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Preface

The main purpose of this essay is to present results concerning a new method for tracking
the vacuum-boundary and which can be extremely helpful, when static and rotating stars
are studied. The vacuum-boundary tracking method is combined with a high-order re-
construction algorithm, such as PPM. It can be easily introduced in a numerical code and
therefore in the present essay it was used to simulate static and rotating stars in Newtonian
gravity, which were surrounded by a vacuum region. Up to now, most of the simulations
assumed the existence of an artificial atmosphere around the stars which were dynamically
evolved. The results of the simulations, using this vacuum-boundary tracking algorithm
are presented in the next chapters and they appear promising.



Contents

1 Fluid dynamics 1
1.1 Polytropic models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Static polytropes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Rotating polytropes . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Hydrodynamic equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 MHD equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Numerical methods 9
2.1 Conservation laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Riemann problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Godunov’s method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5 Time step size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.6 High-resolution shock-capturing schemes . . . . . . . . . . . . . . . . . . . . 14

2.6.1 Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.6.2 Riemann solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.7 Vacuum tracking algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.8 Source terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.8.1 Splitting method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.8.2 Method of lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.9 Poisson’s equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3 Numerical results 41
3.1 1D shock tube problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1.1 First shock tube problem . . . . . . . . . . . . . . . . . . . . . . . . 42
3.1.2 Second shock tube problem . . . . . . . . . . . . . . . . . . . . . . . 47
3.1.3 Third shock tube problem . . . . . . . . . . . . . . . . . . . . . . . . 51
3.1.4 Fourth shock tube problem . . . . . . . . . . . . . . . . . . . . . . . 55
3.1.5 Fifth shock tube problem . . . . . . . . . . . . . . . . . . . . . . . . 59
3.1.6 Sixth shock tube problem . . . . . . . . . . . . . . . . . . . . . . . . 63
3.1.7 Seventh shock tube problem . . . . . . . . . . . . . . . . . . . . . . . 64

iii



iv CONTENTS

3.1.8 Eigth shock tube problem . . . . . . . . . . . . . . . . . . . . . . . . 65
3.2 2D shock tube problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.3 Vacuum boundary problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.4 MHD shock tube problems . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.4.1 First MHD shock tube problem . . . . . . . . . . . . . . . . . . . . . 74
3.4.2 Second MHD shock tube problem . . . . . . . . . . . . . . . . . . . . 76

4 Dynamical simulations 79
4.1 Nondimensional formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.2 Lane - Emden formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.3 Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.4 Initial and boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.5 Dynamical evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.5.1 Hydrodynamic stars . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.5.2 MHD stars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113



Chapter 1

Fluid dynamics

The study of fluid dynamics is a scientific branch which has developed a great deal the
past few years, constantly solving already posed problems, but also giving rise to new ones.
The outcome of this research is obviously extremely important to researchers that have
different scientific interests. In fact, the behavior of fluids plays a crucial role in a vast
area of physical phenomena, from engineering to astrophysics. However, it must be noted
that the theory of fluid dynamics is mainly based on partial differential equations, which
in many cases can not be solved in an analytic manner. Therefore, most of the results
concerning the presence of fluids are obtained using computational methods.
The domain of our interest is astrophysics and specifically the study of static, uniformly
rotating and differentially rotating stars. These stars are highly idealized as infinite cylin-
ders, consisting of a conducting gas in hydrostatic equilibrium. Moreover, it has to be
noted that these stars are studied in the frame of Newtonian Gravity.
The main purpose of this chapter is to assemble the equations that govern the behavior of
these idealized stars. This can be done using the Euler equations for ideal gases, taking
of course into account the effects of gravity. The Euler equations must be deduced in a
cylindrical coordinate frame. The next step will be to assemble the equations of Newtonian
magneto-hydrodynamics in cylindrical coordinates, since the presence of magnetic fields
can play a crucial role in the evolution of the model star.
In the first part of this chapter polytropic models are presented, which will be used as the
initial data for the simulations. These models are cylindrical and take into account the
effects of rotation. The next part consists of the extraction of the system of equations that
govern the behavior of a cylindrical Newtonian rotating ideal gas. Finally, the equations
of a cylindrical Newtonian ideal MHD gas are presented. Both in the simple and the MHD
case the equations are in conservative form. All these equations will serve as the theoretical
background for the numerical simulations.

1



2 CHAPTER 1. FLUID DYNAMICS

1.1 Polytropic models

During most of its existence a star is in a state that evolves relatively slowly and so it
is logical to assume that it is close to hydrostatic and thermodynamic equilibrium. This
assumption is the basis for constructing equilibrium polytropes. Two different cases are
examined, namely static polytropic models and rotating ones. Cylindrical coordinates are
adopted.

1.1.1 Static polytropes

The equation of hydrostatic equilibrium balances the pressure gradient and the gravita-
tional force, so for non-rotating stars it is

1
ρ
∇p = −∇Φ (1.1)

where p is the pressure, given by the polytropic equation of state

p = KρΓ (1.2)

where K is a constant and Γ = 1 + 1
n , where n is the polytropic index. Equation (1.2)

defines the relation between the pressure and the mass density ρ. Moreover, Φ in equation
(1.1) is the Newtonian gravitational potential, given by Poisson’s equation

∇2Φ = 4πGρ (1.3)

where G is the gravitational constant. In order to create a static polytrope, equations
(1.1), (1.2) and (1.3), must be combined in a proper manner. The first step is to calculate
the gradient of the Newtonian gravitational potential, namely ∇Φ = dΦ

dr (in cylindrical
coordinates r, φ, z), according to the following procedure

∇2Φ = 4πGρ ⇒ 1
r

d

dr

(
r
dΦ
dr

)
= 4πGρ ⇒

dΦ
dr

=
4πG

r

∫ r

0
ρrdr (1.4)

Substituting equation (1.4) to (1.1), the following equation is obtained

d

dr

(
r

ρ

dp

dr

)
= −4πGρr (1.5)

Substituting the equation of state (1.2) in (1.5) yields

d

dr

(
r

ρ

d

dr
(KρΓ)

)
= −4πGρr (1.6)
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If the following nondimensional quantities

ρ = ρcθ
n (1.7)

r = aξ (1.8)

a =


(n + 1)Kρ

1
n
−1

c

4πG




1
2

(1.9)

are introduced and substituted in equation (1.6) then one obtains

1
ξ

d

dξ

(
ξ
dθ

dξ

)
= −θn (1.10)

This is the Lane-Emden equation in cylindrical coordinates. It must be noted that in (1.7)
ρc stands for central density. A more general form of this equation is

1
ξa−1

d

dξ

(
ξa−1 dθ

dξ

)
= −θn (1.11)

where a is a parameter and according to its value the coordinate system is defined. If a = 1
then planar geometry is chosen, if a = 2 then it is cylindrical geometry and if a = 3 it is
spherical. In general, equation (1.10) has to be solved numerically. Nevertheless in some
cases analytic solutions do exist for specific values of the polytropic index n. The radius
ξ1 of the star is the point at which θ = 0.
The boundary conditions for the Lane-Emden equation can be derived through physical
assumptions. The density at the center of the star is known to be equal to ρc, so θ = 1.
Moreover, at the center, dρ

dr = 0, which yields dθ
dξ = 0.

1.1.2 Rotating polytropes

In the case of rotating polytropes several modifications have to take place, especially in
the hydrostatic equilibrium equation. The effects of centrifugal acceleration must be taken
into account, so it is

1
ρ

dp

dr
= −dΦ

dr
+ Ω2(r)r (1.12)

where Ω(r) is the angular velocity. In order to derive the Lane-Emden equation for rotating
cylindrical polytropes, the same procedure as previously, for static polytropes, must be
followed. Substituting (1.4) in (1.12) yields

r

ρ

dp

dr
= −4πG

∫ r

0
ρrdr + Ω2(r)r2
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Differentiating with respect to r yields

d

dr

(
r

ρ

dp

dr

)
= −4πGρr + 2Ω2r + r2 dΩ2

dr
(1.13)

By replacing p with the polytropic equation of state and using the nondimensional variables
along with

ζ =
Ω2

πGρc
(1.14)

the result is the Lane-Emden equation for cylindrical rotating polytropes

d2θ

dξ2
+

1
ξ

dθ

dξ
+ θn − ζ

2
− ξ

4
dζ

dξ
= 0 (1.15)

Equation (1.15) describes the case of a differentially rotating polytrope, since ζ can depend
on ξ. In the case of a uniformly rotating polytrope equation (1.15) reduces simply to

d2θ

dξ2
+

1
ξ

dθ

dξ
+ θn − ζ

2
= 0 (1.16)

The boundary conditions at the center are as for the non-rotating case. A particular choice
for the angular velocity profile Ω, made by Cook, Shapiro, Stephens (2003), is

Ω(r) =
Ω0

2

[
1 + cos

(
πr2

R2

)]
(1.17)

and its nondimensional form is

ζ(ξ) =
ζ0

4

[
1 + cos

(
πξ2

ξ2
1

)]
(1.18)

where ζ0 = Ω2
0

πGρc
. Equilibrium solutions exist, as long as rotation does not cause mass-

shedding. Another requirement is that the density decreases monotonically inside the
polytrope. Due to the different symmetry assumptions, models constructed with the same
EOS do not have the same compressibility when spherical or cylindrical polytropes are
used. Comparing compressibilities, the range of 0.5 < n < 1.0 for spherical nonrotating
models corresponds to the range of 0.70 < n < 1.49 for cylindrical models. Also, while
spherical nonrotating models are radially unstable for n > 3 and have an infinite radius for
n > 5, cylindrical nonrotating polytropes are stable and are not known to have an infinite
extend for any range of polytropic indices n.
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1.2 Hydrodynamic equations

The hydrodynamic equations describe the conservation of quantities such as the density,
the momentum and the energy. In fact they are called conservation laws and their covariant
form is 1

1. conservation of mass (continuity equation)

ρ,t +
(
ρuα);α = 0 ⇔

ρ,t +
1√
g

(√
gρuα),α = 0 (1.19)

2. conservation of momentum (equation of motion)
(
ρuα),t + (ρuαuβ);β − ταβ

;β = ρfα (1.20)

with
ταβ = −p~I + ~Π

where
←→
I is the unit tensor,

←→
Π is the viscous stress tensor and uα, fα are the velocity

and acceleration coordinate vectors.

3. conservation of energy

E,t +
(
Euα − uβταβ + Qα

)
;α

= ρ
(
uαfα

)
+ ρq (1.21)

where ~Q is the energy flow vector defined as the energy that flows into or out of the
material per unit area per unit time and q is the rate per unit mass and per unit
time that describes the heat that is added to each material particle.

The term fa that appears in the conservation laws describes acceleration due to body
forces that are applied to the fluid. Moreover, g is determinant of the metric that is used.
In cylindrical coordinates, xa =

(
x1, x2, x3

)
=

(
r, φ, z

)
, the metric is

gαβ =




1 0 0
0 r2 0
0 0 1


 (1.22)

The conservative formulation is preferable because it offers significant advantages when
compared to the primitive one. In fact, formulations based on variables other than the
conservative ones are inaccurate at shock waves, giving wrong shock positions. In order to
achieve the best possible results it is important to work with the conservative variables,
namely the density, the momentum and the total energy.

1Greek letters α, β, ... are used for denoting abstract spatial coordinate indices of vectors.
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For an ideal fluid (Q, q, ταβ vanish) the components of the system of equations in cylindrical
coordinates (a non-orthonormal basis), are

∂ρ

∂t
+

∂

∂r

(
ρur

)
= −1

r
ρur (1.23)

∂

∂t

(
ρur

)
+

∂

∂r

[
ρ
(
ur

)2 + p
]

= −1
r
ρ
(
ur

)2 + rρ
(
uφ

)2 + ρf r (1.24)

∂

∂t

(
ρuφ

)
+

∂

∂r

(
ρuruφ

)
= −3

r
ρuruφ (1.25)

∂E

∂t
+

∂

∂r

[
ur

(
E + p

)]
= −1

r
ur

(
E + p

)
+ ρurf r (1.26)

where
E =

1
2
ρ

(
(ur)2 + (ruφ)2

)
+ ρε (1.27)

The system of equations (1.23)-(1.26) is not yet complete, since two terms that appear in
them, namely the pressure p and the body force f r, have not yet been sufficiently specified.
Two more equations need to be added to the ones already presented. The first one is the
equation of state. During evolution a Γ-law EOS is assumed

p =
(
Γ− 1)ρε (1.28)

where ε is the specific internal energy. Equation (1.28) takes into account the effects of
heating due to shocks.
The acceleration due to body forces, f r, is in fact the Newtonian gravitational force, which
is equal to

f r = −dΦ
dr

By solving Poisson’s equation, the value of the gravitational potential Φ can be determined
at every point which in turn yields the acceleration of gravity.
If in the term ρε is substituted to (1.27), according to the equation of state (1.28), then

E =
1
2
ρ

(
(ur)2 + (ruφ)2

)
+

p

Γ− 1
(1.29)

Equations (1.23)-(1.26) can be written in a more compact form as

Ut + F(U)r = S(U) (1.30)

where a subscript denotes partial differentiation and where

U =




ρ
ρur

ρuφ

E


 , F =




ρur

ρ
(
ur

)2 + p
ρuruφ

ur(E + p)


 and S =




−1
rρur

−1
rρ

(
ur

)2 + rρ
(
uφ

)2 + ρf r

−3
rρuruφ

−1
rur(E + p) + ρurf r
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1.3 MHD equations

Since conductivity is very high in the high-density star matter, the ideal MHD approxima-
tion is adopted. In this case, the displacement current and the effects of electrical resistivity,
viscosity and thermal conduction are neglected. As a result, in conservation-law form the
ideal MHD equations are written as

∂ρ

∂t
+∇(ρu) = 0, (1.31)

∂

∂t
(ρu) +∇[ρuuT + P I−BBT ] = −f , (1.32)

∂E

∂t
+∇[(E + P )u−B(u ·B)] = −ρuf , (1.33)

∂B
∂t

+∇(uBT −BuT ) = 0, (1.34)

where ρ is the mass density, u is the velocity, p is pressure, E is the total energy density,
f is the vector of the body force. The total pressure P is defined as

P = p +
1
2
BB (1.35)

where p is the fluid pressure. The total energy in this case, is given by

E =
1
2
ρuu +

p

Γ− 1
+

1
2
BB (1.36)

As for the magnetic field, there holds the divergence-free condition ∇B = 0. It is im-
portant to note that in the case of one-dimensional problems this constraint reduces to
Br=constant.
Equation (1.34) is the flux-freezing one. It is obvious that the MHD equations are in a
fact a coupling between the hydrodynamic and Maxwell ones.
The next step is to try to enforce cylindrical symmetry to the system of the ideal MHD
equations. Taking into account the effects of gravity one can find that

∂ρ

∂t
+

∂

∂r

(
ρur

)
= −1

r
ρur (1.37)

∂

∂t

(
ρur

)
+

∂

∂r

[
ρ
(
ur

)2 + p− (
Br

)2
]

= −1
r
ρ
(
ur

)2+rρ
(
uφ

)2+ρf r+

(
Br

)2 − r2
(
Bφ

)

r
(1.38)

∂

∂t

(
ρuφ

)
+

∂

∂r

(
ρuruφ −BrBφ

)
= −3

r

(
ρuruφ −BrBφ

)
(1.39)
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∂Bφ

∂t
+

∂

∂r

(
Bφur −Bruφ

)
= −1

r

(
Bφur −Bruφ

)
(1.40)

∂E

∂t
+

∂

∂r

[
ur

(
E + p

)−Br
(
Brur + r2Bφuφ

)]
= −1

r
ur

(
E+p+

1
2
(
(Br)2+(rBφ)2

)
)+ρurf r−Br

(
Brur+r2Bφuφ

)

(1.41)
The total energy is

E =
1
2
ρ

((
ur

)2 +
(
ruφ

)2
)

+
p

Γ− 1
+

1
2

((
Br

)2 +
(
rBφ

)2
)

(1.42)

The evolution of the star, idealized as an infinite rotating cylinder and taking into account
the effects of the gravitational and magnetic fields, will be described by the solution of the
system of these equations. Equations (1.37)-(1.41) can be written in a more compact form
as

Ut + F(U)r = S(U) (1.43)

where

U =




ρ
ρur

ρuφ

Bφ

E




, F =




ρur

ρ
(
ur

)2 + p− (
Br

)2

ρuruφ −BrBφ

Bφur −Bruφ

ur(E + p)−Br
(
Brur + r2Bφuφ

)




and

S =




−1
rρur

−1
rρ

(
ur

)2 + rρ
(
uφ

)2 + ρf r +
(
Br

)2
−r2

(
Bφ

)
r

−3
r

(
ρuruφ −BrBφ

)
−1

r

(
Bφur −Bruφ

)
−1

rur
(
E + p + 1

2

(
(Br)2 + (rBφ)2

)
) + ρurf r −Br

(
Brur + r2Bφuφ

)






Chapter 2

Numerical methods

In this chapter the numerical methods are presented. The description of the methods
mainly follows Toro (1999) and papers already published and which are noted in each case.

