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FIG. 3: Marginalized 1D posterior probability density functions for ⇤̃ of three BNS systems (labelled by the masses in the title) each
with ⇢net = 32.4. The injected ⇤̃ values are consistent with the MPA1 EOS model [37] and are marked with straight, dashed lines. These
plots are PDFs smoothed with a Gaussian kernel density estimator. To generate a single plot, we inject BNS signals modeled by each
of the five PN waveform families derived in Appendix A. Though the waveform family for each signal is di↵erent, the injected waveform
parameters are identical. The five PDFs, which are labelled by the injected waveform family, are all recovered using TaylorF2 waveform
templates. The deviation of each peak away from the injected value is due to the systematic error in the PN waveform approximants. For
these results, we injected into zero-noise (see Sec. III C).

FIG. 4: Marginalized 1D posterior probability density functions for ⇤̃ of three BNS systems (labelled by the masses in the title) each with
⇢net = 32.4 (bottom). The injected ⇤̃ values are consistent with the MPA1 EOS model [37] and are marked with straight, dashed lines.
These plots are PDFs smoothed with a Gaussian kernel density estimator. To generate a single plot, we inject the same BNS signal into
ten di↵erent noise realizations. The deviation of each peak away from the injected value is due to the statistical error from the presence
of random detector noise. Each PDF has an associated box-and-whisker representation (top), where the edges of each box mark the first
and third quartile, the band inside each box is the median, and the end of the whiskers span the 90% confidence interval.

surement uncertainty of ⇤̃ (or the radius-like ⇤̃1/5) will
likely be ⇠40% (⇠8%) for a source with ⇢net = 20 and
⇠20% (⇠4%) for a source with ⇢net = 30.

We showed in Sec. IV how simultaneous measurements
of ⇤̃ and chirp mass can be used to constrain the NS
EOS. Other studies in constraining the NS EOS with fu-
ture GW observations include work by Del Pozzo et al.

[23], in which Bayesian simulations are used to incorpo-
rate information from tens of detections to discriminate
between sti↵, moderate, and soft EOSs. While Del Pozzo
et al. showed that tens of BNS sources can constrain �

for a 1.4 M� NS, which can then be used to constrain

the NS EOS, it might even be possible to constrain the
full form of the NS EOS over all masses.

In the work presented here, we have examined the abil-
ity of GW detectors to measure the tidal parameters ⇤̃
and �⇤̃. The main quantity of interest, however, is the
universal EOS that is common to all NSs. One method
to measure the EOS is to construct a parameterized EOS
(e.g. [37, 43, 44]), then replace the tidal parameters in
the waveform with EOS parameters. This method al-
lows one to use physical and astrophysical information
to place tighter constraints on the priors for the EOS
parameters in contrast to the less physically motivated
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O R B I TA L  D Y N A M I C S  A N D  
M E T R I C  P E R T U R B AT I O N

orbital dynamics is needed to obtain an accurate formula for 
evolution of phase 𝜑(t) and frequency 𝜔(t) 

post-Newtonian theory gives energy and flux of gravitational waves 
phase and frequency evolution computed from either energy 
balance formula or a Hamiltonian description that uses a RR force 

metric perturbation to compute the detector response 
post-Newtonian theory is used to iteratively solve for metric 
perturbation hlm which is then used to compute the plus and cross 
polarizations: h+ + i hx = ∑ -2Ylm hlm 
detector response is a linear combination of the two polarisatios: 
h(t) = h+ F+ + i hx Fx, where F+ and Fx are antenna response functions

8



P O S T- N E W T O N I A N  ( P N )  S O L U T I O N  T O  
O R B I TA L  D Y N A M I C S

end product of post-Newtonian approximation is the 
computation of orbital binding energy E and 
gravitational wave luminosity L 
E and L are derived as asymptotic series in the small 
parameter v - the orbital velocity:  

a phasing formula is derived using energy balance:
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E N E R G Y  B A L A N C E  E Q U AT I O N

energy lost to gravitational waves comes from the 
(negative) time rate of change of binding energy: 

to obtain an expression for the orbital phase as a 
function of time one must supplement the above 
energy balance equation with Kepler’s third law:
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solves a pair of ODEs to obtain a phasing formula 𝜑(t): 

recall that L and E are both asymptotic series or Taylor 
series with a finite number of turns 
they can be approximated in different ways leading to 
numerically different, but perturbatively equivalent, 
formulas for the phasing of the binary orbit 

