
Modifying gravity, black holes, and gravity wave
constraints

LPT Université Paris Sûd, CNRS

STSM COST
Astronomy group
Physics Dept.

APTh.

C. Charmousis Modifying gravity, black holes, and gravity wave constraints



Plan

Modification of gravity: an introduction
Observation and theory: From local to cosmological scales.
Modification of gravity and basic rules
Scalar tensor theories, the question of frames, self tuning
Horndeski’s theorem
Self tuning dark energy

Black holes and no hair

The BBMB solution
A no hair theorem
Hair recovery
example solutions

Gravitational wave observations and constraints on scalar tensor theories
Horndeski revisited
The question of frames
Constraints from neutron star boundaries
The allowed theories and disformed black holes

C. Charmousis Modifying gravity, black holes, and gravity wave constraints



Summary so far

Scalar tensor theory with 2nd order EOM: Horndeski theory-parametrized by 4
free functions.
Can go beyond Horndeski... More on this later on
Vacua in Horndeski can be non trivial and give dark energy without a
cosmological constant. Non trivial vacua lead to time dependent scalars even for
flat spacetime.
Self tuning solutions for flat and de Sitter spacetimes. Can we connect dark
energy vacua to black hole solutions?
Black holes have no hair but, no hair theorems are not valid for time dependent
spacetimes.

Let us now look at a specific no hair theorem for static and spherically symmetric
spacetimes...
...and shift symmetric theories
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No hair [Hui, Nicolis] [Sotiriou, Zhou] [Babichev, CC, Lehébel]

Static no hair theorem
Consider shift symmetric Horndeski theory with G2, G3, G4, G5 arbitrary functions of
X . We have a Noether current Jµ which is conserved, ∇µJµ = 0.
We now suppose that:

1 spacetime and scalar are spherically symmetric and static,

ds2 = −h(r)dt2 +
dr2

f (r)
+ r2dK2, φ = φ(r)

2 spacetime is asymptotically flat, φ′ → 0 as r →∞ and the norm of the current
J2 is finite on the horizon,

3 there is a canonical kinetic term X in the action,
4 and the Gi functions are such that their X -derivatives contain only positive or

zero powers of X .
Under these hypotheses, φ is constant and thus the only black hole solution is locally
isometric to Schwarzschild.

Most interesting part of no go theorem: Breaking any of these hypotheses leads to
black hole solutions!
Theorem can be extended for star solutions. [Lehébel et al.]
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Hair versus no hair [figure: Lehébel]
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Introducing time dependence, q 6= 0
Spherical symmetry certainly does not impose staticity (not like GR).

Furthermore, for self accelerating or self tuning solutions one has a time
dependence for the scalar in FRW coordinates
In spherical symmetry this leads to a time and radially depending scalar already
for flat spacetime.
So let us allow time dependence for the scalar while keeping for a static and
spherically symmetric spacetime.

But is this consistent with respect to the field equations:

Eφ = 0, Eµν = 0
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The question of time dependence, qt + ψ(r)

Consistency theorem [Babichev, CC, Hassaine]

Consider :
-an arbitrary shift symmetric Horndeski theory φ→ c + φ

-a scalar-metric ansatz ds2 = −h(r)dt2 +
dr2

f (r)
+ r2dK2, φ = qt + ψ(r) with q 6= 0.

The unique solution to the scalar field equation Eφ = 0 and the “matter flow” metric
equation Etr = 0 is given by J r = 0.

We are killing two birds with one stone.
The current now reads, JµJµ = −h(Jt)2 + (J r )2/f and is regular. Time
dependence renders no hair theorem irrelevant.
If J r = 0 allows φ′ 6= 0 solutions then we may construct hairy solutions.
This is where the higher order nature of Horndeski theory is essential!!
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General solution
Consider, L = R − η(∂φ)2 + βGµν∂µφ∂νφ− 2Λ For static and spherically symmetric
spacetime.