2.1 Conservation laws

An important consideration for numerical solutions to compressible fluid flow is how the
numerical method will respond to the presence or formation of shocks, i.e. discontinuities
in the fluid variables. A shock is not a solution to the differential fluid equations, but rather
a member of a larger class called weak solutions. As finite difference approximations are
derived from the differential form of the equations, it is not surprising that they typically
fail when shocks appear. As shocks form generically from smooth initial data, many special
techniques have been developed for the numerical solution of fluid equations. One approach
is to introduce an artificial viscosity that adds extra dissipation in the vicinity of a shock,
spreading the would-be discontinuity over a few points. Artificial viscosity is implemented
by adding a viscous term to the pressure

p → p + Q

in the fluid equations, where the viscosity is activated where the flow is compressive. More-
over, the artificial viscosity should only be applied to shocks and not to rarefraction waves.
This technique has been widely used and has the advantage of simplicity of implementation
and computational efficiency.
A second approach to solving the fluid equations comes from methods developed specifi-
cally for conservation laws. These methods, usually variations of Godunov’s original idea
to use piece-wise solution of the Riemann problem, have proven to be very reliable and
robust.
Conservation laws greatly simplify the mathematical description of physical systems by fo-
cusing on quantities Qi, where Qi may be a state vector with multiple components, whose

9
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volume-integral does not change in time

∂t

∫

V
dQ = 0

While conservation laws are often written in differential form it is useful to first consider an
integral formulation, which is often the more fundamental expression. The average volume
of Q within the cell

[
xi− 1

2
, xi+ 1

2

]
is denoted Qi and it is

Qi =
∫ x

i+1
2

x
i− 1

2

U(x, t)dx

The change of Qi with time can be calculated from the flux, F(U(x, t) of U through the
cell boundaries. This consideration thus expresses the conservation law

d

dt

∫ x
i+1

2

x
i− 1

2

U(x, t)dx = F
(
xi− 1

2
, t

)− F
(
xi+ 1

2
, t

)
(2.1)

The conservation law can be written in integral form by integrating (2.1) from an initial
time 0 to a final time ∆t,

∫ x
i+1

2

x
i− 1

2

U(x,∆t)dx−
∫ x

i+1
2

x
i− 1

2

U(x, 0)dx =
∫ ∆t

0
F

(
xi− 1

2
, t

)−
∫ ∆t

0
F

(
xi+ 1

2
, t

)
(2.2)

and the differential form follows from further manipulations if it is assumed that U is
differentiable

Ut + F(U)x = 0 (2.3)

It should be emphasized that the integral formulation should be viewed as the primary
mathematical form for a conservation principle, because it is independent on an assumption
of differentiability. For example, at a shock front in a fluid system, U is not differentiable
and the differential form of the conservation law fails, while the integral formulation is
still satisfied. Discretizations of conservation equations via finite differences rely on the
differential form and artificial viscosity must be added near shock fronts, forcing U to
be differentiable. An alternative strategy is to develop algorithms based directly on the
integral formulation of the conservation laws. The Godunov method and its extensions are
examples of this latter approach.

2.2 Riemann problem

The Riemann problem for a general m×m non-linear hyperbolic system with data Ul, Ur

is the initial value problem
Ut + F(U)x = 0
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U(x, 0) =
{

Ul if x < 0
Ur if x > 0

The solution of the Riemann problem consists of m + 1 constant states, separated by m
waves, which can be either shock waves, rarefraction waves or contact discontinuities, see
Fig. 2.1.

2.3 Godunov’s method

Numerical algorithms for conservation laws are typically developed by discretizing the
equations in their fundamental integral form. These methods are often derived using a
control volume discretization, whereby the domain is divided into computational cells Ii,
defined to span the interval

[
x − ∆x

2 , x + ∆x
2

]
=

[
xi− 1

2
, xi+ 1

2

]
, where ∆x is the spatial

discretization scale. Following the derivation of the integral conservation law (2.2) for the
computational cell Ii the averaged quantities Ūn

i are introduced

Ūn
i =

1
∆x

∫ x
i+1

2

x
i− 1

2

U
(
x, tn

)

The discrete form of the conservation law (2.2) is then

Ūn+1
i = Ūn

i −
∆t

∆x

(
Fi+ 1

2
− Fi− 1

2

)
(2.4)

where the numerical flux is defined by Fi+ 1
2

Fi+ 1
2

=
1

∆x

∫ tn+1

tn
F

(
U

(
xi+ 1

2

)
, t

)
dt (2.5)

At first blush, a numerical method based on a discretization of the integral law does not
appear promising. The flux integral (2.5) does not appear readily solvable and, generally
it is not. However in his seminal work, Godunov devised a technique to approximately
evaluate the flux integral by replacing the function U(x, tn) with a piece-wise constant
function, see Fig. 2.2. In this approach the individual cells (control volumes) are treated
as a sequence of shock tubes and a separate Riemann initial value problem is solved at each
cell interface. Provided that the waves from neighboring cells do not interact, a proviso
that gives a Courant-type condition on the time step, each Riemann problem can be solved
exactly to yield the local solution U(x, t) for each shock tube, see Fig. 2.3. Furthermore,
since the solution of each of the local Riemann problems is self-similar, U

(
xi+ 1

2
, t

)
is a

constant in time and the evaluation of the integral (2.5) becomes trivial. Then, explicit
expressions for the cell averages at the advanced time t = Tn+1 can be found via (2.4).
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Figure 2.1: The Riemann problem for a shock tube. Initial data, solution and wave
patterns.
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Uk

x1 i i+1i-1i-2 N

Figure 2.2: Piece-wise constant distribution of data at time level n, for a single component
of the vector U.

2.4 Grid

Using Godunov type schemes cell averages must be defined over finite volumes. A domain
[0, L]× [0, T ] in the x-t plane is descretised as shown in figure 2.4. The spatial domain of
length L is subdivided into N finite volumes, called computational cells, given as

xi− 1
2

= (i− 1)∆x ≤ x ≤ i∆x = xi+ 1
2

The extreme values xi− 1
2

and xi+ 1
2

define the position of the intercell boundaries at which
the corresponding intercell numerical fluxes must be specified. The size of the cell is

∆x = xi− 1
2
− xi+ 1

2

2.5 Time step size

The spatial discretisation ∆x is chosen on desired accuracy or available computational
resources. What is left to be determined is the time step size ∆t, according to the CFL
condition

∆t =
Ccfl∆x

Sn
max
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xi+1/2i-1/2

t t

Figure 2.3: Typical wave patterns emerging from soluitons of local Riemann problems at
intercell boundaries i− 1

2 and i + 1
2 .

where Ccfl is a Courant coefficient satisfying

0 < Ccfl ≤ 1

Sn
max is the largest wave speed present throughout the spatial domain at time level tn and

can be estimated using the following formula

Sn
max = max

[∣∣Un
i

∣∣ + csn
i

]

where csn
i is the sound speed and its form depends on the choice of the equation of state.

2.6 High-resolution shock-capturing schemes

The application of high-resolution shock-capturing (HRSC) methods caused a revolution
in computational fluid dynamics. These methods satisfy in a quite natural way the basic
properties required for any acceptable numerical method

1. high order of accuracy

2. stable and sharp description of discontinuities

3. convergence to the physically correct solution.
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tn+1

tn

1 i-1 i i+1 N0 L
x

t
T

x
i-1/2

x
i+1/2

t

x

n+1

n

F
i+1/2

F
i-1/2

Figure 2.4: Discretization of domain [0, L] into N finite volumes Ii =
[
xi− 1

2
, xi+ 1

2

]
.

Moreover, HRSC methods are conservative and because of their shock capturing prop-
erty discontinuous solutions are treated both consistently and automatically whenever and
wherever they appear in the flow. These methods manage to avoid spurious oscillations at
shocks, which are known as Gibb’s phenomena, while retaining a high order of accuracy
over the majority of the domain.
As HRSC methods are written in conservation form, the time evolution of zone averaged
state vectors is governed by some functions (the numerical fluxes) evaluated at zone inter-
faces. Numerical fluxes are mostly obtained by means of an exact or approximate Riemann
solver. High resolution is usually achieved by using monotonic polynomials in order to in-
terpolate the approximate solutions within numerical cells.
Solving Riemann problems exactly involves time-consuming computations which are par-
ticularly costly in the case of multidimensional problems. Therefore, as an alternative, the
usage of approximate Riemann solvers has been proposed.

2.6.1 Reconstruction

The Godunov-type numerical methods are based on solutions of the Riemann initial value
problem at the interfaces between cells. During an update step functions Ul and Ur are
introduced, defined on the intervals

[
xi− 1

2
, xi+ 1

2

]
to approximate the solution in the control

volumes. These functions are created from the cell averages Un
i and hence are called

reconstructions. In the following sections several reconstruction methods are presented.
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Piece-wise constant reconstruction

The simplest reconstruction is to appoint to Ul and Ur directly the cell values Ui

U(x, 0) =
{

Ul = Ui if x < 0
Ur = Ui+1 if x > 0

where U(x,0) are the initial data for the local Riemann problem defined within the cell
[xi, xi+1]. The cell interface xi+ 1

2
is considered to be the point zero along the x-axis at

the local Riemann problem. The piece-wise linear reconstruction is in the fact the original
Godunov method and results in a numerical scheme in which the spatial derivatives and
hence the overall scheme have first order accuracy.

Piece-wise linear reconstruction

The piece-wise linear reconstruction formally results in a scheme with second order con-
vergence. A first choice for the reconstruction algorithm might be to compute the slope,
the derivative of the dynamical variable, centered at the cell boundaries

si+ 1
2

=
Ui+1 − Ui

xi+1 − xi
(2.6)

creating the reconstructed variables

U(x, 0) =

{
Ul = Ui + si

(
xi+ 1

2
− xi

)
if x < 0

Ur = Ui+1 + si+1

(
xi+ 1

2
− xi+1

)
if x > 0

where xε
[
xi− 1

2
, xi+ 1

2

]
. In a uniform grid xi+1 − xi = ∆x. However this reconstruction

produces spurious oscillations at shocks, making the scheme unstable. This problem can be
avoided once a slope limiter is used, designed to damp any oscillations near discontinuities.
Slope limiters use the total variation diminishing property (TVD). If the limited slope is
devoted by σi then the reconstruction can be defined as

U(x, 0) =

{
Ul = Ui + σi

(
xi+ 1

2
− xi

)
if x < 0

Ur = Ui+1 + σi+1

(
xi+ 1

2
− xi+1

)
if x > 0

The slope limiter forces the reconstructed variables Ul, Ur to be monotonic near disconti-
nuities and this reduces the local accuracy of the scheme to first order.
The most common slope limiter used in fluid dynamics is the minmod limiter

σi = minmod
(
si− 1

2
, si+ 1

2

)

where si+ 1
2

is given by equation (2.6) and the minmod function gives the minimum modulus
of two arguments

mimod(a, b) =
{

sgn(a)min(|a|, |b|) if sgn(a) = sgn(b)
0 otherwise

(2.7)
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The sign function sgn(a) is

sgn(a) =
{

+1 if a > 0
−1 if a > 0

Another common limiter is the monotonized central-difference limiter (MC). The limited
slope is

σi = minmod
(
si, 2si− 1

2
, 2si+ 1

2

)

where si− 1
2

and si+ 1
2

are calculated as shown in equation (2.6) and

si =
Ui+1 − Ui−1

xi+1 − xi−1

The mimod function for three arguments is

mimod(a, b, c) =
{

sgn(a)min(|a|, |b|, |c|) if sgn(a) = sgn(b) and sgn(b) = sgn(c)
0 otherwise

The most interesting limiter and the one used throughout the computations is a combina-
tion of both the minmod and the MC limiters and consists of four different steps

1. Calculation of the jumps ∆u = ui+1 − ui−1 in the velocity.

2. Calculation of the variables di−1, di , di+1, according to

di =

{
1 if pi+1−pi−1

min(pi+1,pi−1) < ε

0 otherwise

where ε = 0.01.

3. Calculation of dmin = min(di−1, di, di+1)

4. The last step concerns the choice of the appropriate slope limiter. If the conditions
∆u > 0 and dmin = 0 are met then the minmod limiter will be used, otherwise the
MC limiter.

The piece-wise linear reconstruction retains second order accuracy in the smooth parts
of the flow, but is only first order accurate in the region of discontinuities due to the
application of the limiter. The lack of accuracy is the price to pay in order to damp the
oscillations.
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MUSCL-Hanckock method

The monotonic upstream centered scheme for conservation laws (MUSCL), as presented in
Toro (1999), achieves a second order extension of the Godunov first order upwind scheme.
The first step in the MUSCL aproach is to evaluate the boundary extrapolated values Ul,i

and Ur,i, which are in fact similar to the piece-wise linearly reconstructed values of the
previous section. In each computational cell

[
xi− 1

2
, xi+ 1

2

]
the data cell average values Ui

are replaced by piece-wise linear functions

Ul,i = Ui + σi
∆x

2
and Ur,i = Ui+1 − σi+1

∆x

2
(2.8)

where σi are the limited slopes. The main point in the MUSCL scheme is to evolve the
boundary extrapolated values by a time ∆t

2 . This procedure takes place in each cell Ii

according to

Ūl,i = Ul,i +
1
2

∆t

∆x

(
F(Ul,i)− F(Ur,i)

)

and

Ūr,i = Ur,i +
1
2

∆t

∆x

(
F(Ul,i)− F(Ur,i)

)

The values Ūl,i and Ūr,i will be the initial data for the Riemann problem in each cell Ii

U(x, 0) =
{

Ul = Ūr,i if x < 0
Ur = Ūl,i+1 if x > 0

The point x=0 in the local coordinate system is equivalent to xi+ 1
2

in the global coordinate
system.

PPM

The piece-wise parabolic method was introduced by Collela and Woodward (1984), but the
following presentation of the method is based on Mart́ı and Müller (1996). It is a rather
complex method and is what differentiates it from the simple piece-wise constant method
and the MUSCL method. The first step is to perform a high-order interpolation to obtain
preliminary values for the primitive variables W. The second step is about steepening
discontinuities and is only applied to contact discontinuities, in order to keep their profile
sharp. The third step is to flatten the zone structure near shocks. Another step takes
place in order to preserve monotonicity. Finally the derived reconstructed are readjusted,
so that they can be used as initial data for the local coordinate Riemann problems.
First interpolated values of the primitive variables are calculated at all zone interfaces
using a quartic polynomial. The interpolated values are

Wi+ 1
2

=
1
2
(Wi + Wi+1) +

1
8
(δmWi + δmWi+1)
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where

δmWi =
{

sgn(δWi)min
(∣∣δWi

∣∣, 2∣∣Wi+1 −Wi

∣∣, 2∣∣Wi −Wi−1|
)

if
(
Wi+1 −Wi

)(
Wi −Wi−1

)
> 0

0 otherwise
(2.9)

and
δWi =

1
2
(
Wi+1 −Wi−1

)
(2.10)

In smooth parts of the flow, away from extrema, the limiting values of W are given by

Wl,i+1 = Wr,i = Wi+ 1
2

Special care has to been taken in the regions where contact discontinuities are present. In
the presence of a contact discontinuity only the density values change and hence ρl,i, ρr,i

have to be modified if the condition

ΓK0
|ρi+1 − ρi−1|

min(ρi+1, ρi−1)
≥ |pi+1 − pi−1|

min(pi+1, pi−1)

holds. K0 is a constant. This condition ensures that the discontinuity is a constant one.
This procedure is called steepening and takes place in order to ensure sharp profiles. The
cell boundary reconstructions of the density are replaced according to

ρl,i = ρl,i

(
1− ηi

)
+ ρd

l,iηi

ρr,i = ρr,i

(
1− ηi

)
+ ρd

r,iηi

with

ρd
l,i = ρi−1 +

δmρi−1

2
, ρd

r,i = ρi+1 − δmρi+1

2

where δm is given by equation (2.9) and

ηi = max
[
0,min

(
η(1)

(
η̃i − η(2)

))]

where η(1), η(2) are free parameters, while η̃i is defined as

η̃i =




−ρi+2−ρi−2−4δρi

12δρi
if

{
δ2ρi+1 · δ2ρi−1 > 0∣∣ρi+1 − ρi−1

∣∣− ε(1)min
(∣∣ρi+1

∣∣,
∣∣ρi−1

∣∣) > 0
0 otherwise

where ε(1) is another free parameter and δρi is given by (2.10) and

δ2ρi =
ρi+1 − 2ρi + ρi−1

6
(
∆x

)2
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The next step concerns the flattening of the distribution near the regions where a shock is
detected. The order of the method near these regions is reduced in order to avoid spurious
postshock oscillations. The shock regions are detected if the conditions

|pi+1 − pi−1|
min(pi+1, pi−1)

> ε(2) and ui−1 > ui+1

hold. In these regions the variables Wl and Wr are substituted using

Wflat
l,i = Wifi + Wl,i(1− fi)

Wflat
r,i = Wifi + Wr,i(1− fi)

The weight function fi is given by the maximum of f̃i and f̃i+si , where

f̃i = min

(
1, aimax

(
0,

(
pi+1 − pi−1

pi+2 − pi−2
− ω(1)

)
ω(2)

))