W H Y  D O  W E  H AV E  S O  M A N Y  
P O S T N E W T O N I A N  WAV E F O R M  M O D E L S ?
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P R O B L E M S  W I T H  P N  A N D  C U R E S

PN being a Taylor series, quantities of interest cannot have poles  
poles can be artificially introduced by approximating a Taylor 
series as a rational polynomial 

energy is expected to have an extrema but PN series might not 
have any in the region of interest  

one can introduce extrema at desired points by factorising the 
zeroes 

PN series is poorly convergent 
re-summation techniques can be used to accelerate the 
convergence of PN series (but has converged to the right value?) 
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E X A M P L E S  O F  T R A N S F O R M AT I O N S

15

= E0(v)(1� v/v0)(1 + f1v + f2v
2 + f3v

3 + . . .)

E(v) = E0(v)(1 + e2v
2 + e3v

3 + . . .)

) f1 = 1/v0, f2 = e2 + (f1/v0), f3 = e3 + (f2/v0)

a zero

a pole

F (v) = F0(v)(1 + a2v
2 + a3v

3 + . . .)

=
F0(v)

(1� v/vp)
(1 + b1v + b2v

2 + b3v
3 + . . .)

) b1 = �1/vp, b2 = a2, b3 = a3 � a2/vp

Reformed expressions are perturbatively equivalent but 
numerically different and have different asymptotic structure



L A N D S C A P E  O F  WAV E F O R M S  A N D  
W H Y  T H E Y  A R E  N O T  A L L  R I G H T



P R O L I F E R AT I O N  O F  P N  A P P R O X I M AT E S

There are many Taylor models 
TaylorT1: numerical solve the ODEs to get 𝜑(t) and v(t) 

TaylorT4: expand L(v)/E’(v) in Taylor series and then solve 
TaylorT2: solve 𝜑’(v) and t’(v) ODEs to get 𝜑(v), t(v) 

TaylorT3: invert t(v) PN series to get v(t) and use in 𝜑(v) 

TaylorF2: stationary phase approximation to TaylorT2 
Could also have introduced many more  

TaylorF1, TaylorF3, TaylorF4, even more Taylor models and 
their frequency domain equivalents
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B E F O R E  M AT U R E  N R  S I M U L AT I O N S  A L L  W E  C O U L D  D O  WA S  
C O M PA R I S O N  O F  TAY L O R  M O D E L S

figures-of-merit used for comparison 
overlap: scalar product of two waveforms w1 and w2: 

faithfulness: overlap maximised over phase and time: 

effectualness: faithfulness maximised also over masses 
and spins
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19

roles of signal and template arising from the maximization
is obvious from the different panels. From the panels for
2PN signals and 3PN (3.5PN) templates for systems in-
volving neutron stars, it is interesting to see that higher PN
order approximant templates do not necessarily lead to
higher effectualness. One can also read off whether 3PN
templates are as effective as the 3.5PN templates for vari-
ous systems and various detectors. The figures condense a
variety of such insights and may be useful to look at
specific issues when required.