The general solution of theory L for static and spherically symmetric metric and
φ = φ(t, r) is given as a solution to the following third order algebraic equation with
respect to

√
k(r):

(qβ)2
(
1 + r2

2β

)2
−
(
2 + (1− 2βΛ) r2

2β

)
k(r) + C0k3/2(r) = 0

All metric and scalar functions given with respect to k and φ = qt + ψ(r).
For general shift symmetric G2,G4 the result can be extended, [Kobayashi, Tanahashi]

Let us now give some specific examples for the different cases...
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Scalar with constant velocity q 6= 0
Consider the action,

S =
∫

d4x
√
−g
[
ζR − 2Λ− η (∂φ)2 + βGµν∂µφ∂νφ

]
...,

Scalar field equation and conservation of current,

∇µJµ = 0, Jµ = (ηgµν − βGµν) ∂νφ.

Take ds2 = −h(r)dt2 + dr2
f (r) + r2dΩ2, and φ = φ(t, r) then

φ = ψ + qt while Etr = − q2Jr
f −→ J r = 0 solves both equations...

βG rr − ηg rr = 0 ie. f = (β+ηr2)h
β(rh)′ or φ′ = 0

For a higher order theory J r = 0 does not necessarily imply φ = const.

J r = 0 means that we kill primary hair since, ∇µJµ = 0→
√
−g(βG rr − ηg rr )∂rφ = c

We now solve for the remaining field eqs...
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Solving the remaining EoM

From (rr)-component get ψ′

ψ′ = ±
√
r

h(β + ηr2)

(
q2β(β + ηr2)h′ −

ζη + βΛ
2

(h2r2)′
)1/2

.

and finally (tt)-component gives h(r) via,

h(r) = −
µ

r
+

1
r

∫
k(r)

β + ηr2
dr ,

with
q2β(β + ηr2)2 −

(
2ζβ + (ζη − βΛ) r2

)
k + C0k3/2 = 0,

Any solution to the algebraic eq for k = k(r) gives full solution to the system!
...

Lets take η = Λ = 0
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Asymptotically flat limit : Λ = 0, η = 0

Consider S =
∫
d4x
√
−g [ζR + βGµν∂µφ∂νφ]

Algebraic equation to solve: q2β3 − 2ζβk + C0k3/2 = 0→ k = constant!
f (r) = h(r) = 1− µ/r

φ± = qt ± qµ
[
2
√ r

µ
+ log

√
r−√µ√
r+√µ

]
+ φ0...

Consider v = t +
∫

(fh)−1/2dr then ds2 = −hdv2 + 2
√

h/f dvdr + r2dΩ2

Regular chart for horizon, EF coordinates

φ+ = q
[
v − r + 2√µr − 2µ log

(√ r
µ

+ 1
)]

+ const

Scalar regular at future black hole horizon.

Schwarzschild geometry with a non-trivial regular scalar field.
Exterior geometry for star
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Star solutions [Cisterna, Delsate, Rinaldi], [Maselli, Silva, Minamitsuji, Berti]

Consider S =
∫
d4x
√
−g [ζR + βGµν∂µφ∂νφ]

Take stealth solution for exterior and consider PF matter for interior with ρ and
P that does not couple to scalar.
J r = 0, and therefore G rr = 0 which effects star interior.
For fixed star radius β > 0 (β < 0) gives heavier (lighter) stars than GR.
No GR limit for q → 0
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For fixed star radius β > 0 (β < 0) gives heavier (lighter) stars than GR.
No GR limit for q → 0
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Self tuning de Sitter black hole

S =
∫

d4x
√
−g
[
ζR − 2Λ− η (∂φ)2 + βGµν∂µφ∂νφ

]
... q2β(β + ηr2)2 −

(
2ζβ + (ζη − βΛ) r2

)
k + C0k3/2 = 0

f = h = 1− µ
r + η

3β r
2 de Sitter Schwarzschild!

ψ′ = ± q
h
√
1− h and φ(t, r) = q t + ψ(r)

The effective cosmological constant is not the vacuum cosmological constant. In
fact,
Self tuning relation : q2η = Λ− Λeff > 0
Hence for any Λ > Λeff fixes q, integration constant.
where Λeff = − η

β
is fixed by effective theory.