The index si of f̃i+si is equal to +1 or -1 depending on whether the difference pi+1 − pi−1

is positive or negative and ai is given by

ai =

{
1 if |pi+1−pi−1|

min(pi+1,pi−1) > ε(2) and ui−1 > ui+1

0 otherwise

The next step that takes place in the PPM algorithm ensures the monotonicity preservation.
In the smooth regions of the flow it is Wl,i+1 = Wr,i = Wi+ 1

2
, but near discontinuities

these values have to be modified in such a manner that the interpolation parabola in each
cell zone i is a monotone function that takes values between Wl,i and Wr,i. The following
modifications are necessary

Wl,i = Wi and Wr,i = Wi if
(
Wr, i−Wi

)(
Wi −Wl,i

) ≤ 0

Wl,i = 3Wi − 2Wr,i if
(
Wr,i −Wl,i

)(
Wi − 1

2
(
Wl,i + Wr,i

))
>

(
Wr,i −Wl,i

)2

6

Wr,i = 3Wi − 2Wl,i if
(
Wr,i −Wl,i

)(
Wi − 1

2
(
Wl,i + Wr,i

))
< −

(
Wr,i −Wl,i

)2

6

The final step is to use the reconstructed values Wl and Wr in order to construct the
effective left and right states of the Riemann problem. In order to accomplish that the
knowledge of the eigenvalues λ] is necessary, where ] = −1, 0, 1. The superscript -1 refers
to the eigenvalue λ−1 = u − cs, 0 refers to λ0 = u and +1 to λ+1 = u + cs. Initially the
coefficients ∆W and W6,i must be defined

∆Wi = Wr,i −Wl,i and W6,i = 6
(

Wi − 1
2
(
Wl,i + Wr,i

))
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Then the left W̃
]
l,i and right W̃

]
r,i are constructed according to

W]
l,i = Wr,i − 1

2
a]

(
∆Wi −

(
1− 2

3
a]

)
W6,i

)

and

W]
r,i = Wl,i+1 +

1
2
b]

(
∆Wi+1 +

(
1− 2

3
b]

)
W6,i+1

)

where

a] =
λ]

i∆t

∆x
and b] = −λ]

i+1∆t

∆x

The efficient left and right states of the Riemann problem are

pk,i+ 1
2

= pk,i+ 1
2

+ C2
k,i+ 1

2

(
β+

k,i+ 1
2

+ β−
k,i+ 1

2

)

uk,i+ 1
2

= uk,i+ 1
2

+ Ck,i+ 1
2

(
β−

k,i+ 1
2

+ β−
k,i+ 1

2

)
(2.11)

ρk,i+ 1
2

=
(

1
ρk,i+ 1

2

−
∑

]=−1,0,+1

β]

k,i+ 1
2

)−1

where
C2

k,i+ 1
2

= Γpk,i+ 1
2
ρk,i+ 1

2

for k = l, r. The coefficients β±
k,i+ 1

2

are calculated as

β]

l,i+ 1
2

= 0 if λ]
i ≤ 0

β]

r,i+ 1
2

= 0 if λ]
i+1 ≥ 0

otherwise

β±
k,i+ 1

2

= ∓ 1
2Ck,i+ 1

2

((
uk,i+ 1

2
− u±

k,i+ 1
2

)±
pk,i+ 1

2
− p±

k,i+ 1
2

Ck,i+ 1
2

)

β0
k,i+ 1

2

=
(pk,i+ 1

2
− p0

k,i+ 1
2

C2
i+ 1

2

+
1

ρk,i+ 1
2

− 1
ρ0

k,i+ 1
2

)

For every passive variable, such as the tangential velocity component v, the effective left
and right states of the Riemann problem are

vl,i+ 1
2

= vl,i+ 1
2

if λ]
i ≤ 0
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vr,i+ 1
2

= vr,i+ 1
2

if λ]
i+1 ≥ 0

otherwise
vk,i+ 1

2
= v0

k,i+ 1
2

The data of the Riemann problem are

U(x, 0) =

{ (
ρl,i+ 1

2
, ρl,i+ 1

2
ul,i+ 1

2
, El,i+ 1

2

)
if x < 0(

ρr,i+ 1
2
, ρr,i+ 1

2
ur,i+ 1

2
, Er,i+ 1

2

)
if x > 0

The PPM reconstruction is third order accurate in smooth parts of the flow. In the
following table the values of the free parameters used throughout the PPM reconstruction
algorithm, are presented, as they can be found in the original paper by Woodward and
Collela —–.

η(1) η(2) ω(1) ω(2) ε(1) ε(2) K0

20 0.05 0.75 10 0.01 0.01 0.1

Table 2.1: Values of the free parameters in the PPM scheme

WENO

The central weighted essentially non-oscillatory reconstruction (CWENO), as presented by
Kurganov and Tadmor (2000), provides a third order accurate interpolant which is built
from the given cell averages. This interpolant is initially written as a convex combination
of two one-sided linear functions and one centered parabola. In smooth regions this convex
combination guarantees the desired third order accuracy. It automatically switches to a
second-order, one-sided linear reconstruction in the presence of large gradients.
In general in each cell Ii a quadratic polynomial as a convex combination of three polyno-
mials Pl(x), Pr(x) and Pc is constructed

Pi(x) = wlPl(x) + wrPr(x) + wcPC(x)

with positive weights wk ≥ 0, where k = c, l, r and
∑

k wk = 1. The polynomials Pl(x),
Pr(x) correspond to left and right one-sided linear reconstructions respectively, while Pc(x)
is a parabola centered around xi. The efficient left and right state values Ul and Ur to be
used in the Riemann problem are calculated as

Ul,i+ 1
2

= Pi

(
xi+ 1

2
, t

)
, Ur,i+ 1

2
= Pi+1

(
xi+ 1

2
, t

)
(2.12)

In the CWENO reconstruction algorithm the quadratic polynomial in cell Ii at time tn

can be written as
Pi(x, tn) = Ai + Bi

(
x− xi

)
+

1
2
Ci

(
x− xi)2 (2.13)
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where the coefficients Ai, Bi, Ci are

Ai = Ui − wc

12
(
Ui+1 − 2Ui + Ui−1

)

Bi =
1

∆x

[
wr

(
Ui+1 −Ui

)
+ wc

Ui+1 −Ui−1

2
+ wl

(
Ui −Ui−1

)]

Ci = 2wc
Ui−1 − 2Ui + Ui+1(

∆x
)2

The weight functions wk, where k = c, l, r are taken as

wk =
ak∑
m am

where m = c, l, r and
ak =

ck(
ε + ISk

)p

the values cl, cr, cc are

cl cr cc

0.25 0.25 0.2

Table 2.2: Values of the parameters cc, cr, cl used in the CWENO reconstruction scheme.

The parameter ε guarantees that the denominator does not vanish and is taken as ε = 10−6.
The value of p may be chosen to provide the highest accuracy in smooth areas and to ensure
the non-oscillatory nature of the solution near the discontinuities and the value p = 2 is
an effective empirical choice. Finally the smoothness indicators ISk are defined as

ISl =
(
Ui −Ui−1

)2

ISr =
(
Ui+1 − Ui

)2

and
ISc =

13
3

(
Ui+1 − 2Ui + Ui−1

)2 +
1
4
(
Ui + 1−Ui−1

)2

After having calculated the smoothness indicators ISk, the weight function wk and the
coefficients Ai, Bi and Ci of the polynomial (2.13) the effective left and right values of the
Riemann problem are

U(x, 0) =





Ul,i+ 1
2

= Pi

(
xi+ 1

2
, t

)
= Ai + ∆x

2 Bi +
(
∆x

)2

8 Ci if x < 0

Ur,i+ 1
2

= Pi+1

(
xi+ 1

2
, t

)
= Ai+1 − ∆x

2 Bi+1 +
(
∆x

)2

8 Ci+1 if x > 0
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2.6.2 Riemann solvers

ROE

The solver of Roe is probably the most popular approximate Riemann solver and it is
presented according to Toro (1999). Roe’s solver does not apply straightforward to the set
of conservation laws but to their linearized form

Ut + F(U)x = 0 ⇒ Ut + A(U)Ux = 0

where A(U) = ∂F
∂U is the Jacobian matrix. In Roe’s approach the Jacobian matrix A(U)is

replaced by a constant Jacobian matrix Ã(U) = Ã(Ul,Ur) and so the original system of
the PDEs becomes a linear system with constant coefficients

Ut + ÃUx = 0 (2.14)

Using the constant Jacobian matrix valuable information can be extracted for the physical
problem. These information concern the eigenvalues λ̃j of the system, the right eigenvec-
tors R̃

j
and the left ones L̃

j
for j = 1, ..., n, where n is the number of the equations or

equivalently the number of the variables. The numerical flux is obtained as

Fi+ 1
2

=
1
2
(
F(Ul) + F(Ur)−

n∑

j=1

ãj
∣∣λ̃j

∣∣R̃j)

where ãj are the wave strengths, calculated as

ãj = L̃
j
∆U = L̃

j
(Ur −Ul) (2.15)

It must be noted that the constant Jacobian matrix Ã is evaluated using the values Ul

and Ur. These values combined in a proper manner provide the so called Roe-averages,
UROE = V (Ur,Ul), where V is the Roe averaging operator. There is a choice of which
intermediate state the Jacobian Ã(UROE) should be evaluated at. There are three criteria
that ensure the stability and consistency of the numerical flux

1. Ã(UROE)(Ur −Ul) = F(Ur)− F (Ul)

2. Ã(UROE) is diagonalizable with real eigenvalues

3. Ã(UROE) → ∂F
∂U as UROE → U

However popular and robust in many cases Roe’s approximate state Riemann solver faces
serious deficiencies when the problem is not linearizable. It has been shown that if the initial
velocity is negative this situation really occurs even though the problem has a solution with
positive density and internal energy. The reason for the failure of the linearization is the
occurrence of two rarefaction waves in the exact solution to the Riemann problem.
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UNO

The uniformly high-order accurate non-oscillatory schemes (UNO) share many desirable
properties with total variation diminishing schemes, but TVD schemes have at most first-
order accuracy, in the sense of truncation errors, at extrema of the solution. ON the
other hand UNO schemes are uniformly second order approximations , since the number
of extrema of the discrete solution is not increasing in time. Unlike TVD schemes the
non-oscillatory ones are not required to damp the values of each local extremum at every
single time step, but are allowed to occasionally accentuate a local extremum. It has to be
mentioned that the price to pay for this extra accuracy is the loss of the TVD property.
One of the first UNO schemes was introduced by Ami Harten and Stanley Osher (1987)
and it will be briefly discussed in the case of hyperbolic conservation laws. This discussion
follows the paper by Harten and Osher (1987).
The UNO scheme follows several of the ideas initially used for the derivation of Roe’s
approximate Riemann solver. As in Roe’s algorithm the linear set of equations (2.14) with
constants coefficients will be solved. In order to accomplish that Roe’s averaging must be
used

UROE,i = V (Ui,Ui+1)

The next step is the calculation of the eigenvalues λ̃j , of the wave strengths aj using
equation (2.15), of the right eigenvectors R̃

j
and of the left ones L̃

j
using the constant

Jacobian matrix A(Ui,Ui+1) = A(UROE,i) from equation (2.14). The numerical flux is
given by

Fi+ 1
2

=
1
2
[
F(Ui) + F(Ui+1)−

n∑

j=1

cj
iR

j
i

]

where n is the number of the variables and

cj
i =

∣∣λj
i

∣∣aj
i −max(0, λj

i )(1−
∆t

∆x
λj

i−1)Ŝ
j
i

+min(0, λj
i )(1 +

∆t

∆x
λj

i+1)Ŝ
j
i+1

Ŝj
i denotes the component of the vector of slopes in the jth characteristic field and is defined

as follows

Ŝj
i =

m(Sj
−,i, S

j
+,i)

1 + ∆t
∆x(λj

i − λj
i−1)

where m(x, y) is the minmod function———. Sj
±,i are defined as

Sj
−,i = aj

i−1 +
1
2
Dj

i and Sj
+,i = aj

i −
1
2
Dj

i

where
Dj

i = m(aj
i+1 − aj

i , a
j
i − aj

i−1)
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The UNO scheme provides satisfactory results even in the cases the Roe’s approximate
Riemann solver blows up.

Marquina

Marquina’s flux formula (Donat and Marquina (1996), Font, Mart́ı, Marquina, Müller
(1997)) introduces a dissipative mechanism into the numerical scheme especially designed
to eliminate undesired pathologies which flaw most high-order shock-capturing methods, if
no excessive smearing is introduced at discontinuities. Contrary to other linearized solvers
Marquina’s Riemann solver is not based on averaging’s being able to solve Riemann prob-
lems with different left and right equations of state. It has been designed for general
hyperbolic systems of conservation laws.
The presentation of the method is based on the original paper by Donat and Marquina
(1996). Marquina’s flux formula applied to a system of conservation laws in one dimen-
sion, yields a conservative method whose numerical flux function is computed as follows :
Given left and right states, the sided local characteristic variables and fluxes are calculated
according to

ωj
l = Lj(Ul)Ul , φj

l = Lj(Ul)F(Ul)
ωj

r = Lj(Ur)Ur , φj
r = Lj(Ur)F(Ur)

for j = 1, ..., n where n is the number of equations of the system. Here Lj(Ul) and Lj(Ur)
are the normalized left eigenvectors of the Jacobian matrix of the system of conservation
laws, calculated in the left and right states.
Let λ1(Ul), ..., λn(Ul) and λ1(Ur), ..., λn(Ur) be the corresponding eigenvalues. Then for
every j=1,...,n the procedure is as follows

1. If λj(U) does not change sign in
[
Ul,Ur

]
, namely if λj(Ul)λj(Ur) > 0, then the

scalar scheme is upwind and the numerical flux is calculated according to the relevant
characteristic information If λj(Ul)¿0, then

φj
+ = φj

l , φj
− = 0

else
φj

+ = 0 , φj
− = φj

r

2. Otherwise, as a way to avoid numerical pathologies, the scalar scheme is switched to
the more viscous, entropy-satisfying local Lax-Friedrichs scheme

aj = max
[∣∣λj(Ul)

∣∣, ∣∣λj(Ur)
∣∣]

φj
+ =

φj
l + ajωj

l

2
, φj

− =
φj

r − ajωj
r

2
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Marquina’s flux formula is then

Fi+ 1
2

=
n∑

j=1

[
φj

+Rj(Ul) + φj
−Rj(Ur)

]

where Rj(Ul) and Rj(Ur) are the right normalized eigenvectors of the Jacobian matrices
A(Ul),A(Ur).

HLL

The Harten-Lax-vanLeer (HLL) algorithm is a very simple approximate Riemann solver,
presented extensively by Toro (1999). The algorithm assumes that the maximum signal
velocities, Sl and Sr for left and right moving waves, respectively, are known. The three
states for this solver are the initial left and right states, Ul and Ur, for the region beyond
the distance travelled by the fastest left and right moving signals and a single intermediate
state Ulr

U(x, t) =





Ul if x
t ≤ Sl

Uhll if Sl ≤ x
t ≤ Sr

Ur if x
t ≥ Sr

The middle state Uhll is a constant vector determined by requiring energy conservation in
the computational cell

[
xi− 1

2
, xi+ 1

2

]
and is given by

Uhll =
SrUr − SlUl + Fl − Fr

Sr − Sl
(2.16)

The approximate HLL Riemann solver assumes the existence of just two waves, which
separate three constant states. In fact it does not take into account the contact wave, since
all the procedures that take place in the interior of the Riemann problem are described by
a single constant state. The corresponding flux F hll along the t-axis is

F hll =
SrFl − SlFr + SlSr(Ur − Ul)

Sr − Sl
(2.17)

Then the intercell numerical flux for the approximate Godunov method is given by

F hll
i+ 1

2
=





Fl if 0 ≤ Sl

F hll if Sl ≤ 0 ≤ Sr

Fr if 0 ≥ Sr

(2.18)

The remaining pendency in order to fully describe the HLL solver are the estimates for the
wave speeds Sl and Sr. Two simple estimates are

Sl = ul − csl , Sr = ur − csr (2.19)
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and

Sl = min
[
ul − csl, ur − csr

]
, Sr = max

[
ul + csl, ur + csr

]
(2.20)

The HLL method is unfortunately very diffusive, but it remains an important approxi-
mate Riemann solver. Its simplicity makes it very easy to implement and computationally
very efficient. This makes the HLL solver ideal for an initial approach to a problem and
as a sanity check for more complicated schemes. It has been demonstrated that the HLL
solver, when beginning with physical initial data, always produces a physical intermediate
state, a property known as positively conservative. In addition the linear solvers, such
as the Roe solver, do not have this property and often produce solutions with negative
pressures in regions where the fluid density is low.