B. Discussion

In the case of binary neutron stars, the merger occurs far
outside the sensitive band of the detector, and even the late
stages of inspiral are out of band. Binary neutron stars will
very much be in the adiabatic regime as the signal sweeps
through the band, and a good test of the PN approximation
is to ask how well the different waveforms agree with one
another in this regime. The finite bandwidth of the detector
essentially probes this regime for binary neutron stars.
Note that the effectualness amongst different PN families
at 2PN order is pretty poor but greater than 0.95 (with the
exceptions discussed earlier) at 3PN and 3.5PN orders. In
the case of Advanced LIGO (cf. Fig. 4), the lower fre-

quency cutoff used in computing the overlap integrals is
20 Hz, and a binary neutron star spends more than 750
cycles in band. Effectualness of 0.95 or greater means that
the waveforms remain in phase over the entire duration of
the signal. Of course, in reality the parameters of the signal
and the template are not the same, but even so this is a
remarkable success of the PN scheme.
For a BBH system with masses ð4:8; 5:2ÞM#, we see that

2PN and 3PN order templates are qualitatively similar to
the binary neutron star case. However, we can see a marked
deterioration of the effectualness at 3.5PN order. For a
system of total mass of 10M#, the Schwarzschild LSO
occurs at $440 Hz and the detector is sensitive to the
late stages of the inspiral phase. It is not entirely surprising,
therefore, that different PN orders do not agree with each
other to the same extent as in the binary neutron star case.
However, note that, with the exception of TaylorT3, which
terminates at a frequency somewhat lower than others, and
TaylorEt, all other templates have effectualness of 0.95 or
better with each other. Among approximants that agree
with each other, EOB has the smallest effectualness. This
is because the latter model contains the plunge phase of the
coalescence with ending frequencies far higher than the
LSO, while other approximants do not have the plunge
phase.
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FIG. 4 (color online). Same as Fig. 3 but for Advanced LIGO.
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E F F E C T U A L N E S S :   
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roles of signal and template arising from the maximization
is obvious from the different panels. From the panels for
2PN signals and 3PN (3.5PN) templates for systems in-
volving neutron stars, it is interesting to see that higher PN
order approximant templates do not necessarily lead to
higher effectualness. One can also read off whether 3PN
templates are as effective as the 3.5PN templates for vari-
ous systems and various detectors. The figures condense a
variety of such insights and may be useful to look at
specific issues when required.

B. Discussion

In the case of binary neutron stars, the merger occurs far
outside the sensitive band of the detector, and even the late
stages of inspiral are out of band. Binary neutron stars will
very much be in the adiabatic regime as the signal sweeps
through the band, and a good test of the PN approximation
is to ask how well the different waveforms agree with one
another in this regime. The finite bandwidth of the detector
essentially probes this regime for binary neutron stars.
Note that the effectualness amongst different PN families
at 2PN order is pretty poor but greater than 0.95 (with the
exceptions discussed earlier) at 3PN and 3.5PN orders. In
the case of Advanced LIGO (cf. Fig. 4), the lower fre-

quency cutoff used in computing the overlap integrals is
20 Hz, and a binary neutron star spends more than 750
cycles in band. Effectualness of 0.95 or greater means that
the waveforms remain in phase over the entire duration of
the signal. Of course, in reality the parameters of the signal
and the template are not the same, but even so this is a
remarkable success of the PN scheme.
For a BBH system with masses ð4:8; 5:2ÞM#, we see that

2PN and 3PN order templates are qualitatively similar to
the binary neutron star case. However, we can see a marked
deterioration of the effectualness at 3.5PN order. For a
system of total mass of 10M#, the Schwarzschild LSO
occurs at $440 Hz and the detector is sensitive to the
late stages of the inspiral phase. It is not entirely surprising,
therefore, that different PN orders do not agree with each
other to the same extent as in the binary neutron star case.
However, note that, with the exception of TaylorT3, which
terminates at a frequency somewhat lower than others, and
TaylorEt, all other templates have effectualness of 0.95 or
better with each other. Among approximants that agree
with each other, EOB has the smallest effectualness. This
is because the latter model contains the plunge phase of the
coalescence with ending frequencies far higher than the
LSO, while other approximants do not have the plunge
phase.
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FIG. 4 (color online). Same as Fig. 3 but for Advanced LIGO.
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roles of signal and template arising from the maximization
is obvious from the different panels. From the panels for
2PN signals and 3PN (3.5PN) templates for systems in-
volving neutron stars, it is interesting to see that higher PN
order approximant templates do not necessarily lead to
higher effectualness. One can also read off whether 3PN
templates are as effective as the 3.5PN templates for vari-
ous systems and various detectors. The figures condense a
variety of such insights and may be useful to look at
specific issues when required.