Solution hides vacuum cosmological constant leaving a smaller effective
cosmological constant [Gubitosi, Linder]
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Hair versus no hair [Lehébel]

Shift-symmetric
Horndeski theories

Gi(X)

John, ���φ(∂φ)2

e.g. Babichev et al.,
Kobayashi et al. Stealth
Schwarzschild black hole

John
e.g. Rinaldi, Anabalon

et al., Minamitsuji

G4X = 0, G4XX = 0
Babichev et al. Stealth
solutions (⊃ Kerr)

Everything else
Hui-Nicolis theorem

e.g. G4 ⊃
√−X

Babichev et al.
αφĜ ⇔ G5 =
−4α ln |X|
Sotiriou-Zhou

GiX contains ne-
gative powers of X

GiX contains
only positive
powers of X

q 6= 0 q = 0

No asymp-
totic flatness

Asymptotic
flatness

No kinetic term Kinetic term

Jr 6= 0Jr = 0
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The special case of the Gauss-Bonnet invariant
[Sotiriou, Zhou] [Duncan et.al] [Mavromatos et.al]

The Gauss-Bonnet term, Ĝ = RµναβRµναβ − 4RµνRµν + R2, is a topological
invariant in 4 dimensions.
Variation with respect to the metric gives the 4 dim Lovelock identity,
Hµν = −2PµcdeRν cde + gµν

2 Ĝ = 0. If we couple to scalar then φĜ ceases to be trivial.
It can be obtained in Horndeski theory via G5 ∼ lnX
The theory

LGB =
R
2
−

1
2
∇µφ∇µφ+ αφĜ

is non trivial and shift symmetric. Here, Ĝ (is independent of φ) and acts as a source
to the scalar which cannot be set to zero.

�φ+ αĜ = 0
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The special case of the Gauss-Bonnet invariant
[Sotiriou, Zhou] [Duncan et.al] [Mavromatos et.al]

The Gauss-Bonnet term, Ĝ = RµναβRµναβ − 4RµνRµν + R2, is a topological
invariant in 4 dimensions.
If we couple to scalar then φĜ ceases to be trivial.
It can be obtained in Horndeski theory via G5 ∼ lnX
The theory

LGB =
R
2
−

1
2
∇µφ∇µφ+ αφĜ

is non trivial and shift symmetric. Here, Ĝ (is independent of φ) and acts as a source
to the scalar which cannot be set to zero.

�φ+ αĜ = 0
Numerical solution can be found where the scalar and mass integration constants
are fixed so that the solution is regular at the horizon.
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The special case of the Gauss-Bonnet invariant
[Sotiriou, Zhou] [Duncan et.al] [Mavromatos et.al]

The Gauss-Bonnet term, Ĝ = RµναβRµναβ − 4RµνRµν + R2, is a topological
invariant in 4 dimensions.
If we couple to scalar then φĜ ceases to be trivial.
It can be obtained in Horndeski theory via G5 ∼ lnX
The theory

LGB =
R
2
−

1
2
∇µφ∇µφ+ αφĜ

is non trivial and shift symmetric. Here, Ĝ (is independent of φ) and acts as a source
to the scalar which cannot be set to zero.

�φ+ αĜ = 0
The mass of the black hole has a minimal size fixed by the GB coupling α. The
singularity is attained at positive r .

C. Charmousis Modifying gravity, black holes, and gravity wave constraints



The special case of the Gauss-Bonnet invariant
[Sotiriou, Zhou] [Duncan et.al] [Mavromatos et.al]

The Gauss-Bonnet term, Ĝ = RµναβRµναβ − 4RµνRµν + R2, is a topological
invariant in 4 dimensions.
If we couple to scalar then φĜ ceases to be trivial.
It can be obtained in Horndeski theory via G5 ∼ lnX
The theory

LGB =
R
2
−

1
2
∇µφ∇µφ+ αφĜ

is non trivial and shift symmetric. Here, Ĝ (is independent of φ) and acts as a source
to the scalar which cannot be set to zero.