HLLC

The HLLC scheme, introduced by Toro, Spruce and Spears (1994), is a modification of the
HLL solver described in the previous section, whereby the missing contact discontinuity is
restored. The HLLC approximate Riemann solver is given as follows, according to Toro
(1999)

U(x, t) =





Ul if x
t ≤ Sl

U∗l if Sl ≤ x
t ≤ S∗

U∗r if S∗ ≤ x
t ≤ Sr

Ur if x
t ≥ Sr

The solution vector is

U∗k = ρk

(Sk − uk

Sk − S∗

)



1
S∗

Ek
ρk

+ (S∗ − uk)
[
S∗ + pk

ρk(Sk−uk)

]


 (2.21)

for k = l and k = r. The HLLC flux can be written as

F hllc
i+ 1

2

=





Fl if 0 ≤ Sl

F∗l = Fl + Sl(U∗l − Ul) if Sl ≤ 0 ≤ S∗
F∗r = Fr + Sr(U∗r − Ur) if S∗ ≤ 0 ≤ Sr

Fr if 0 ≥ Sl

(2.22)

where U∗l and U∗r are given by (2.21). For any passive scalar q advected with the fluid,
such as the tangential velocity component v, the corresponding HLLC state is given by

(ρq)∗k = ρk

(Sk − uk

Sk − S∗

)
qk (2.23)

for k = l and k = r. The HLLC algorithm requires information for three different wave
speeds, namely Sl, Sr and S∗. If the pressure p∗ and the particle velocity u∗ are known
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within the region the Riemann problem has evolved then the following wave speeds can be
chosen

Sl = ul − cslpl , S∗ = u∗ , Sr = ur + csrpr (2.24)

where

pk =

{
1 if p∗ ≤ pk[
1 + Γ+1

2Γ

( p∗
pk
− 1

)] 1
2 if p∗ ≥ pk

(2.25)

The choice of wave speeds discriminates between rarefraction and shock waves. The wave
relations used are exact but the the pressure ratio across the shock is approximated, since
the solution for p∗ is an approximation. In order to estimate the value of p∗ and u∗
it is favourable to use the adaptive non-iterative scheme (ANRS). This scheme is espe-
cially designed to calculate the values of p∗ and u∗ and moreover it can stand by itself
as an approximate-state Riemann solver. It is a conjunction of three different schemes,
namely the primitive variable Riemann solver (PVRS), the two-rarefraction Riemann solver
(TRRS), the two-shock Riemann solver (TSRS). These three algorithms are combined in
a proper manner. The PVRS approximate Riemann solver gives

ppv =
1
2
(pl + pr)− 1

2
(ur − ul)ρ̄ᾱ

upv =
1
2
(ul + ur)− 1

2
(pr − pl)

ρ̄ᾱ

where

ρ̄ =
1
2
(ρl + ρr) , ᾱ =

1
2
(αl + αr)

The TRRS approximate Riemann solver yields

ptr =
[αr + αl − Γ−1

2 (ur − ul)
αl
pz

l
+ αr

pz
r

] 1
z

utr =
Plrul

αl
+ ur

αr
+ 2(Plr−1)

Γ−1
Plr
al

+ 1
αr

where

Plr =
( pl

pr

)z
, z =

Γ− 1
2Γ

The TSRS Riemann solver gives

pts =
gl(p0)pl + gr(p0)pr − (ur − ul)

gl(p0) + gr(p0)
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uts =
1
2
(ul + ur) +

1
2
[
(pts − pr)gr(p0)− (pts − pl)gl(p0)

]

where

gk(p) =
[ Ak

p + Bk

] 1
2 , p0 = max(0, ppv) (2.26)

for k = l and k = r.
The ANRS algorithm combines the PVRS scheme together with the non-iterative TRRS
and TSRS solvers. Initially a a number of parameters has to be defined

pmin = max(pl, pr) , pmax = max(pl, pr) , p∗ = ppv , Q =
pmax

pmin

One more parameter used is defined as Quser and the value appointed to it should be
Quser = 2.
The ANRS algorithm is as follows

1. If the conditions Q < Quser and pmin < p∗ < pmax are met then the PVRS scheme
is used.

2. If the above conditions are not met and p∗ < pmin then the TRRS algorithm is used,
otherwise if p∗ > pmin the TSRS is used.

HLLC-MHD

Recently the HLLC three-state approximate Riemann solver was generalized to ideal MHD
by Li (2005). Li’ s HLLC solver reduces to the Toro et al. (1994) and Batten et al. (1997)
HLLC solver in the HD case, while it is consistent with the integral form of the conservation
laws. Even though the exact solution of the MHD Riemann problem involves seven different
states (one entropy wave, two Alfvén waves and four magnetosonic waves) the three-state
HLLC solver by Li achieves an accuracy close to that of the linearized solver by Roe (1981),
but at a reduced computational cost and without the need for an eigen-decomposition.
The system of the MHD equations in conservative form consists of equations (1.31) to
(1.34). The conservative variables are U =

[
ρ, ρu, ρv, ρw, Bx, By, Bz, E

]
. The description

of the HLLC-MHD method follows Li’s (2005) original paper. The solution vector is

U∗k =




ρk

(
Sk−uk
Sk−S∗

)

ρk

(
Sk−uk
Sk−S∗

)
S∗

ρkvk

(
Sk−uk
Sk−S∗

)− B∗xB∗y−BxBy

Sk−S∗
ρkwk

(
Sk−uk
Sk−S∗

)− B∗xB∗z−BxBz

Sk−S∗
Bx

BHLL
y

BHLL
z

Ek

(
Sk−uk
Sk−S∗

)
+

(p∗S∗−p∗uk)−
(
B∗x(BHLLuHLL)−Bx(Bu))

Sk−S+∗




(2.27)
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where it is

S∗ =
ρrur

(
Sr − ur

)− ρlul

(
Sl − ul

)
+ pl − pr −B2

xl + B2
xr

ρr

(
Sr − ur

)− ρr

(
Sl − ul

) (2.28)

and
p∗ = ρ

(
Sl − u

)(
S∗ − u) + p (2.29)

where Sr, Sl are evaluated according to Einfeldt et al. (1991) and p is the total pressure,
given by equation (1.35). The variables B∗

y and B∗
z are calculated according to the HLL

formula (2.16). The quantity uHLL can be calculated from the conservative variables Uhll.
The HLLC-MHD flux formula is given by equation (2.18).

Central scheme

According to Kurganov and Tadmor (2000) a fully-discrete central scheme is constructed,
by building an intermediate mesh of variable cell length, making use of the local speed of
propagation at each cell interface ai+ 1

2
defined by

ai+ 1
2

= max
[
ρ
( ∂F
∂U

(Ul,i+1)
)
, ρ

( ∂F
∂U

(Ur,i)
)]

where ρ(A) = maxi(
∣∣λj(A)

∣∣) with λj(A) being the eigenvalues of the Jacobian matrix
A = ∂F

∂U and j = 1, ..., n, where n is the number of the system’s equations. In addition,
subscripts l and r in the above equation stand for the reconstructed values of U at the left
and right sides of the corresponding numerical cell (i+1 and i, respectively).
The numerical flux function is given by

Fi+ 1
2

=
1
2
[
F(Ul,i+1) + F(Ur,i)

]−
ai+ 1

2

2
[
Ul,i+1 − Ur,i

]

This numerical flux depends only on the local propagation speeds ai+ 1
2

and due to its
simple form, it can be implemented and extended to any spatial order straightforwardly.

2.7 Vacuum tracking algorithm

The vacuum tracking algorithm was initially proposed by Munz (1994) and Munz, Sc-
neider, Gerlinger (1994) and the following discussion is based on their publications. The
approximation of gas flow with a gas-vacuum boundary may give rise to severe difficulties
in the numerical schemes. This is due to the fact that in the region of vacuum the equations
of Euler, which are based on the continuum assumption, are no longer valid and a numer-
ical approximation based on this set of equations will fail. There is always the temptation
to replace the vacuum region by a gas of low density and pressure but if this procedure
is done in approximate Riemann solvers, then the local wave structure of the solution is
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essentially altered. In this case the conservation laws are violated and non-linear instabil-
ities will be generated. This effect has been observed and studied extensively especially
for Godunon-type schemes. These difficulties can be avoided if a tracking method is used,
since in that case the propagation of gas-vacuum boundary is followed and the information
about its actual location is used to determine the numerical flux between the grid zones at
the vacuum interface.
From a physical point of view it is important to note that a shock wave can not be adjacent
to a vacuum region, since the Rankine-Hugoniot conditions are no longer satisfied in this
case. This observation does not stand in the case of a contact discontinuity which is in
fact the boundary between the state and the vacuum regions. The solution of the vacuum
Riemann problem consists of a rarefraction wave and a contact discontinuity and its initial
values, considering that the right state is the one containing the vacuum, are

U(x, 0) =
{ (

ρl, ρlul, El

)
for x ≤ 0(

0, 0, 0) for x > 0

It must be noted that this problem is no real initial value problem, but a free boundary
problem. The complete solution in the case of a right vacuum state can be written as

U(x, t) =





(
ρl, ρlul, El

)
for x

t ≤ ul − csl(
ρ0, ρ0u0, E0

)
for ul − csl ≤ x

t ≤ ul + 2csl
Γ−1(

0, 0, 0) otherwise

with

u0 =

[
(Γ− 1)ul + 2

(
x
t + csl)

]

Γ + 1

ρ0 =
[
(u0 − x

t
)2

ρΓ
l

Γpl

] 1
Γ−1 (2.30)

p0 =
ρ0

ρl

Γ
pl

where csl is the speed of the sound and its form depends on the equation of state used and
Γ is the adiabatic exponent. For completeness the formula for the vacuum being situated
on the left-hand side is also presented

u0 =

[
(Γ− 1)ur + 2

(
x
t + csr)

]

Γ + 1

ρ0 =
[
(
x

t
− u0)2

ρΓ
r

Γpr

] 1
Γ−1 (2.31)

p0 =
ρ0

ρr

Γ
pr

within the region ur − 2csr
Γ−1 ≤ x

t ≤ ur + csr.
Unfortunately in practical applications the use of this solution to the vacuum Riemann
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problem provides inaccurate results and it has to be modified so that the movement of the
vacuum boundary can also be taken into account. This is the main idea of the vacuum
tracking algorithm, in which at a first step there is an estimation of the real movement of
the boundary and according to this the numerical flux is determined in a second step in
such a way that the gas-vacuum interface remains sharp.
Consider that the location of the vacuum boundary at the time level tn is known and
situated in the ith grid zone. Its location is named xn

v . Initially it can be set as xn
v = ri.

This is the appropriate point to make a distinction as for the procedure to follow in order
to predict the location of the boundary at the time tn+1. If throughout the calculations
the simple piece-wise reconstruction has been used, then the left state Ul is given by the
formula

Ul = aŪn
i + (1− a)Un

i−1 (2.32)

with

a =
xn

v − xi− 1
2

h
and Ūn

i =
xi+ 1

2
− xi− 1

2

xn
v − xi− 1

2

Un
i (2.33)

On the other hand if a reconstruction scheme of higher order has been used, i.e. PPM,
then the left states can easily be derived directly by those provided by the reconstruction
algorithm and the previous step (equations (2.32) and (2.33)) can be ignored. The location
of the boundary at tn+1 is given by

xn+1
v = xn

v + (tn+1 − tn)un
v (2.34)

with
un

v = ul +
2

Γ− 1
csl (2.35)

It is strongly recommended that the above algorithm should be programmed using both the
primitive and the conservative variables in order to check which set of variables provides
the best results. It has been shown that the primitive formulation can be favourable in
several cases when compared to the conservative one. The information obtained about the
approximation of the gas-vacuum boundary can be used for the calculation of the numerical
flux to the regions adjacent to it. There are the following two cases to distinguish

1. If
(
xn+1

v − xi− 1
2

) ≤ εh, where ε is a small positive number
(
ε = 0.01

)
then the

grid zone interface at xi+ 1
2

lies in the vacuum during the whole time and hence the
numerical flux must be zero

Fi+ 1
2

= 0

2. If
(
xn+1

v − xi− 1
2

) ≥ εh then the gas-vacuum boundary moves across the grid zone
interface. In this case the flux vector at xi+ 1

2
becomes non-zero and is given by the

formula

Fi+ 1
2

=
{

F (Un
i ) if Un

i − csn
i > 0

F (U0(0, t)) otherwise
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with U0 given by (2.30). F(U) is the vector of the physical fluxes.

The above calculation of the fluxes is based on the exact solution of the Vacuum
Riemann problem, but it can be replaced by a much simpler averaged one. Two
different approximate flux calculations are presented shortly

Fi+ 1
2

=
uv

uv −min(0, ul − csl)
(
F (Un

i )−min(0, ul − csl)Un
i

)
(2.36)

and

Fi+ 1
2

= F (Ul)− 1
∆t

min
[
(ul − csl)∆t, xi+ 1

2
− xn

v

]
Ul

− 1
∆t

max
[
0, xi+ 1

2
− xn

v − (ul − csl)∆t
]
Ulr (2.37)

with
Ulr =

F (Ul)− (ul − csl)ul

uv − ul + csl

vacuum

t

x

x
v
n

x
v
n+1

x
i-1/2

x
i+1\2

tn+1

tn

vacuum

t

x

x
v
n

x
v
n+1

x
i-1/2

x
i+1\2

tn+1

tn

Table 2.3: Tracking of the gas vacuum boundary for cases (1) and (2).

The vacuum boundary method can be adjusted to any of the numerical methods pre-
sented previously and in a very easy manner. The solvers have to be modified slightly in
order to be able to detect the vacuum region. The procedure is as follows

1. if(ρi > 0 and ρi+1 > 0) then use the Riemann solver

2. else if(ρi > 0 and ρi+1 = 0) then activate the vacuum-tracking algorithm

3. else vacuum
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2.8 Source terms

In many applications source terms are present in the equations and this fact poses new
challenging problems that concern their solution. Such is the case of equations —–, where
a geometric source term vector appears in the right-hand side. A non-linear system of
hyperbolic conservation laws with source terms can be written in the form

Ut + F (U)x = S(U) (2.38)

where U is the vector of conserved variables, F is the vector of fluxes and S is the vector
of source terms, which in general is a function of U or other physical parameters of the
problem studied. There are essentially two ways of solving inhomogeneous systems of the
form (2.38) namely the splitting method and the method of lines.

2.8.1 Splitting method

The main idea of this approach, as presented in Toro (1999), is to split equation (2.38), for
a time ∆t into two different problems. The main goal is to evolve Un from time t = tn to
the new value Un+1 at time t = tn+1 in a designated time step ∆t. The splitting method
consists of two steps. Initially the homogeneous problem has to be solved for a whole time
step using the problem’s initial data

Ut + F (U)x = 0 (2.39)

This can be achieved by using directly any of the methods described earlier in the present
chapter. The results obtained after having completed this step for time equal to ∆t are
denoted as Ūn+1 and are used as the initial data for the second step, which consists of the
solution of the source problem

d

dt
U = S(U) (2.40)

The solution to the set of the ordinary equations (2.40) is in the fact the solution Un+1

to the inhomogeneous problem (2.38). In order to solve the set of ODEs an appropriate
method must be used, i.e. Runge-Kutta. The philosophy of the splitting method is re-
stricted to solving two different systems of equations using in each case the appropriate
numerical methods and can be expressed in the form

Un+1 = S(∆t)C(∆t)Un

where mathcalSt is interpreted as the solution operator for the problem (2.40) applied
over the time interval ∆t and Ct for the homogeneous problem over the same time interval.
This procedure is only first order in time, when S and C are at least first-order accurate
solution operators. As long as C and S are at least second order accurate a fully second
order scheme is

Un+1(x) = S( 1
2
∆t)C(∆t)S( 1

2
∆t)Un(x)
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The method chosen for the solution of the system of ODEs is a fourth-order, four stage
explicit Runge-Kutta

k1 = ∆t s(qn)
k2 = ∆t s(qn + 1

2k1)
k3 = ∆t s(qn + 1

2k2)
k4 = ∆t s(qn + k3)

Un+1 = Un + 1
6

[
k1 + 2k2 + 2k3 + k4

]

The main advantage of the splitting method is that whenever chosen it is easy to choose
and implement the best method for each one of the operators S and C. On the other hand
it has been found that it does not provide accurate results when steady state solutions are
to be computed since in such a case it breaks the balance between the convection and the
source term.

2.8.2 Method of lines

A different approach to the solution of the system of equation (2.38) is the so-called method
of lines. In this case the spatial derivatives have to be discretized

F (U)x =
1
h

(
Fi+ 1

2
− Fi− 1

2

)

in order to express the time-dependent evolution of equation (2.38) in the semi-discrete
form

d

dt
Ui = Si − 1

h

(
Fi+ 1

2
− Fi− 1

2

)
(2.41)

where h is the grid step and Fi+ 1
2
,Fi− 1

2
are the numerical fluxes at the cell interface. The

term Si is the average over of S(U) over the cell
[
xi− 1

2
, xi+ 1

2

]
, which can be defined for

example by Si ≈ S(Ui).
In order to achieve high-order accuracy in time, the time integration is done using a
high-order total variation diminishing (TVD) Runge-Kutta scheme, which combines the
first-order forward Euler steps and involves prediction and correction. For example, the
third-order accuracy can be achieved via

U (1) = Un + ∆tL(Un)

U (2) =
3
4
Un +

1
4
U (1) +

1
4
∆tL(U (1))

Un+1 =
1
3
Un +

2
3
U (2) +

2
3
∆tL(U (2))

where L(U) is the right-hand side of equation (2.41) and Un+1 is the final value after
advancing one time step from Un. The fluxes across the cell interfaces can be calculated
using any of the the Riemann solvers previously presented in this chapter. The main
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advantage of the method of lines when compared to the splitting method is that it does
not face problems if steady state problems are to computed.
However for both of the methods it must be noted that they provide unsatisfactory results
if the source terms are stiff. In this case the characteristic scale of the source term is
order of magnitude different from the characteristic scale of the homogeneous part. This
provides severe numerical burden beyond the classical numerical stability problem, which
can usually be removed by using implicit methods for the source term. In most of the
cases, unless the numerical calculations fully resolve the small scale, in the sense that the
time step and the spatial mesh size is in the order of the small stiff parameter, unphysical
solutions appear.