B. Discussion

In the case of binary neutron stars, the merger occurs far
outside the sensitive band of the detector, and even the late
stages of inspiral are out of band. Binary neutron stars will
very much be in the adiabatic regime as the signal sweeps
through the band, and a good test of the PN approximation
is to ask how well the different waveforms agree with one
another in this regime. The finite bandwidth of the detector
essentially probes this regime for binary neutron stars.
Note that the effectualness amongst different PN families
at 2PN order is pretty poor but greater than 0.95 (with the
exceptions discussed earlier) at 3PN and 3.5PN orders. In
the case of Advanced LIGO (cf. Fig. 4), the lower fre-

quency cutoff used in computing the overlap integrals is
20 Hz, and a binary neutron star spends more than 750
cycles in band. Effectualness of 0.95 or greater means that
the waveforms remain in phase over the entire duration of
the signal. Of course, in reality the parameters of the signal
and the template are not the same, but even so this is a
remarkable success of the PN scheme.
For a BBH system with masses ð4:8; 5:2ÞM#, we see that

2PN and 3PN order templates are qualitatively similar to
the binary neutron star case. However, we can see a marked
deterioration of the effectualness at 3.5PN order. For a
system of total mass of 10M#, the Schwarzschild LSO
occurs at $440 Hz and the detector is sensitive to the
late stages of the inspiral phase. It is not entirely surprising,
therefore, that different PN orders do not agree with each
other to the same extent as in the binary neutron star case.
However, note that, with the exception of TaylorT3, which
terminates at a frequency somewhat lower than others, and
TaylorEt, all other templates have effectualness of 0.95 or
better with each other. Among approximants that agree
with each other, EOB has the smallest effectualness. This
is because the latter model contains the plunge phase of the
coalescence with ending frequencies far higher than the
LSO, while other approximants do not have the plunge
phase.
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FIG. 4 (color online). Same as Fig. 3 but for Advanced LIGO.
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roles of signal and template arising from the maximization
is obvious from the different panels. From the panels for
2PN signals and 3PN (3.5PN) templates for systems in-
volving neutron stars, it is interesting to see that higher PN
order approximant templates do not necessarily lead to
higher effectualness. One can also read off whether 3PN
templates are as effective as the 3.5PN templates for vari-
ous systems and various detectors. The figures condense a
variety of such insights and may be useful to look at
specific issues when required.

B. Discussion

In the case of binary neutron stars, the merger occurs far
outside the sensitive band of the detector, and even the late
stages of inspiral are out of band. Binary neutron stars will
very much be in the adiabatic regime as the signal sweeps
through the band, and a good test of the PN approximation
is to ask how well the different waveforms agree with one
another in this regime. The finite bandwidth of the detector
essentially probes this regime for binary neutron stars.
Note that the effectualness amongst different PN families
at 2PN order is pretty poor but greater than 0.95 (with the
exceptions discussed earlier) at 3PN and 3.5PN orders. In
the case of Advanced LIGO (cf. Fig. 4), the lower fre-

quency cutoff used in computing the overlap integrals is
20 Hz, and a binary neutron star spends more than 750
cycles in band. Effectualness of 0.95 or greater means that
the waveforms remain in phase over the entire duration of
the signal. Of course, in reality the parameters of the signal
and the template are not the same, but even so this is a
remarkable success of the PN scheme.
For a BBH system with masses ð4:8; 5:2ÞM#, we see that