�φ+ αĜ = 0
The solution has infinite current norm at the horizon because J r 6= 0
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The special case of the Gauss-Bonnet invariant
[Sotiriou, Zhou] [Duncan et.al] [Mavromatos et.al]

The Gauss-Bonnet term, Ĝ = RµναβRµναβ − 4RµνRµν + R2, is a topological
invariant in 4 dimensions.
If we couple to scalar then φĜ ceases to be trivial.
It can be obtained in Horndeski theory via G5 ∼ lnX
The theory

LGB =
R
2
−

1
2
∇µφ∇µφ+ αφĜ

is non trivial and shift symmetric. Here, Ĝ (is independent of φ) and acts as a source
to the scalar which cannot be set to zero.

�φ+ αĜ = 0
Solutions with q 6= 0 and regular Noether current are in a different branch and
are singular.
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Conformally coupled scalar field

Consider a conformally coupled scalar field φ revisited:

S[gµν , φ, ψ] =
∫
M

√
−g
( R
16πG

−
1
2
∂αφ∂

αφ−
1
12

Rφ2
)

d4x + Sm[gµν , ψ]

Invariance of the EOM of φ under the conformal transformation{
gαβ 7→ g̃αβ = Ω2gαβ
φ 7→ φ̃ = Ω−1φ

There exists a black hole geometry with non-trivial scalar field and secondary
black hole hair.
The BBMB solution [N. Bocharova et al.-70 , J. Bekenstein-74 ]
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BBMB completion [CC, Kolyvaris, Papantonopoulos and Tsoukalas]

We would like to combine the above properties in order to obtain a hairy black
hole.
Consider the following action, S(gµν , φ, ψ) = S0 + S1 where

S0 =
∫

dx4
√
−g
[
ζR + η

(
−
1
2

(∂φ)2 −
1
12
φ2R
)]

and

S1 =
∫

dx4
√
−g
(
βGµν∇µΨ∇νΨ− γTBBMB

µν ∇µΨ∇νΨ
)
,

where

TBBMB
µν =

1
2
∇µφ∇νφ−

1
4
gµν∇αφ∇αφ+

1
12

(gµν�−∇µ∇ν + Gµν)φ2 .

Scalar field equation of S1 contains metric equation of S0.

∇µJµ = 0 , Jµ =
(
βGµν − γTBBMB

µν

)
∇νΨ .
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Black hole with primary hair

Solve as before assuming linear time dependence for Ψ
Scalar φ has an additional branch regular at the "horizon"

f (r) = h(r) = 1−
m
r

+
γc20
12βr2

,

φ(r) =
c0
r
,

ψ′(r) = ±q

√
mr − γc20

12β

r h(r)
,

βη + γ(q2β − ζ) = 0 .
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,
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Scalar charge c0 playing similar role to EM charge in RN
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Black hole with primary hair

Solve as before assuming linear time dependence for Ψ
Scalar φ has an additional branch regular at the "horizon"

f (r) = h(r) = 1−
m
r

+
γc20
12βr2

,

φ(r) =
c0
r
,

ψ′(r) = ±q

√
mr − γc20

12β

r h(r)
,

βη + γ(q2β − ζ) = 0 .

Scalar charge c0 playing similar role to EM charge in RN
Galileon Ψ regular on the future horizon

ψ = qv − q
∫

dr
1±
√

1− h(r)
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So far...

For q 6= 0 we can find solutions analytically for G2,G4 and otherwise numerically
For q = 0 we need to source the scalar field equation breaking one of the
hypotheses of the theorem [Babichev, CC, Lehébel]

Slow rotation gives identical correction to GR. Stationary solutions not known
except for stealth Kerr...
In dense matter regions how does scalar couple to matter? Neutron stars etc...
Observation has answered this question for us. Neutron star binary event.
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Galileons/Horndeski [Horndeski 1973]

What is the most general scalar-tensor theory
with second order field equations [Horndeski 1973]?