2.9 Poisson’s equation

The Newtonian gravitational potentional Φ satisfies Poisson’ equation

∇2Φ(r) = 4πGρ (2.42)

along with the initial conditions
Φ′(0) = 0

Φ(L) = Φr
(2.43)

within the spatial domain 0 < x < L. G is the gravitational constant and ρ is the
density. Poisson’s equation is classified as an elliptic equation and hence it can be treated
as a boundary value problem in ordinary differential equations and its solution consists of
deriving difference equations and solving all of them simultaneously. Most of the difficulty
in solving elliptic equations lies in the solution of these large sets of algebraic equations.
A fast tridiagonal solution algorithm has been chosen to carry out this task.
Consider the Poisson’s equation in cylindrical coordinates in the one dimensional region

∂2Φ
∂r2

+
1
r

∂Φ
∂r

= 4πGρ (2.44)

Let the region be described using a uniform mesh with spacing h = N−1 for some integer
N .

£
££
£
££

x :
i :

v v v vv v v v
−h 0 h 2h Nh
0 1 2 3 N − 1 N N + 1

Φ′ = 0 Φ = Φr

The conventional finite difference approximations both to the first and second order
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derivatives are
∂Φ
∂r

=
Φi+1 − Φi−1

2h

∂2Φ
∂r2

=
Φi+1 − 2Φi + Φi−1

h2

Substituting these central difference approximations to (2.44) the following difference equa-
tion is derived

(2ri − h)Φi−1 − 4riΦi + (2ri + h)Φi+1 = 8πGh2riρi (2.45)

Equation (2.45) applies to all the grid points except for i = 1 and i = N + 1. A special
treatment for these points must be carried out using the boundary conditions (2.43). The
left boundary condition is equivalent to a symmetry boundary condition. This can easily
be proven once a hypothetical grid point i = 0 located at x = −h is considered. The finite
difference approximation yields for the left boundary condition at i = 1

∂Φ
∂r

|i=1= 0 ⇒ Φ2 − Φ0

2h
= 0 ⇒

Φ0 = Φ2

The difference equation (2.45) becomes

−Φ1 + Φ2 = 2πGh2ρ1 (2.46)

Since ΦN+1 = Φ(L) = Φr at the right boundary equation (2.45) for i = N is written

(2rN − h)ΦN−1 − 4rNΦN = 8πGh2rNρN − (2rN + h)Φr (2.47)

The set of equations (2.45),(2.46) and (2.47) are written together in the matrix form



B1 C1

A2 B2 C2

A3 B3 C3

...
Ai Bi Ci

...
AN BN







Φ1

Φ2

Φ3

...
Φi

...
ΦN




=




S1

S2

S3

...
Si

...
SN




where B1 = −1, C1 = 1, D1 = 2πGh2ρ1, SN = 8πGh2rNρN − (2rN + h)Φr, Ai = 2ri − h,
Bi = −4ri, Ci = 2ri + h , Si = 8πGh2riρi. The matrix elements are all zero except
along the tree diagonal lines. The solution to the system of the difference equations can be
derived using the tridiagonal solution algorithm. It is in fact a variant of Gauss elimination
and consists of four different steps

1. Initialization of two new variables

B′
1 = B1 and D′

1 = D1
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2. Calculation of the following equations in increasing order of i until i = N is reached

R =
Ai

B′
i−1

B′
i = Bi −RCi−1

D′
i = Di −RD′

i−1 for i = 2, 3, ..., N − 1

3. Calculation of the solution for the last unknown by

ΦN =
D′

N

B′
N

4. Calculation of the following equations in decreasing order of i

Φi =
D′

i − CiΦi+1

B′
i

for i = N − 1, N − 2, ..., 1

In a computer program, the primed variables B′
i and D′

i need not be distinguished from
Bi and Di respectively because B′

i and D′
i are stored in the same memory spaces as for Bi

and Di. Therefore step (1) is not necessary in real programming.
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Chapter 3

Numerical results

In the previous chapter the different numerical methods were presented analytically. Never-
theless just a theoretical presentation of these methods is not sufficient unless it is combined
with the release of the results that arise by their application. In the present chapter these
methods are tested thoroughly using a series of suitable problems, widely known as shock
tube problems. These problems are designed to test the robustness and the efficiency of
the HRSC numerical methods and in many cases demonstrate their weaknesses. It is pos-
sible that several methods fail to produce satisfactory results when applied to a particular
problem and therefore it is important to be aware of their limitations. These test problems,
widely known as shock tube problems, are quite simple, but their solution is demanding.
As a matter of fact a crowd of different physical phenomena is detected in their solution,
such as shock waves, contact discontinuities and rarefraction waves. By checking the re-
sults that are presented in this chapter the reader can have a first view concerning the
potentials of each one of the methods.
The shock tube problems can be distinguished in several categories, each one of which
aims to test different aspects of the numerical methods. There is a first set of 8 different
one-dimensional shock tube tests. For these test problems the exact solution is already
known and it is always demonstrated along with the numerical results. In the case of the
1D problems the numerical methods are compared with each other in a specific manner.
In particular the results of the PPM reconstruction algorithm along with the Riemann
solvers of HLL and HLLC are presente d in the same plot, the MUSCL reconstruction
algorithm with HLL and HLLC in a different plot, the ROE-type schemes (ROE, UNO,
Marquina) are presented in one plot and finally the central scheme, which uses the WENO
reconstruction algorithm, is compared with the WENO-HLLC scheme. A two dimensional
shock tube problem is used in order to check the efficiency of the source terms algorithms.
In this case two different numerical schemes are compared, namely PPM-HLLC and UNO.
For the implementation of the source terms the splitting method was used. The next test
case is the vacuum boundary shock tube problem, where the efficiency of PPM-HLLC and
MUSCL-HLLC in regions adjacent to vacuum is checked. The last test concerns two MHD

41
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shock tube problems, which are resolved using a suitably modified HLLC Riemann soler,
along with the PPM reconstruction algorithm.

3.1 1D shock tube problems

As already mentioned 9 different one-dimensional shock tube problems will be solved in
this section. The solution to these problems will provide a first view to the abilities of each
one of the numerical methods.
These shock tube problems are initial value problems for the time-dependent Euler equa-
tions for ideal gases

Ut + F(U)x = 0 (3.1)

where

U =




ρ
ρu
E


 , F =




ρu
ρu2 + p
u(E + p)




The equation of state is
p = (Γ− 1)ρε (3.2)

In each one of the following problems the polytropic index is set as Γ = 1.4. The
spatial domain is x = [0, 1] and is discretised in 100 computational grid points. Each
problem consists of a left and a right initial state, which are separated by a discontinuity
at a specific position x0. The CFL number may vary in several cases and its value will be
made known in every case.

3.1.1 First shock tube problem

The first shock tube problem is also known as modified Sod’s problem. The left-state initial
values are Ul =

[
ρ, ρu, p

]
l

=
[
1, 0.75, 1

]
and the right-state ones are Ur =

[
ρ, ρu, p

]
r

=[
0.125, 0, 0.1

]
. It is a rather simple problem but the physical phenomena that emerge are

quite interesting. In fact its solution consists of a shock wave that is moving to the right
side, a rarefraction wave moving to the left and a contact discontinuity that separates these
two regions.
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PPM reconstruction and HLL, HLLC Riemann solvers

The PPM reconstruction algorithm seems to produce identical results when used either
along with the HLL or the HLLC Riemann solver. The free parameters in the PPM
algorithm are the ones presented in the previous chapter. A different selection of these
parameters could possibly provide better results, especially in the steepening of the contact
discontinuity.
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Figure 3.1: PPM reconstruction algorithm and HLL, HLLC Riemann solvers.

The CFL number used was set as 0.9, the initial discontinuity’s position was at x0 = 0.3
and the different schemes are compared at time t = 0.2 units. Sod’s modified problem as
already mentioned offers a perspective of the different wave patterns that can arise in a
physical problem and the fact that PPM proves itself efficient should be taken into account.
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MUSCL reconstruction and HLL, HLLC Riemann solvers

Both MUSCL along with HLL and MUSCL along with HLLC seem to behave pretty much
the same way. MUSCL and HLLC seems to be a little less diffusive, but generally both
schemes are similar. Compared to ones by the PPM there seem to be several differences,
which are mainly identified at the internal energy plot, where MUSCL produces oscillations.
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Figure 3.2: MUSCL reconstruction algorithm and HLL, HLLC Riemann solvers.

The CFL number used was set as 0.9, the initial discontinuity’s position was at x0 = 0.3
and the different schemes are compared at time t = 0.2 units.
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ROE-type schemes (ROE, UNO, Marquina)

Both UNO and Marquina are in fact based on ROE’s Riemann solver and are supposed
to provide better results. Indeed the results prove that these improved schemes are more
efficient. This is obvious at the density and the internal energy plots. It should also be
noted that UNO seems to produce small oscillations in the region of the contact disconti-
nuity, while Marquina fails to simulate the rarefraction wave as efficiently as the other two
schemes.
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Figure 3.3: ROE, UNO and Marquina Riemann solvers.

The CFL number used was set as 0.9, the initial discontinuity’s position was at x0 = 0.3
and the different schemes are compared at time t = 0.2 units.
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Central scheme and WENO reconstruction along with HLLC

As already mentioned the reconstruction algorithm used in the central scheme is the WENO
one. The differences between the two numerical schemes compared in the following plots are
most visible in the internal energy plot. The WENO-HLLC scheme produces oscillations
which are not present in the solution provided by the central scheme.
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Figure 3.4: Central scheme by Kurganov-Tadmor and WENO reconstruction algorithm
along with the HLLC Riemann solver.

The CFL number used was set as 0.9 for the WENO-HLLC scheme and as 0.1 for the central
scheme, the initial discontinuity’s position was at x0 = 0.3 and the different schemes are
compared at time t = 0.2 units.
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3.1.2 Second shock tube problem

The left-state initial values are Ul =
[
ρ, ρu, p

]
l
=

[
1,−2, 0.4

]
and the right-state ones are

Ur =
[
ρ, ρu, p

]
r

=
[
1, 2, 0.4

]
. This is the so called 123 problem and its exact solution

consists of two rarefraction waves. The most interesting aspect of the solution is that a
close to vacuum region is generated in the middle of the two waves. The simulation of a
low-density state is a demanding procedure for most of the numerical schemes and this
particular problem can be used in order to assess the potentials of each one of them.

PPM reconstruction and HLL, HLLC Riemann solvers
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Figure 3.5: PPM reconstruction algorithm and HLL, HLLC Riemann solvers.

It is CFL=0.9, x0 = 0.5 and the different schemes are compared at time t = 0.15 units.
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MUSCL reconstruction and HLL, HLLC Riemann solvers

MUSCL along with HLL and HLLC seems to provide quite satisfying results. Both the
density and pressure plots are adequately represented. Nevertheless the velocity profile
is not quite accurate. The divergence observed in the internal energy profile is due to
numerical errors. In low-density regions, both density and pressure have small values, so
their fraction gives rise to large numbers.
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Figure 3.6: MUSCL reconstruction algorithm and HLL, HLLC Riemann solvers.

The CFL number used was set as 0.9, the initial discontinuity’s position was at x0 = 0.5
and the different schemes are compared at time t = 0.15 units.



3.1. 1D SHOCK TUBE PROBLEMS 49

ROE-type schemes (ROE, UNO, Marquina)

ROE and UNO when applied to the 123 test problem fail to produce results. As already
mentioned ROE-type schemes crash in regions of low-density. Nevertheless Marquina man-
ages to provide satisfactory results.
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Figure 3.7: Marquina Riemann solver. ROE and UNO fail at this shock tube test.

The CFL number used was set as 0.9, the initial discontinuity’s position was at x0 = 0.5
and the different schemes are compared at time t = 0.15 units.
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Central scheme and WENO reconstruction along with HLLC

Unlike ROE and UNO, both the central and the WENO-HLLC scheme, when applied to
the 123 problem, provide results, which are presented in the following plots.
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Figure 3.8: Central scheme by Kurganov-Tadmor and WENO reconstruction algorithm
along with the HLLC Riemann solver.

The CFL number used was set as 0.9, the initial discontinuity’s position was at x0 = 0.5
and the different schemes are compared at time t = 0.15 units.
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3.1.3 Third shock tube problem

The left-state initial values are Ul =
[
ρ, ρu, p

]
l
=

[
1, 0, 1000

]
and the right-state ones are

Ur =
[
ρ, ρu, p

]
r

=
[
1, 0, 0.01

]
. The solution to this problem consists of a strong shock

wave, a contact discontinuity and a rarefraction wave.

PPM reconstruction and HLL, HLLC Riemann solvers
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Figure 3.9: PPM reconstruction algorithm and HLL, HLLC Riemann solvers.

The CFL number used was set as 0.9, the initial discontinuity’s position was at x0 = 0.5
and the different schemes are compared at time t = 0.012 units.
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MUSCL reconstruction and HLL, HLLC Riemann solvers

MUSCL along with HLL and HLLC seems to provide quite satisfying results. Both schemes
fail to attribute the maximum values of the density and moreover in the internal energy
plot MUSCL-HLL seems to produce oscillations.
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Figure 3.10: MUSCL reconstruction algorithm and HLL, HLLC Riemann solvers.

The CFL number used was set as 0.9, the initial discontinuity’s position was at x0 = 0.5
and the different schemes are compared at time t = 0.012 units.
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ROE-type schemes (ROE, UNO, Marquina)

In this case all of the numerical schemes prove themselves efficient and manage to solve
the shock tube problem. UNO seems to resolve the density profile better than the rest of
the numerical schemes, but in the internal energy plot several oscillations are present.
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Figure 3.11: ROE, UNO and Marquina Riemann solvers.

The CFL number used was set as 0.9, the initial discontinuity’s position was at x0 = 0.5
and the different schemes are compared at time t = 0.012 units.
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Central scheme and WENO reconstruction along with HLLC

The WENO-HLLC scheme fails to produce results in this case. On the other hand the
central scheme works, but appears quite diffusive when compared to the previous schemes.
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Figure 3.12: Central scheme by Kurganov-Tadmor. The WENO reconstruction algorithm
along with the HLLC Riemann solver fails in this case.

The CFL number used was set as 0.9, the initial discontinuity’s position was at x0 = 0.5
and the different schemes are compared at time t = 0.012 units.



3.1. 1D SHOCK TUBE PROBLEMS 55

3.1.4 Fourth shock tube problem

The first shock tube problem is also known as Sod’s problem. The left-state initial
values are Ul =

[
ρ, ρu, p

]
l

=
[
5.99924, 19.5975, 460.894

]
and the right-state ones are

Ur =
[
ρ, ρu, p

]
r

=
[
5.99242,−6.19633, 46.0950

]
. The initial date describe two very strong

skock waves travelling towards each other and the solution consists of three different dis-
continuities travelling to the right.
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Figure 3.13: PPM reconstruction algorithm and HLL, HLLC Riemann solvers.

The CFL number used was set as 0.9, the initial discontinuity’s position was at x0 = 0.4
and the different schemes are compared at time t = 0.035 units.
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MUSCL reconstruction and HLL, HLLC Riemann solvers

The results by the MUSCL reconstruction algorithm along with both the HLL and HLLC
Riemann solvers are satisfying. The discontinuities are sufficiently resolved. Several oscil-
lations are present in the solution.
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Figure 3.14: MUSCL reconstruction algorithm and HLL, HLLC Riemann solvers.

The CFL number used was set as 0.9, the initial discontinuity’s position was at x0 = 0.4
and the different schemes are compared at time t = 0.035 units.
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ROE-type schemes (ROE, UNO, Marquina)

The Riemann solvers of ROE, UNO and Marquina also manage to handle this particular
shock tube problem. UNO and Marquina are less diffusive than ROE’s solver.
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Figure 3.15: ROE, UNO and Marquina Riemann solvers.

The CFL number used was set as 0.9, the initial discontinuity’s position was at x0 = 0.4
and the different schemes are compared at time t = 0.035 units.
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Central scheme and WENO reconstruction along with HLLC

The central scheme, when compared to the WENO-HLLC scheme, seems to operate in a
more proper manner. The central scheme is less diffusive and the discontinuities are better
handled.
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Figure 3.16: Central scheme by Kurganov-Tadmor and WENO reconstruction algorithm
along with the HLLC Riemann solver.

The CFL number used was set as 0.9, the initial discontinuity’s position was at x0 = 0.4
and the different schemes are compared at time t = 0.035 units.
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3.1.5 Fifth shock tube problem

The left-state initial values are Ul =
[
ρ, ρu, p

]
l
=

[
1,−19.59745, 1000

]
and the right-state

ones are Ur =
[
ρ, ρu, p

]
r

=
[
1,−19.59745, 0.01

]
. The solution of this test consists of a

right-travelling shock wave, a left rarefraction wave and a stationary contact discontinuity.
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Figure 3.17: PPM reconstruction algorithm and HLL, HLLC Riemann solvers.

