The title of the figure indicates the coordinates of the final
selected rotational center (dy, dx) and the number of galaxies included in the study.
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Figure 76: Abell 2255 with radius of 1.5 Mpc. The title of the figure indicates the coordinates of the final
selected rotational center (dy, dx) and the number of galaxies included in the study.
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Figure 77: Abell 2356 with radius of 1.5 Mpc. The title of the figure indicates the coordinates of the final
selected rotational center (dy, dx) and the number of galaxies included in the study.
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Figure 78: Abell 646 with radius of 1.5 Mpc. The title of the figure indicates the coordinates of the final
selected rotational center (dy, dx) and the number of galaxies included in the study.
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Figure 79: Abell 1213 with radius of 1.5 Mpc. The title of the figure indicates the coordinates of the final
selected rotational center (dy, dx) and the number of galaxies included in the study.
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Figure 80: Abell 1213 with radius of 2.5 Mpc. The title of the figure indicates the coordinates of the final
selected rotational center (dy, dx) and the number of galaxies included in the study.
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Figure 81: Abell 1913 with radius of 1.5 Mpc. The title of the figure indicates the coordinates of the final
selected rotational center (dy, dx) and the number of galaxies included in the study.
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Figure 82: Abell 1983 with radius of 1.5 Mpc. The title of the figure indicates the coordinates of the final
selected rotational center (dy, dx) and the number of galaxies included in the study.
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Figure 83: Abell 1983 with radius between 0.3 and 1.5 Mpc. The title of the figure indicates the
coordinates of the final selected rotational center (dy, dx) and the number of galaxies included in the

study.
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Figure 84: Abell 2147 with radius of 1.5 Mpc. The title of the figure indicates the coordinates of the final
selected rotational center (dy, dx) and the number of galaxies included in the study.
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Figure 85: Abell 2147 with radius of 1 Mpc. The title of the figure indicates the coordinates of the final
selected rotational center (dy, dx) and the number of galaxies included in the study.
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Figure 86: Abell 2399 with radius of 1.5 Mpc. The title of the figure indicates the coordinates of the final
selected rotational center (dy, dx) and the number of galaxies included in the study.
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Figure 87: Abell 2399 with radius of 1 Mpc. The title of the figure indicates the coordinates of the final
selected rotational center (dy, dx) and the number of galaxies included in the study.
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Figure 88: Abell 671 with radius of 1.5 Mpc. The title of the figure indicates the coordinates of the final
selected rotational center (dy, dx) and the number of galaxies included in the study.
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Figure 89: Abell 1291 with radius of 2.5 Mpc. The title of the figure indicates the coordinates of the final
selected rotational center (dy, dx) and the number of galaxies included in the study.
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Figure 90: Substructure a of Abell 1291 with radius of 2.5 Mpc. The title of the figure indicates the
coordinates of the final selected rotational center (dy, dx) and the number of galaxies included in the

study.
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Figure 91: Substructure b of Abell 1291 with radius of 2.5 Mpc. The title of the figure indicates the
coordinates of the final selected rotational center (dy, dx) and the number of galaxies included in the

study.
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Figure 92: The second substructure of substructure b of Abell 1291 with radius of 2.5 Mpc. The title of
the figure indicates the coordinates of the final selected rotational center (dy, dx) and the number of

galaxies included in the study.
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Figure 93: Abell 1569 with radius of 2.5 Mpc. The title of the figure indicates the coordinates of the final
selected rotational center (dy, dx) and the number of galaxies included in the study.
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Figure 94: Substructure a of Abell 1569 with radius of 2.5 Mpc. The title of the figure indicates the
coordinates of the final selected rotational center (dy, dx) and the number of galaxies included in the

study.
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Figure 95: Substructure b of Abell 1569 with radius of 2.5 Mpc. The title of the figure indicates the
coordinates of the final selected rotational center (dy, dx) and the number of galaxies included in the

study.
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Figure 96: The first substructure of substructure a of Abell 1569 with radius of 2.5 Mpc. The title of the
figure indicates the coordinates of the final selected rotational center (dy, dx) and the number of

galaxies included in the study.
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Figure 97: The second substructure of substructure a of Abell 1569 with radius of 2.5 Mpc. The title of
the figure indicates the coordinates of the final selected rotational center (dy, dx) and the number of

galaxies included in the study.
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Figure 98: Abell 1775 with radius of 2.5 Mpc. The title of the figure indicates the coordinates of the final
selected rotational center (dy, dx) and the number of galaxies included in the study.
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Figure 99: Substructure a of Abell 1775 with radius of 1.5 Mpc. The title of the figure indicates the
coordinates of the final selected rotational center (dy, dx) and the number of galaxies included in the

study.
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Figure 100: Substructure b of Abell 1775 with radius of 1.5 Mpc. The title of the figure indicates the
coordinates of the final selected rotational center (dy, dx) and the number of galaxies included in the

study.
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Figure 101: Substructure b of Abell 1775 with radius of 2.5 Mpc. The title of the figure indicates the
coordinates of the final selected rotational center (dy, dx) and the number of galaxies included in the

study.
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Figure 102: Abell 2124 with radius of 2.5 Mpc. The title of the figure indicates the coordinates of the
final selected rotational center (dy, dx) and the number of galaxies included in the study.
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Figure 103: Substructure a of Abell 2124 with radius of 2.5 Mpc. The title of the figure indicates the
coordinates of the final selected rotational center (dy, dx) and the number of galaxies included in the

study.
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Figure 104: Substructure b of Abell 2124 with radius of 2.5 Mpc. The title of the figure indicates the
coordinates of the final selected rotational center (dy, dx) and the number of galaxies included in the

study.
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