Horndeski has shown that the most general action with this property is

SH =
∫

d4x
√
−g (L2 + L3 + L4 + L5)

L2 = G2(φ,X),
L3 = G3(φ,X)�φ,

L4 = G4(φ,X)R + G4X
[

(�φ)2 − (∇µ∇νφ)2
]
,

L5 = G5(φ,X)Gµν∇µ∇νφ−
G5X
6
[

(�φ)3 − 3�φ(∇µ∇νφ)2 + 2(∇µ∇νφ)3
]

the Gi are free functions of φ and X ≡ − 1
2∇

µφ∇µφ and GiX ≡ ∂Gi/∂X .
In fact same action as covariant Galileons [Deffayet, Esposito-Farese, Vikman].
Galileons are scalars with Galilean symmetry for flat spacetime.
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Galileons/Horndeski [Horndeski 1973]

SH =
∫

d4x
√
−g (L2 + L3 + L4 + L5)

L2 = G2(φ,X),
L3 = G3(φ,X)�φ,

L4 = G4(φ,X)R + G4X
[

(�φ)2 − (∇µ∇νφ)2
]
,

L5 = G5(φ,X)Gµν∇µ∇νφ−
G5X
6
[

(�φ)3 − 3�φ(∇µ∇νφ)2 + 2(∇µ∇νφ)3
]

Examples: G4 = 1 −→ R.
G4 = X −→ Gµν∇µφ∇νφ.
G3 = X −→ "DGP" term, (∇φ)2�φ
G5 = lnX −→ gives GB term, Ĝ = RµναβRµναβ − 4RµνRµν + R2

Action is unique modulo integration by parts.
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Going beyond Horndeski [Gleyzes et.al], [Zumalacarregui et.al],[Deffayet et.al], [Langlois et.al],
[Crisostomi et.al]

What is the most general scalar-tensor theory with three propagating degrees of
freedom?
It is beyond Horndeski but not quite DHOST yet...

SH =
∫

d4x
√
−g (L2 + L3 + L4 + L5) ,

where

L2 = G2(φ,X), L3 = G3(φ,X)�φ,

L4 = G4(φ,X)R + G4X
[

(�φ)2 − (∇µ∇νφ)2
]

+ F4(φ,X)εµνρσ εµ
′ν′ρ′σφµφµ′φνν′φρρ′ ,

L5 = G5(φ,X)Gµν∇µ∇νφ−
G5X
6
[

(�φ)3 − 3�φ(∇µ∇νφ)2 + 2(∇µ∇νφ)3
]

+ F5(φ,X)εµνρσεµ
′ν′ρ′σ′

φµφµ′φνν′φρρ′φσσ′

where XG5,XF4 = 3F5
[
G4 − 2XG4,X − (X/2)G5,φ

]
. Beyond Horndeski acquires one

extra function. BH has similar SA and ST solutions.
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Conformal and disformal relations [Bellido, Zumalacarregui]

How are theories mapped under conformal and disformal transformations?

gµν −→ g̃µν = C(φ,X)gµν + D(φ,X)∇µφ∇νφ

Horndeski theory has G2,G3,G4,G5 free functions.
For C(φ) and D(φ) we remain within Horndeski.
However if we take a disformal D(X) we jump to
Beyond Horndeski (one more free function)
Take a conformal C(X) and jump to
DHOST Type I (one more free function) [Langlois, Noui], [Crisostomi, Koyama]

In other words DHOST type I are all related to some Horndeski theory. Remaining
DHOST theories are pathological [Langlois, Noui, Vernizzi]

Most general acceptable scalar tensor theories are related to Horndeski theory via a
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GW170817 constraints on scalar tensor theories [Creminelli, Vernizzi],
[Ezquiaga, Zumalacarregui]

The combined observation of a gravity wave signal from a binary neutron star
and its GRB counterpart constraints cT = 1 to a 10−15 accuracy.
For dark energy the scalar field (ST or SA) is non trivial at such distance scales
(40Mpc) and generically mixes with the tensor metric perturbations modifying
the light cone for gravity waves.
For Horndeski the surviving theory has free G2(φ,X),G3(φ,X), G4(φ) and
G5 = 0.
For beyond Horndeski we have G5 = 0,F5 = 0, 2G4,X + XF4 = 0 and theory,

LcT =1 = G2(φ,X) + G3(φ,X)�φ+ B4(φ,X) (4)R

−
4
X
B4,X (φ,X)(φµφνφµν�φ− φµφµνφλφλν) ,

For DHOST we just make a conformal transformation of the above,
G2(φ,X)G3(φ,X),B4(φ,X),C(φ,X)
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Galileons/Horndeski [Horndeski 1973]

What is the most general scalar-tensor theory
with second order field equations [Horndeski 1973]?