The CFL number used was set as 0.9, the initial discontinuity’s position was at x0 = 0.8
and the different schemes are compared at time t = 0.012 units.
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MUSCL reconstruction and HLL, HLLC Riemann solvers

The MUSCL reconstruction algorithm along with the HLL Riemann solver fails in this
particular problem. On the other hand by substituting HLL with HLLC, the solution of
this test is quite accurate. Nevertheless the solution is oscillatory and this is easily detected
in the pressure, the velocity and the internal energy profiles.
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Figure 3.18: MUSCL reconstruction algorithm HLLC Riemann solver. MUSCL-HLL fails.

The CFL number used was set as 0.9, the initial discontinuity’s position was at x0 = 0.8
and the different schemes are compared at time t = 0.012 units.
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ROE-type schemes (ROE, UNO, Marquina)

ROE ,UNO and Marquina provide results for this particular problem. The UNO Riemann
solver is oscillatory and this is evident in the velocity and pressure plots.
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Figure 3.19: ROE, UNO and Marquina Riemann solvers.

The CFL number used was set as 0.9, the initial discontinuity’s position was at x0 = 0.8
and the different schemes are compared at time t = 0.012 units.
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Central scheme and WENO reconstruction along with HLLC

The WENO reconstruction along with HLLC Riemann solver fails. However the results by
the central scheme are not quite satisfactory since the solution is more diffusive than the
previous schemes.
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Figure 3.20: Central scheme by Kurganov-Tadmor. The WENO reconstruction algorithm
along with the HLLC Riemann solver fails.

The CFL number used was set as 0.9, the initial discontinuity’s position was at x0 = 0.8
and the different schemes are compared at time t = 0.012 units.
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3.1.6 Sixth shock tube problem

The left-state initial values are Ul =
[
ρ, ρu, p

]
l

=
[
1.4, 0, 1

]
and the right-state ones are

Ur =
[
ρ, ρu, p

]
r

=
[
1, 0, 1

]
. This test corresponds to an isolated stationary contact wave.

It is interesting to note that Marquina failed this particular test. ROE and UNO manage
to simulate the contact wave precisely. This is also the case of PPM-HLLC and MUSCL-
HLLC, while PPM-HLL and MUSCL-HLL are more diffusive. This test demonstrates the
advantage of HLLC over HLL in similar problems. WENO-HLLC and the central scheme
are also pretty diffusive.
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Figure 3.21: Numerical schemes applied to test 6.

The CFL number used was set as 0.9, the initial discontinuity’s position was at x0 = 0.5
and the different schemes are compared at time t = 2 units.
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3.1.7 Seventh shock tube problem

The left-state initial values are Ul =
[
ρ, ρu, p

]
l
=

[
1.4, 0.1, 1

]
and the right-state ones are

Ur =
[
ρ, ρu, p

]
r

=
[
1, 0.1, 1

]
. This test corresponds to an isolated contact moving slowly

to the right. Marquina also failed this test. It seems that MUSCL in this particular test
operates with more precision than PPM.
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Figure 3.22: Numerical schemes applied to test 7.

The CFL number used was set as 0.9, the initial discontinuity’s position was at x0 = 0.5
and the different schemes are compared at time t = 2 units.
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3.1.8 Eigth shock tube problem

The left-state initial values are Ul =
[
ρ, ρu, p

]
l
=

[
0.445, 0.698, 3.528

]
and the right-state

ones are Ur =
[
ρ, ρu, p

]
r

=
[
0.5, 0, 0.571

]
. This is Lax’s problem and it is designed to

check the ability of the numerical schemes to resolve moving contact discontinuities. The
solution consists of a left rarefraction wave, a right-moving shock wave and a moving
contact discontinuity.
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Figure 3.23: PPM reconstruction algorithm and HLL, HLLC Riemann solvers.

The CFL number used was set as 0.9, the initial discontinuity’s position was at x0 = 0.5
and the different schemes are compared at time t = 0.16 units.
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MUSCL reconstruction and HLL, HLLC Riemann solvers

Both MUSCL-HLL and MUSCL-HLLC manage to resolve the different wave patterns that
are present in the solution of this particular test. However several oscillations are present
in the solution The CFL number used was set as 0.9, the initial discontinuity’s position
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Figure 3.24: MUSCL reconstruction algorithm and HLL, HLLC Riemann solvers.

was at x0 = 0.5 and the different schemes are compared at time t = 0.16 units.
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ROE-type schemes (ROE, UNO, Marquina)

ROE, UNO and Marquina resolve the waves that appear in the solution. Several oscillations
are evident in the UNO plots.
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Figure 3.25: ROE, UNO and Marquina Riemann solvers.

The CFL number used was set as 0.9, the initial discontinuity’s position was at x0 = 0.5
and the different schemes are compared at time t = 0.16 units.



68 CHAPTER 3. NUMERICAL RESULTS

Central scheme and WENO reconstruction along with HLLC

The central scheme appears to be more diffusive than the WENO-HLLC one. This problem
could be fixed if a smaller CFL number was initially chosen. As a matter of fact if the
CFL number was less than 0.5, then the resolution would be improved.
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Figure 3.26: Central scheme by Kurganov-Tadmor and WENO reconstruction algorithm
along with the HLLC Riemann solver.

The CFL number used was set as 0.9, the initial discontinuity’s position was at x0 = 0.5
and the different schemes are compared at time t = 0.16 units.
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3.2 2D shock tube problem

This part of the chapter covers the application of several of the previously presented nu-
merical methods to a new problem, widely known as the explosion test. Moreover this
problem demands the handling of the source terms, which are present in the formulation
of the equations. This is an opportunity to check the efficiency of the algorithms, which
are suitably designed to handle with source terms.
The term two-dimensional shock tube problem is in fact misleading, since the equations
that have to be solved are the Euler ones in one dimension plus some source terms. In
fact the multidimensional Euler equations, whenever a cylindrical or spherical symmetry
is enforced, can be simplified to the one-dimensional inhomogeneous system

Ut + F(U)r = S(U) (3.3)

where

U =




ρ
ρu
E


 , F =




ρu
ρu2 + p
u(E + p)


 , S = −a

r




ρu
ρu2

u(E + p)




The details about this formulation can be found in TORO ——. Here r is the radial
direction, u is the radial velocity and a is a parameter. For a = 0 plain one-dimensional
flow is reproduced, for a = 1 cylindrical symmetry is enforced and the equations are
equivalent to the two-dimensional case. If a = 2 then spherical symmetry is assumed and
the equations are equivalent to the three-dimensional homogeneous Euler equations for
ideal gases. As already mentioned the main concern in this problem is to test the efficiency
and the robustness of the numerical methods that solve equations with source terms.
In order to solve the equations with terms two different numerical schemes were chosen,
namely PPM-HLLC and UNO. Each one of these schemes cooperates with the so called
splitting numerical scheme for source terms, already presented in the previous chapter.
The left-state initial values for the explosion test are Ul =

[
ρ, ρu, p

]
l

=
[
1, 0, 1

]
and

the right-state ones are Ur =
[
ρ, ρu, p

]
r

=
[
0.125, 0, 0.1

]
. Once cylindrical symmetry is

enforced the parameter a is set as equal to unity. It has to be noted that no exact solution
is presented in the plots. The reader will have to take a look at Toro’s ————.
A comparison between the results of the two different schemes, PPM-HLLC and UNO,
proves that PPM-HLLC is more efficient. UNO still causes oscillations in different regions
of the solution. The results of MUSCL-HLLC were omitted, because in fact they match in
a respectable degree the ones by the PPM-HLLC numerical scheme.
The polytropic index is set as Γ = 1.4. The spatial domain is x = [0, 1] and is discretised
in 100 computational grid points. The CFL number is set as 0.9, the initial discontinuity’s
position is at x0 = 0.5 and the different schemes are compared at time t = 0.25 units.
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Figure 3.27: UNO and PPM-HLLC applied to the explosion test.
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3.3 Vacuum boundary problem

The vacuum boundary problem was presented extensively in the previous chapter. The
main task here is to check whether the algorithm devised by Munz —— is indeed ro-
bust and efficient enough to solve problems, which assume vacuum as their initial con-
dition. Such a problem is the gas-vacuum expansion test applied to the one-dimensional
homogeneous Euler equations for ideal gases. The left-state initial values for this test are
Ul =

[
ρ, ρu, p

]
l
=

[
1, 0, 2.5

]
and the right-state ones are Ur =

[
ρ, ρu, p

]
r

=
[
0, 0, 0

]
. The

solution of this problem consists of an expansion wave which travels to the right. The
exact solution can be found in MUNZ——. Two different numerical methods were used,
namely PPM-HLLC and MUSCL-HLLC, suitably combined with the vacuum boundary
tracking algorithm. The results show that the two methods are quite equivalent, although
in the momentum plot the expansion wave and especially its head, is resolved in a different
manner. It has to be noted that in the vacuum tracking algorithm, whenever the sound
speed is required, the following formula is used

cs =
√

ΓρΓ−1 (3.4)

In fact equation (3.4) is derived using the isentropic approximation and it works better
than the usual formula cs =

√
Γp

ρ .
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Figure 3.28: Location of the vacuum boundary as a function of time.

The polytropic index is set as Γ = 1.4. The spatial domain is x = [0, 1] and is discretised
in 100 computational grid points. The CFL number is set as 0.9, the initial discontinuity’s
position is at x0 = 0.3 and the different schemes are compared at time t = 0.1 units.
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Figure 3.29: PPM-HLLC and MUSCL-HLLC applied to the gas-vacuum expansion test.
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3.4 MHD shock tube problems

Up to now the different numerical methods were used to solve the system of the Euler equa-
tions for ideal gas dynamics. Both the cases of the homogeneous and the inhomogeneous
system were treated using shock tube problems as initial conditions. The next step is to
apply the appropriate numerical method to a more complex system of equations, namely
the ideal MHD equations, which in fact describe the coupling of Euler’s ideal gas dynamics
equations and Maxwell’s equations. The system of the MHD equations in conservative
form is as follows

Ut + F(U)x = 0 (3.5)

where

U =




ρ
ρux

ρuy

ρuz

By

Bz

E




, F =




ρux

ρu2
x + p∗ −B2

x

ρuxuy −BxBy

ρuxuz −BxBz

Byux −Bxuy

Bzux −Bxuz

ux(E + p∗)−Bx

(
Bxux + Byuy + Bzuz

)




A Γ-law equation of state is assumed

p = (Γ− 1)ρε (3.6)

where p is the gas pressure. The total pressure and the total energy are

p∗ = p +
1
2
(
B2

x + B2
y + B2

z

)
, (3.7)

E =
1
2
ρ
(
u2

x + u2
y + u2

z

)
+ ρε +

1
2
(
B2

x + B2
y + B2

z ) (3.8)

In order to solve numerically the MHD equations the HLLC Riemann solver, suitably mod-
ified as proposed by LIU—– and already presented in the previous chapter, was used. The
reconstruction method chosen was PPM.
The results concerning two different MHD shock tube problems are presented in the fol-
lowing pages. In each case the polytropic index is set as Γ = 5

3 . The spatial domain is
x = [0, 1] and is discretised in 512 computational grid points. For every problem the CFL
number, the position of the initial discontinuity and the total time will be noted.
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3.4.1 First MHD shock tube problem

The left-state initial values for the first MHD shock tube test are UL =
[
ρ, ux, uy, uz, By, Bz, p

]
L

=[
1, 10, 0, 0, 5√

4π
, 0, 20] and the right-state ones are UR =

[
ρ, ux, uy, uz, By, Bz, p

]
R

=
[
1,−10, 0, 0, 5√

4π
, 0, 1

]

with Bx = 5√
4π

. The solution consists of a pair of two fast shock waves, a slow rarefraction
wave moving to the left, a slow sock wave travelling to the right and a contact discontinuity.
The exact solution of this problem can be found in RYU—–.
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Figure 3.30: MHD-HLLC Riemann solver along with PPM reconstruction applied to the
first MHD shock tube test.

The CFL number is set as 0.8, the initial discontinuity’s position is at x0 = 0.5 and the
total time is t = 0.08 units.
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The results presented concern the density, the energy ,By, Bz, the gas pressure p, ux,
uy, uz. The HLLC Riemann solver, suitably modified for the ideal MHD equations, proves
itself to be efficient and robust.
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Figure 3.31: MHD-HLLC Riemann solver along with PPM reconstruction applied to the
first MHD shock tube test.
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3.4.2 Second MHD shock tube problem

The left-state initial values for the first MHD shock tube test are UL =
[
ρ, ux, uy, uz, By, Bz, p

]
L

=[
1, 0, 0, 0, 6√

4π
, 0, 1] and the right-state ones are UR =

[
ρ, ux, uy, uz, By, Bz, p

]
R

=
[
0.1, 0, 2, 1, 1√

4π
, 0, 10

]

with Bx = 3√
4π

. The solution of this problem consists of a pair of a fast shock wave, a
rotational discontinuity wave and a slow shock wave that travel from the left side of the
contact discontinuity and a slow rarefraction wave, a rotational discontinuity and a slow
rarefraction wave travelling to the right. The exact solution of this problem can be found
in RYU—–.
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Figure 3.32: MHD-HLLC Riemann solver along with PPM reconstruction applied to the
second MHD shock tube test.
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The results presented concern the density, the energy ,By, Bz, the gas pressure p,
ux, uy, uz. The HLLC Riemann solver, suitably modified for the ideal MHD equations
manages to resolve in an efficient way the different wave patterns present in the solution.
Nevertheless several oscillations are present in the solution, especially in the region of the
first fast shock wave.
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Figure 3.33: MHD-HLLC Riemann solver along with PPM reconstruction applied to the
second MHD shock tube test.

The CFL number is 0.8, the initial discontinuity is at x0 = 0.5 and the total time is
t = 0.035 units.
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Chapter 4

Dynamical simulations

The dynamical evolution of a star is described by the appropriate set of equations, which
can either be the hydrodynamic ones (equations (1.23)-(1.26)) or the MHD ones (equa-
tions (1.37)-(1.41)). The solution of these equations is a demanding procedure, since it
incorporates the usage of different numerical schemes, to each one of which a different task
is assigned. It was quite disappointing that most of the schemes that were presented at
the previous chapter failed to produce satisfactory results. The numerical code which was
developed for the simulations uses the HLLC Riemann solver in order to solve the homo-
geneous one dimensional equations along with the PPM reconstruction algorithm. The
splitting method was used for the source terms. The Poisson equation was solved using
the fast tridiagonal solution algorithm. All these methods have already been thoroughly
described at chapter 2.
It is important to note that the vacuum tracking algorithm has also been incorporated to
the numerical code. In fact most of the simulations are meant to check the behavior of this
particular algorithm when it comes to more serious problems than the simple Riemann
ones. The presence of a vacuum region around a star is an innovation and its results have
to be taken seriously into account. Up to now the simulations concerning the dynamical
evolution of a star assume the presence of an artificial atmosphere, which surrounds the
stellar object. This atmosphere is necessary for the numerical calculations, especially when
Riemann solvers are used. Nevertheless the introduction of an atmosphere, which is not
present when it comes to real life, causes problems. The Riemann problem which has to
be solved at the boundary of the star and its surrounding region is different in the case
vacuum is present or if on the other hand an artificial atmosphere exists.
Initially the simulations concern the solution of the one dimensional hydrodynamic Euler
equations in the case of a static, uniformly rotating and differentially rotating fluid. These
cases have been examined using both approaches, the vacuum and the presence of an at-
mosphere. The next step is the solution of the MHD equations. In this case the results
concern just static stars and assume an atmosphere surrounding the star.
Several very important aspects of the problem are also presented in the present chapter,

79
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concerning mainly the nondimensional formulation used, the initial and boundary condi-
tions, the gravitational potential and the Lane-Emden formulation.