Horndeski has shown that the most general action with this property is

SH =
∫

d4x
√
−g (L2 + L3 + L4 + L5)

L2 = G2(φ,X),
L3 = G3(φ,X)�φ,

L4 = G4(φ,X)R + G4X
[

(�φ)2 − (∇µ∇νφ)2
]
,

L5 = G5(φ,X)Gµν∇µ∇νφ−
G5X
6
[

(�φ)3 − 3�φ(∇µ∇νφ)2 + 2(∇µ∇νφ)3
]

Examples: G4 = 1 −→ R.
G4 = X −→ Gµν∇µφ∇νφ.
G3 = X −→ "DGP" term, (∇φ)2�φ
G5 = lnX −→ gives GB term, Ĝ = RµναβRµναβ − 4RµνRµν + R2
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Physical and disformed frames

Most general scalar tensor theory with cT = 1 minimally coupled to matter
parametrized by G2,G3,B4,C

LcT =1 = G2 + G3�φ+ B4C (4)R −
4B4,XC

X
φµφνφµν�φ

+
(4B4,XC

X
+

6B4C,X 2

C
+ 8C,XB4,X

)
φµφµνφλφ

λν

+
8C,XB4,X

X
(φµφµνφν)2 .

Horndeski is related via a transformation

gµν −→ g̃µν = C(φ,X)gµν + D(φ,X)∇µφ∇νφ

to the LcT =1 for given C and D.
One can start with a cT 6= 1 Horndeski theory and map it to a DHOST cT = 1
theory for a specific function D.
The former is what we could have called the Einstein frame respective to the
latter, the Jordan frame...
except that the metric is disformed in the procedure...
The more the symmetry the better
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The physical frame and the disformed solution [Babichev, CC, GEFarèse,

Lehébel]

The theory

S =
∫

d4x
√
−g
[
ζR − 2Λ− η (∂φ)2 + βGµν∂µφ∂νφ

]
,

is excluded or it is not in the physical frame.
Solution: f = h = 1− µ

r + η
3β r

2, φ = qt ± q
h
√
1− h with Λeff = −ζη/β.

The physical frame is :

g̃µν = gµν −
β

ζ + β
2 ϕ

2
λ

ϕµϕν .

Indeed the g̃µν frame is a beyond Horndeski theory with cT = 1 for a
cosmological background.
The disformed metric is a black hole
we have exactly cgrav = 1 for a highly curved background!
The solution is stable but spoils self tuning
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Summary

Starting from a no hair theorem we have seen how to construct hairy black holes.
Similar theorem exists for neutron stars.
Higher order terms essential for novel branches of black holes. Time dependance
essential for regularity.
One can construct solutions with EM fields and black hole solutions with primary
hair by adding additional scalar fields
Techniques for shift symmetric Horndeski can be extended to Maxwell-Proca
theories.
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Slowly rotating solutions [Maselli, Silva, Minamitsuji, Berti]

Using the Hartle Thorne perturbative approximation in which frame-dragging is
assumed linear in angular velocity

ds2 = −h(r)dt2 +
dr2

f (r)
+ r2(dθ2 + sin2θdϕ2)− 2ω(r)r2sin2θdtdϕ,

We get an ode to linear order:

2(1− βX)
[
ω′′ +

ω′

2

( f ′
f

+
8
r
−

h′

h

)]
− 2βX ′ω′ = 0

which agrees with GR for X constant.
What happens for X 6= const.
We can integrate once,

(1− βX)ω′ =
C1
√
k

r4(1 + r2
2β )

but, one can show by using remaining field equations that correction is always
identical to GR [Lehébel].
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