4.1 Nondimensional formulation

Nondimensional variables are introduced in order to facilitate the numerical calculations.
By expressing mass, length, time using a different set of units, other than the Gaussian
ones (gram, centimeter, second) it is possible to work with numbers which are closer to
unity, eliminating significantly the presence of truncation errors. The fundamental scale
for mass used throughout the simulations is the mass of the sun

M0 = 1.99× 1033 gr (4.1)

for length it is the typical radius of a neutron star

R = 10km = 106 cm (4.2)

and for time it is the millisecond

t0 = 1ms = 10−3 s (4.3)

The typical central density of a neutron star in Gaussian units is ρc = 2 × 1015 gr cm−3.
By expressing the density according to the new units its value is ρc = 1.0052 M0 R−3. It
is evident that it is preferable to run numerical calculations using the latter value of the
central density than numbers which are as large as 1015.
Using the above fundamental scales for mass, length and time it is possible to derive
nondimensional expressions for the variables which will be dynamically evolved during the
simulations. Thus the nondimensional distance is

r = r̄R ⇒ r̄ =
r

R

the density is

ρ = ρ̄
M0

R3
⇒ ρ̄ = ρ

R3

M0

time is expressed as

t = t̄t0 ⇒ t̄ = t
1
t0

the nondimensional radial velocity is

ur = ūr R

t0
⇒ ūr = ur t0

R

the angular velocity is

uφ = ūφ 1
t0
⇒ ūφ = uφt0
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the nondimensional pressure is

p = p̄
M0

Rt20
⇒ p̄ = p

Rt20
M0

and finally the body force is

f r = f̄ r R

t20
⇒ f̄ r = f r t20

R

All other quantities can be computed from the above ones directly in the dimensionless
system. As an example the total energy in the hydrodynamic case is

Ē =
1
2
ρ̄

((
ūr

)2 +
(
ūφ

)2
)

+
p̄

Γ− 1

The next step is to substitute the above nondimensional variables to the system of the one
dimensional hydrodynamic Euler equations. The system derived is the subsequent one

∂ρ̄

∂t̄
+

∂

∂r̄

(
ρ̄ūr

)
= −1

r̄
ρ̄ūr (4.4)

∂

∂t̄

(
ρ̄ūr

)
+

∂

∂r̄

[
ρ̄
(
ūr

)2 + p̄
]

= −1
r̄
ρ̄
(
ūr

)2 + r̄ρ̄
(
ūφ

)2 + ρ̄f̄ r (4.5)

∂

∂t̄

(
ρ̄ūφ

)
+

∂

∂r̄

(
ρ̄ūrūφ

)
= −3

r̄
ρ̄ūrūφ (4.6)

∂Ē

∂t̄
+

∂

∂r̄

[
ūr

(
Ē + p̄

)]
= −1

r̄
ūr

(
Ē + p̄

)
+ ρ̄ūrf̄ r (4.7)

It can be easily observed that the system of the hydrodynamic equations remains the same.
In the case of the MHD simulations the components of the magnetic field must also be
derived in their nondimensional form. It is for the radial component

Br = B̄r M
1
2
0

R
1
2 t
⇒ B̄r = Br R

1
2 t

M
1
2
0

and for the angular component

Bφ = B̄φ M
1
2
0

R
3
2 t
⇒ B̄φ = Bφ R

3
2 t

M
1
2
0

By substituting the nondimensional quantities to the one dimensional MHD equations, the
system remains unchanged

∂ρ̄

∂t̄
+

∂

∂r̄

(
ρ̄ūr

)
= −1

r̄
ρ̄ūr (4.8)
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∂

∂t̄

(
ρ̄ūr

)
+

∂

∂r̄

[
ρ̄
(
ūr

)2 + p̄− (
B̄r

)2
]

= −1
r̄
ρ̄
(
ūr

)2 + r̄ρ̄
(
ūφ

)2 + ρ̄f̄ r +

(
B̄r

)2 − r̄2
(
B̄φ

)

r̄
(4.9)

∂

∂t̄

(
ρ̄ūφ

)
+

∂

∂r̄

(
ρ̄ūrūφ − B̄rB̄φ

)
= −3

r̄

(
ρ̄ūrūφ − B̄rB̄φ

)
(4.10)

∂B̄φ

∂t̄
+

∂

∂r̄

(
B̄φūr − B̄rūφ

)
= −1

r̄

(
B̄φūr − B̄rūφ

)
(4.11)

∂Ē

∂t̄
+

∂

∂r̄

[
ūr

(
Ē + p̄

)− B̄r
(
B̄rūr + r̄2B̄φūφ

)]
= −1

r̄
ūr

(
Ē+p̄+

1
2
(
(B̄r)2+(r̄B̄φ)2

)
)+ρ̄ūrf̄ r−B̄r

(
B̄rūr+r̄2B̄φūφ

)

(4.12)

In the following the carets will be omitted for simplicity.

4.2 Lane - Emden formulation

It is obvious that the variables used in the Lane - Emden equation are different than
those which have to be used in the one dimensional hydrodynamic and MHD systems of
equations. Therefore the variables ξ, θ and ζ have to be appropriately transformed, using
the necessary equations, in order to provide the initial data for the density, the angular
velocity and the pressure of the dynamical simulations. If it is R the radius of polytrope,
ξ1 its radius in Lane - Emden units, then

R = aξ1 ⇒ a =
R

ξ1

The distance can be calculated using equation (1.8) and the density of the star by (1.7).
Since the central density is expressed in Gaussian units (gr cm−3) the values of the dis-
tance and the density are also expressed in the same units. Therefore the nondimensional
formulation of the previous section must be taken into account.
Concerning the rotation number ζ, since it is uφ=Ω, the transformation takes place as
follows, according to (1.14)

uφ =
√

ζπGρc

and since G and ρc are expressed in Gaussian units, uφ has to be transformed to a nondi-
mensional variable.
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4.3 Potential

The values of the potential Φ are given by Poisson’s equation

∇2Φ = 4πGρ

Since cylindrical coordinates are used throughout the simulations, the solution for the
potential outside the star is not the usual one as in spherical coordinates. The Laplacian
in cylindrical coordinates is

∇2Φ =
1
r

∂

∂r

(
r
∂Φ
∂r

)
+

1
r2

∂2Φ
∂φ2

+
∂2Φ
∂z2

In the one dimensional case the potential Φ does not depend on the coordinates φ and z.
Substituting the Laplacian in Poisson’s equation and integrating, yields equation (1.4)

dΦ
dr

=
4πG

r

∫ r

0
ρrdr ⇒

dΦ
dr

=
2G

r
µ(r) (4.13)

where
µ(r) = 2π

∫ r

0
ρrdr (4.14)

In fact µ(r) is the mass per unit length interior to radius r. Integrating equation (4.13)
inward from a radius r0 outside the cylinder gives

Φ(r) = 2µt ln
(

r

r0

)
for r ≥ R (4.15)

where µt=µ(R) is the total mass per unit length of the star. The values of Φ outside the
cylinder increase logarithmically with r. This expression for the potential is used in the
simulations. The potential inside the star is defined by the solution of Poisson’s equation
and its values outside the star are given by equation (4.15).

4.4 Initial and boundary conditions

Since the simulation stake place using a finite grid, it is essential to define the boundary
conditions which will be used. The boundary conditions describe the behavior of the
variables both at the center of the star and at the end of the computational grid. It must
be noted that it is necessary for computational reasons to introduce ghost points.

£
££
£
££

r :
i :

v v v vv v v v
−∆x 0 ∆x 2∆x L = N∆x

0 1 2 3 N − 1 N N + 1
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These points are situated on the left of the first point of the grid, which is labelled
as i=1. They are used throughout the calculations since the boundary conditions at the
center of the star (x=0) are denoted by derivatives. In fact the boundary conditions for
the conservative variables U =

(
ρ, ρur, ρuφ, E

)
and the potential Φ at the center are

∂ρ

∂r

∣∣
r=0

= 0,
∂2

(
ρur

)

∂r2

∣∣
r=0

= 0,
∂
(
ρuφ

)

∂r

∣∣
r=0

= 0,

∂E

∂r

∣∣
r=0

= 0 and
dΦ
dr

∣∣
r=0

= 0

Using central differences the derivative for the density can be written as

∂ρ

∂r

∣∣
r=0,i=1

= 0 ⇒ ρ2 − ρ0

2∆x
= 0 ⇒

ρ2 = ρ0

The derivatives for ρuφ, E and Φ are treated in the same manner and it is evident that these
variables appear to be symmetric at the center of the star. On the other the derivative of
the momentum ρur is of second order and central differences yield

∂2
(
ρur

)

∂r2

∣∣
r=0,i=1

= 0 ⇒
(
ρur

)
0
− 2

(
ρur

)
1
+

(
ρur

)
2(

∆x
)2 = 0 ⇒

(
ρur

)
0
− 2

(
ρur

)
1
+

(
ρur

)
2

= 0 (4.16)

Because the cylinder is axisymmetric, the radial velocity must vanish for all time, namely
ur(t, 0) = 0. So it is ur

1 = 0 and equation (4.16) yields
(
ρur

)
0

= −(
ρur

)
2

Apparently the momentum ρur is antisymmetric at the center of the star.
The choice of the point r=0 as the initial grid point imposes difficulties, which are evident
in the case of the hydrodynamic equations (equations (1.23)-(1.26)). The term 1

r which
is present in the source terms is driven to infinity when r=0. In order to deal with this
singularity a Taylor approximation of the radial velocity ur is used

ur = ur(t, 0) +
∂ur

∂r
r

Since ur(t, 0) = 0 it is

ur =
∂ur

∂r
r



4.5. DYNAMICAL EVOLUTION 85

and the term ∂ur

∂r can be approximated using central differences. The source terms at the
center of the star can be written as

S =




−ρ∂ur

∂r

−ρ
(

∂ur

∂r

)2
r + rρ

(
uφ

)2 + ρf r

−3ρuφ ∂ur

∂r

−∂ur

∂r (E + p) + ρr ∂ur

∂r f r




where the total energy is

E =
1
2
ρ

((
r
∂ur

∂r

)2 +
(
ruφ

)2
)

+
p

Γ− 1

For the rest of the grid points the source terms are given by equation (1.30). It is important
to note that the source terms as presented here, are expressed using the primitive variables
W =

(
ρ, ur, uφ, p

)
. When using conservative numerical schemes the matrix of the source

terms has to be rearranged using the conservative ones, U =
(
ρ, ρur, ρuφ, E

)
. The proce-

dure is exactly the same when it comes to the MHD equations (equations (1.37)-(1.41)).
At the boundary which is situated at r=L and which coincides with the end of the com-
putational grid, transmissive boundary conditions are used. In fact it is

∂ρ

∂r

∣∣
r=L

= 0,
∂
(
ρur

)

∂r

∣∣
r=L

= 0,
∂
(
ρuφ

)

∂r

∣∣
r=L

= 0,

∂E

∂r

∣∣
r=L

= 0 and
dΦ
dr

∣∣
r=L

= 0

A ghost point is added at the end of the computational region. These conditions allow the
boundary to be transparent to the passage of the waves and does not impose any effect on
them. When a wave reaches the boundary it just crosses it and does not affect the rest of
the simulation.

4.5 Dynamical evolution

The solution of the equations, whether it is the hydrodynamic or the MHD ones, is carried
out computationally. In both cases the reconstruction algorithm used is the PPM one, with
its parameters as specified in chapter 2. The source terms are resolved using the splitting
method. The Poisson equation is solved using the fast tridiagonal solution algorithm. Two
different cases are examined for the region outside the star. In the first case an artificial
atmosphere is assumed to surround the stellar object and in the second one a vacuum region
is incorporated and the dynamical evolution takes place using the vacuum algorithm. The
Riemann solver used throughout the numerical simulations is the HLLC one or its MHD
variant.
The computational region is r = [0, 4] in dimensionless units. The star extends from r=0,
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where its center is situated, to r=1. The rest of the computational region is either a vacuum
one or it is occupied by the atmosphere. The extent of the region surrounding the star
has been chosen so in order to allow the propagation of the waves which may appear in
the solution. The number of grid points varies according to the simulation. In fact results
are presented for 200, 400, 800 and 1600 points. In each case the computational grid is
uniform. The time step is calculated using the CFL condition, as described in chapter 2.
For each one of the simulations different parameters have to be defined. These parameters
can either concern the physical characteristics of the star, such as the polytropic index n
and the rotation number ζ or the numerical methods used, such as the CFL number. In
each one of the cases that will be examined all these parameters are specified.
The initial data for all the following configurations are those that arise from the solution
of the Lane-Emden equation. Static, uniformly rotating and differentially rotating stars
are examined. In some cases perturbations of the initial data are introduced in order to
check their effect on the evolution of the stars.

4.5.1 Hydrodynamic stars

The evolution of hydrodynamic stars is governed by the one-dimensional Euler equations,
in which the effects of gravity are also incorporated. It is the system of equations (1.23)
to (1.26), along with the Poisson equation and an equation of state (1.28). Three different
cases are examined, namely a static star, a uniformly rotating and a differentially rotating.
It is also distinct whether there is a vacuum region surrounding the fluid or an atmosphere.

Static star with atmosphere

In this case a static star
(
ζ = 0

)
, surrounded by an artificial atmosphere, is studied. The

polytropic index is n=1. The atmosphere surrounding the star is a low-density region. In
fact it can be considered as a part of the star, which exceeds as far as the computational
space. Its initial density is set equal to the density value of the last grid point which
belongs to the star. The pressure of this region is given by the polytropic equation of
state (1.2), where the polytropic constant has already been calculated while solving the
Lane-Emden equation. When the values of the density in the atmosphere get larger than a
multiplicate of their initial value, then they are reset to the initial density. In this particular
simulation the gravitational field does not evolve during the simulation and the potential
is kept stable.
The CFL number is set as 0.1 and the number of grid points is 1600. The total time of
the simulation is 8 ms.The plots presented concern the total energy E, the pressure p, the
radial velocity ur, the Newtonian gravitational potential Φ. The density profile is also
presented, along with a detail of the central star region. In all the plots the results of
the dynamical evolution are compared with the initial data. It is important to note that
the main purpose is to check how the numerical methods manage to handle the initial
equilibrium configuration.
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It is evident that the the simulation of the static star surrounded by an artificial atmo-
sphere provides satisfactory results. It must be noted once more that the potential does
not evolve throughout the simulation.
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Figure 4.1: Energy, pressure, radial velocity and potential profiles for a static star with a
surrounding vacuum region. The data of the simulation at t=8 ms are compared with the
initial one.
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The numerical methods do not seem to be able to capture sufficiently the central density
of the star. In fact the results of the simulation diverge from the initial data, since the
value of the central density is not equal to the initial one and the shape of the curve is
different.
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Figure 4.2: Density profile and detail at the center of the star at t=8 ms.

The next plot presents the behavior of the relative difference of the central density. It
is ρ0 the initial central density and ρc is the value of the central density at each time step,
as it arises from the simulation.
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Figure 4.3: Plot of the relative difference of the central density versus time in ms.

It must be noted that the variables that are plotted are the nondimensional ones.
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Static star with vacuum

In this case a static star
(
ζ = 0

)
, surrounded by a vacuum region, is studied. The polytropic

index is n=1. At the vacuum region all the variables ρ, ur, uφ, p are set equal to zero.
In order to determine and calculate the boundary between the star and the void, the
vacuum tracking algorithm is used, as described in chapter 2. It has to be noted that
an extra criteria has been added to the program which allows the vacuum boundary to
move backward and forward. This criteria states that if the vacuum boundary is situated
before the surface of the star, then its value is reset to that of the grid point which is
situated just before the surface. If rsurface is the position of the surface of the star at
each time step and xv(t) is the position of the vacuum boundary at the same time step,
then if xv(t) < rsurface − ∆x

2 all the conservative variables are reset to zero and it is
xv(t) = rsurface − ∆x. This criteria is used in all the simulations that concern stars
surrounded by a vacuum region.
The CFL number is set as 0.1 and the number of grid points is 1600. The total time of
the simulation is 8 ms.The plots presented concern the total energy E, the pressure p, the
radial velocity ur, the Newtonian gravitational potential Φ. The density profile is also
presented, along with a detail of the central star region. In all the plots the results of the
dynamical evolution are compared with the initial data.
It is obvious that the energy, the pressure, the radial velocity and the potential profiles
are quite accurate. It has to be noted that in the case of the static star with a vacuum
region surrounding it the potential evolves in time. In fact it is difficult to distinguish the
initial configuration from the simulation’s results. The distinction between the initial state
and the one that has arisen after 8 ms is more evident in the case of the density plot of
the center of the star. The ghost points are also obvious in this case. The point of this
plot is to show in what a manner can the numerical schemes reproduce the behavior of
the density at the central region. The results seem to be satisfactory since the simulation
even after 8 ms approaches the initial equilibrium configuration and moreover the shape
of the density plots is identical. The final result, when compared to the one of the static
star with an artificial atmosphere, is more accurate.
The next important feature in the case of the static star with a vacuum region, is the
behavior of the relative difference of the central density, namely ρc−ρ0

ρ0
,where ρ0 is the

initial central density and ρc the central density at each time step. The plot of the relative
difference versus time shows that the numerical schemes in the case of the vacuum manage
to handle with greater efficiency the values at the center of the star. Finally the different
positions xv of the vacuum boundary are plotted versus time.
All the parameters that are plotted are the nondimensional ones.
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In the following plots, the profiles of the variables are compared to the data of the
initial equilibrium configuration.
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Figure 4.4: Energy, pressure, radial velocity and potential profiles for a static star with a
surrounding vacuum region. The data of the simulation at t=8 ms are compared with the
initial one.
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The detail of the density profile shows that even after 8 ms the numerical schemes
manage to provide robust results. It is important that the maxima of the density at the
center is preserved and that the neighboring points do not diverge.
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Figure 4.5: Density profile and detail at the center of the star at t=8 ms.

The behavior of the central density in the scheme with the vacuum region is oscillatory.
In fact it seems to oscillate around the initial value ρ0. This result is improved when
compared to the one of the static star with an atmosphere.
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Figure 4.6: Plot of the relative difference of the central density versus time in ms.
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The following plot presents the position of the vacuum boundary xv as the simulation
evolves.
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Figure 4.7: Position of the vacuum boundary xv.

Comparison between the results for a static star with a vacuum region and an
atmosphere

As it has already been mentioned the main purpose is to check which configuration, the
one with the vacuum region or the one with the artificial atmosphere, can simulate in a
proper manner the initial equilibrium state. For both cases the same numerical schemes
were used. The Riemann solver was HLLC, the reconstruction algorithm was PPM, the
source terms were resolved using the splitting method. Moreover if a vacuum region is
present the vacuum boundary algorithm has to be added to the program. It has to be
noted that for the static star with the atmosphere the Poisson equation is solved once,
using the initial data and the simulation takes place by using these values of the potential.
On the other hand, in the presence of a vacuum region, the Poisson equation is solved in
each time step.
Two different plots are presented. The first one is a comparison of the density of the central
region. The ghost points are also presented. In this particular plot the initial data are
compared to the results of the dynamical evolutions of the star with a vacuum region and
to those of the star with an atmosphere. Both results are at t=12 ms. It is obvious that
the vacuum region case produces more robust result, since the shape and the values of the
density profile match better the initial profile.
The second plot concerns the behavior of the central density. The relative difference of the
density in the atmosphere case oscillates, but not around a fixed point. In fact the relative
difference increases by time due to the augmentation of the numerical errors. Because the
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introduction of an artificial atmosphere is not a physical phenomena the solution is biased.
This procedure leads to larger numerical errors. On the other hand these problems do not
seem to appear in the vacuum case. The relative difference of the density oscillates around
a fixed value and these oscillations seem to have a steady amplitude.
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Figure 4.8: Detail of the density profiles at the center of the static star at t=12 ms.
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Figure 4.9: Plots of the relative difference of the central density versus time in ms.
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Static stars results for different grid points

Up to now the results presented concerned simulations which had taken place using 1600
grid points. It is interesting to check the results of the dynamical evolutions for different
numbers of grid points. Two different plots are presented. The first one shows the relative
difference of the central density for a static star with an atmosphere for uniform grids with
200, 400, 600 and 1600. The second one displays the relative difference for the case of a
static star with a vacuum region. The time is in ms.
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Figure 4.10: Plot for a static star with atmosphere for different grid points.
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Figure 4.11: Plot for a static star with vacuum for different grid points.
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Perturbed static star with vacuum

In this case a static star
(
ζ = 0

)
, with a vacuum region surrounding it, is studied. The

polytropic index is n=1. The main difference with the previous simulations is that pertur-
bations are introduced. In fact the initial data used for the dynamical simulation are not
exactly the same with the ones used in the previous examples. Once more the Lane-Emden
equation is solved, but the initial pressure which is used for the dynamical evolution is not
the one that the equilibrium configuration predicts. The pressure is given by the isentropic
equation of state

p = KρΓ

where K is the polytropic constant and Γ = 1 + 1
n . The value of the polytropic constant is

defined using equation (1.9), which yields

K =
4πGa2

(n + 1)ρ
1
n
−1

c

where a = R
ξ1

and ξ1 is the radius in Lane-Emden units. After having calculated K, a
fraction of its value is used to define the pressure. In this particular simulation the initial
pressure is

p =
95
100

KρΓ (4.17)

In the previous cases it was important to check the ability of the numerical schemes to
simulate the initial equilibrium configuration. Now the main purpose is to check how the
perturbations are handled.
The vacuum tracking algorithm is used along with the criteria described in the section for
an unperturbed static star with a surrounding vacuum region. The numerical methods
are the same as in the previous simulations, namely the HLLC Riemann solver, the PPM
reconstruction algorithm, the splitting method.
The CFL number is equal to 0.1 and the number of grid points is 1600. The total time of
the simulation is t=1.44 ms. The density, pressure, radial velocity, potential and internal
energy profiles are presented. Moreover the relative difference of the central difference and
the position of the vacuum boundary are plotted.
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In the case of the perturbed static star with a vacuum region beyond its surface it
is expected that the data of the simulation will differ from the initial one. In fact the
differences are obvious in the following plots.

0 1 2 3 4

0.0

0.2

0.4

0.6

0.8

1.0

 

 

D
en

si
ty

r

 Initial data
 Simulation

0 1 2 3 4

0

20

40

60

80

100

120

140

160

 

 

Pr
es

su
re

r

 Initial data
 Simulation

0 1 2 3 4
-1.5

-1.0

-0.5

0.0

 

 

ur

r

 Initial data
 Simulation

0 1 2 3 4

-400

-300

-200

-100

0

 

 

Po
te

nt
ia

l

r

 Initial data
 Simulation

Figure 4.12: Density, pressure, radial velocity and potential profiles for a perturbed static
star with a surrounding vacuum region. The data of the simulation at t=1.44 ms are
compared with the initial one.
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The internal energy is plotted and a detail of the plot near the surface is presented. It
is obvious that in the region of the surface shock waves are created.
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Figure 4.13: Internal energy profile and detail at the surface of the star at t=1.44 ms.

The perturbed star is driven to a new equilibrium state with a new central density, different
from the initial new. The values of the central density oscillate round this new equilibrium
value.
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Figure 4.14: Plot of the relative difference of the central density versus time in ms.
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The position xv of the vacuum boundary is constantly changing, but it seems to follow
a pattern. In fact the position seems to oscillate round a fixed value, which is the initial
surface position. These oscillations have an increasing as the simulation evolves.
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Figure 4.15: Position of the vacuum boundary xv.

Uniformly rotating star with a vacuum region

In this section a uniformly rotating star with ζ = 0.4 and n=1, is studied. This particular
value of the rotating number was chosen because it is close to the maximum shedding
limit. The uniformly rotating star is studied in the isentropic case. This means that the
equation of state throughout the simulation is the isentropic one (equation (1.2)). This
approach makes the energy equation (1.26) redundant since the value of the pressure is
known throughout the simulation and the values of the energy can be defined at each time
step through the equation

E =
1
2
ρ

(
(ur)2 + (ruφ)2

)
+

KρΓ

Γ− 1
(4.18)

The isentropic uniformly rotating star is surrounded by a vacuum region. The hydrody-
namic equations that have to be solved are (1.23) to (1.25). The numerical methods are
the same as in the previous static models. The CFL number is 0.1 and the grid points are
1600. The total time of the simulation is 1.6 ms.
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The following plots concern the density, pressure, radial velocity and potential profiles
for an isentropic, uniformly rotating star with ζ = 0.4.
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Figure 4.16: Density, pressure, radial velocity and potential profiles for a uniformly rotating
star (ζ = 0.4) with a surrounding vacuum region. The data of the simulation at t=1.6 ms
are compared with the initial one.
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One of the important issues in the case of a uniformly rotating star is to check whether
the numerical methods manage to simulate adequately the angular velocity and the angular
momentum profiles. The corresponding plots are presented along with details. The velocity
uφ profile is smoother at the surface of the star than the initial one.
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Figure 4.17: Angular velocity profile and detail at the surface of the star at t=1.6 ms.

The angular momentum (ρuφ) profile seems to diverge in the center of the star, since the
central momentum value differs from the initial one.
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Figure 4.18: Angular momentum profile and detail at the center of the star at t=1.6 ms.
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The following plot concerns the behavior of the central density. The relative difference
of the density in the case of an isentropic, uniformly rotating star oscillates, but the
oscillations differ in amplitude.
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Figure 4.19: Plot of the relative difference of the central density versus time in ms.

The relative difference of the central angular momentum is plotted. It has to be noted
that ρ0u

φ
0 is the initial value of the momentum and ρcu

φ
c is its value at each time step. It

is obvious that the central angular momentum decreases in time.
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Figure 4.20: Plot of the relative difference of the central angular momentum versus time.
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The position xv of the vacuum boundary is constantly changing. It does not seem to
follow a pattern, since the position is constantly changing and when the criteria for the
vacuum region at the surface is applied, its value is reset to the previous one.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

0.9980

0.9985

0.9990

0.9995

 

 

xv

t

Figure 4.21: Plot of the relative difference of the central density versus time in ms.

Perturbed uniformly rotating star with a vacuum region

In this section an isentropic uniformly rotating star is studied, with ζ = 0.4 and n=1. The
main difference with the previous case is that a perturbation is introduced to the initial
data. In fact the initial pressure is just a fraction of the one calculated, when solving the
Lane-Emden equation. It is

p =
95
100

KρΓ

The alteration of the initial data drives the star to a new equilibrium state, with a different
central density than the initial one. The new central density is larger than the previous
one. In this case the star is surrounded by a vacuum region, which is handled using the
vacuum tracking algorithm and the criteria already described.
The CFL number is 0.1 and the grid points are 1600. The results of the simulation concern
the values of the density, the pressure, the radial velocity, the potential, the angular velocity
and the angular momentum. The profiles of these variables are plotted at t=1.6 ms.
Moreover the relative differences of the central density and the central angular momentum
are plotted. Finally the position of the vacuum boundary at each time step is presented.
It has to be noted that since the uniformly rotating star is studied in the isentropic case,
no shock waves at the surface can be expected.
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It is obvious that the density profile at t=1.6 ms differs significantly from the initial
data. The central density is higher. The pressure behaves in a similar way. The differences
in the potential profiles are not that obvious.
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Figure 4.22: Density, pressure, radial velocity and potential profiles for a perturbed uni-
formly rotating star (ζ = 0.4) with a surrounding vacuum region. The data of the simula-
tion at t=1.6 ms are compared with the initial one.
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The angular velocity and angular momentum profiles are presented at t=1.6 ms. The
profiles of the variables after the dynamical evolution are different than the initial ones.
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Figure 4.23: Angular velocity and angular momentum profiles at t=1.6 ms.

The plot of the relative difference of the density makes it clear that the star has been
driven to a new equilibrium state. The central density increases up to a certain value and
starts to oscillate round this value.
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Figure 4.24: Plot of the relative difference of the central density versus time in ms.
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The relative difference of the central angular momentum versus time is plotted. The
central value oscillates around a certain point, which is different than the initial value and
which states the new equilibrium configuration.
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Figure 4.25: Plot of the relative difference of the central angular momentum versus time.

The following plot presents the position of the vacuum boundary as the simulation evolves.
The surface of the star is not located at a fixed point and is different at each time step.
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Figure 4.26: Position of the vacuum boundary xv.
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Differentially rotating star with vacuum

In this section the case of a differentially rotating star is studied. The polytropic index is
n=1. The initial equilibrium configuration is obtained by solving the Lane-Emden equation
for cylindrical rotating polytropes (equation (1.15)). The rotation number ζ is no longer
a constant one, as for the uniformly rotating cylindrical stars, since the angular velocity
follows a specific profile, which is given by equation (1.17),

Ω(r) =
Ω0

2

[
1 + cos

(
πr2

R2

)]

According to this profile the maximum value of Ω is found at the center of the star and it
decreases monotonically until its surface. The maximum value is defined by the parameter
Ω0, as it can be seen in the following plot
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Figure 4.27: Profile of the angular velocity.

This angular velocity profile is used throughout the calculations. According to the Lane-
Emden notation, equation (1.18) is introduced, where ζ0 has to defined. It is ζ0 = 0.1. The
numerical schemes are the same as in the static case and the isentropic uniformly rotating
one. It has to be noted that the the differentially rotating star is not isentropic and the
energy conservation equation (1.26) is solved. In fact the one-dimensional Euler equations
(1.23) - (1.26) are solved, along with the Γ-law equation of state (1.28). The gravitational
potential Φ is calculated at each time step, solving the Poisson equation (1.3).
The CFL number is 0.1 and the grid points are 1600. The results of the simulation
concern the values of the density, the pressure, the radial velocity, the angular velocity
and the angular momentum. The profiles of these variables are plotted at t=1.44 ms.
Moreover the relative differences of the central density and the central angular momentum
are plotted. Finally the position of the vacuum boundary at each time step is presented.
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The plots that are presented concern the density, the pressure, the radial and angular
velocity profiles at t=1.44 ms. These profiles are compared to the initial data and they
seem to match in a fine way.
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Figure 4.28: Density, pressure, radial and angular velocity profiles for a differentially ro-
tating star with a surrounding vacuum region. The data of the simulation at t=1.44 ms
are compared with the initial one.
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The profile of the angular momentum ρuφ is presented along with a detail at the center
of the star. The numerical methods in this case can not describe precisely the behavior of
the density at this region.
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Figure 4.29: Angular momentum profile and detail at the surface of the star at t=1.44 ms.

The following plot concerns the relative difference of the density. The central density
oscillates round the initial value and the amplitude of these oscillations is quite small.
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Figure 4.30: Plot of the relative difference of the central density versus time in ms.
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In the next plot the relative difference of the central angular momentum is plotted.
The central angular momentum decreases in time.
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Figure 4.31: Plot of the relative difference of the central angular momentum versus time.

The next plot presents the position of the vacuum boundary at different time steps.
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Figure 4.32: Position of the vacuum boundary xv.
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Perturbed differentially rotating star with vacuum

In this section a perturbed differentially rotating star with vacuum is studied. The poly-
tropic index is n=1 and ζ = 0.1. The main difference to the previous section is that the
initial data are altered before they are used for the dynamical evolution. A fraction of
the pressure is used as initial data, according to the equation (4.17). The initial data do
not describe anymore an equilibrium state and therefore the star, as it evolves during the
simulation, is driven to a new equilibrium. The CFL number is 0.1 and the grid points are
1600.
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Figure 4.33: Density, energy, radial velocity and potential profiles for a perturbed differ-
entially rotating star with a surrounding vacuum region. The data of the simulation at
t=1.44 ms are compared with the initial one.
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The angular velocity and momentum profiles are presented at t=1.44 ms.
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Figure 4.34: Angular velocity and angular momentum profiles at t=1.6 ms.

The following plot presents the relative difference of the central density at each time step.
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Figure 4.35: Plot of the relative difference of the central density versus time in ms.



112 CHAPTER 4. DYNAMICAL SIMULATIONS

The following plot presents the relative difference of the central angular momentum at
each time step.
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Figure 4.36: Plot of the relative difference of the central angular momentum versus time.

The next plot presents the position of the vacuum boundary at different time steps.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.94

0.95

0.96

0.97

0.98

0.99

1.00

1.01

1.02

1.03

 

 

xv

t

Figure 4.37: Position of the vacuum boundary xv.
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4.5.2 MHD stars

The evolution of MHD stars is governed by the one-dimensional MHD equations, namely
equations (1.37) to (1.38). The effects of the Newtonian gravitational field are taken into
account. The case of a static MHD star surrounded by an atmosphere is studied. The
polytropic index is n=1. Since the star is not rotating, only the radial component Br

of the magnetic field is present in the solution. The magnetic field satisfies Maxwell’s
constraint equation

∇B = 0 ⇒ 1
r

∂

∂r

(
rBr

)
= 0 ⇒ Br

r
+

∂Br

∂r
= 0 ⇒

Br =
B0

r
(4.19)

where B0 is the value of the field at the surface of the star at t=0. It is obvious that the
magnetic field exhibits a singularity at the point r=0. The value of the radial component
Br at the center of the star for the initial data is found by using extrapolation. During
the dynamical evolution this value is kept stable.
The magnetic field also satisfies the flux-freezing equation

∂B
∂t

= ∇× (
u×B

)
(4.20)

The radial component of the magnetic field is independent of time, since according to the
previous equation it is

∂Br

∂t
=

1
r

∂
[(

u×B
)
z

]

∂φ
−

∂
[(

u×B
)
φ

]

∂z
= 0

The MHD-HLLC Riemann solver is used for the numerical calculations, along with the
splitting method for the source terms. The Newtonian gravitational potential is calculated
at each time step. An artificial atmosphere is present in the initial configuration. The
atmosphere’s density is equal to that of the star’s surface and its pressure is given by the
polytropic equation of state (1.2). If the density of the atmosphere increases and exceeds
a multiplicate of its initial value, then it is reset to that initial value. This procedure takes
place because the precision of the numerical methods does not exceed numbers smaller
than 10−7 and otherwise the numerical code would crash.
The CFL number is 0.1 and the number of the grid points is 1600. The plots, which are
presented concern the gas pressure, the radial velocity, the radial magnetic field and the
potential profiles at t=1.44 ms. Moreover the density profile and a detail of the star’s
center are plotted. Finally the relative difference of the central density at each time step
is plotted.
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The following plots concern the radial component of the magnetic field, the gas pressure,
the radial velocity and the potential profiles for a static MHD star, with an artificial
atmosphere, at t=1.44 ms.
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Figure 4.38: Radial magnetic field component, gas pressure, radial velocity and potential
profiles for a static MHD star with a surrounding atmosphere. The data of the simulation
at t=1.44 ms are compared with the initial one.
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The density profile is plotted and a detail at the center of the star is presented.
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Figure 4.39: Density profile and detail at the center of the star at t=1.44 ms.

The next plot concerns the relative difference of the central density.
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Figure 4.40: Plot of the relative difference of the central density versus time in ms.



116 CHAPTER 4. DYNAMICAL SIMULATIONS



Bibliography

[1] Batten, P., Clarke, N., Lambert, C., Causon, D., SIAM J. Sci. Comput. 18, 153 (1997)

[2] Collela, P., Woodward, P. R., J. Comp. Phys., 54, 174 (1984)

[3] Cook, J. N., Shapiro, S. L., Stephens, B. C., Astrophys. J., 599, 1272 (2003)
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