2PN and 3PN order templates are qualitatively similar to
the binary neutron star case. However, we can see a marked
deterioration of the effectualness at 3.5PN order. For a
system of total mass of 10M#, the Schwarzschild LSO
occurs at $440 Hz and the detector is sensitive to the
late stages of the inspiral phase. It is not entirely surprising,
therefore, that different PN orders do not agree with each
other to the same extent as in the binary neutron star case.
However, note that, with the exception of TaylorT3, which
terminates at a frequency somewhat lower than others, and
TaylorEt, all other templates have effectualness of 0.95 or
better with each other. Among approximants that agree
with each other, EOB has the smallest effectualness. This
is because the latter model contains the plunge phase of the
coalescence with ending frequencies far higher than the
LSO, while other approximants do not have the plunge
phase.
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FIG. 4 (color online). Same as Fig. 3 but for Advanced LIGO.
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The above equation still gives _F as a function of ! . One can
then use Eq. (3.11) to get "ðvÞ. Consequently, there is no
guarantee that vwill be monotonic in the region of interest.
However, we do find that the function "EtðvÞ is positive in
the region of interest, and therefore v increases monotoni-
cally for TaylorEt. To find "ðvÞ for TaylorT3, _F is given by
differentiating Eq. (3.10b) with respect to t [recall # ¼
#ðtÞ], and then one uses the same equation to find v ¼
ð$MFÞ1=3 at a given t. It turns out that for TaylorT3 the
function "T3 can become negative in the region of interest
(exactly when this happens depends on the PN order and
mass ratio) and so v does not generally increase
monotonically.

Figure 1, left panel, plots "ðvÞ for two values of the mass
ratio: % ¼ 0:10 and % ¼ 0:25. When v is small (v $
1=

ffiffiffi
6

p
) "ðvÞ for the different approximants is the same.

Therefore, in systems for which v remains small when
the signal is in band (as, for example, in a binary neutron
star), the different approximants, as we shall see in the next

section, agree well with each other. As v approaches 1=
ffiffiffi
6

p
,

different approximations tend to differ greatly, which
means we cannot expect good agreement between the
different PN families. Of the approximants considered
here, TaylorEt seems to have the smallest value of "ðvÞ
at any given v. Therefore, the evolution will be slower, and
the duration of the waveform from a given frequency
larger, than the other approximants [51]. TaylorT3 also
differs from all others because "ðvÞ becomes negative
before the last stable orbit, and so v does not generally
increase monotonically for this approximant. This behav-
ior can be seen at 2PN and 3.5PN orders in the left panel of
Fig. 1. The reason for this can be seen in Fig. 1, right panel,
where we have shown the time development of "T3ðtÞ for
two values of % ¼ 0:10, 0.25. Since _F becomes negative

before reaching the last stable orbit, the waveform has to be
terminated before v reaches 1=

ffiffiffi
6

p
.

V. EFFECTUALNESS

The goal of this study is to compare the different PN
approximations by measuring their mutual effectualness
(i.e., overlaps maximized over intrinsic and extrinsic pa-
rameters) for a number of different mass pairs. To this end
it will be very useful to define the scalar product of wave-
forms. Given waveforms hk and qk, k ¼ 0; . . . ; N % 1,
where hk is the kth sample of the signal hðtÞ at time tk ¼
k!, ! ¼ 1=fs being the sampling interval corresponding
to the sampling rate fs, their scalar product is defined by7

hh; qið&kÞ ¼ 2
XN%1

m¼0

½HmQ
'
m þH'

mQm)e%2$imk=N
!f

ShðfmÞ
;

(5.1)

where !f ¼ fs=N, fm ¼ m!f, &k ¼ k! is the lag of the
template—a measure of the relative time shift between the
template and signal, Hm ¼ !

PN%1
k¼0 hke

2$imk=N , is the dis-
crete Fourier transform of hðtÞ (similarly, Qm), and ShðfmÞ
is the one-sided noise power spectral density of a detector.
In comparing two waveforms the overall amplitude is of no
interest and we should, therefore, consider waveforms with

unit norm, namely, ĥ ¼ h=
ffiffiffiffiffiffiffiffiffiffiffiffi
hh; hi

p
. Consequently, the rele-

vant quantity is the scalar product between normalized
waveforms defined by
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FIG. 1 (color online). On the left panel the plots show the evolution of frequency in different PN families. The adiabaticity parameter
"ðtÞ * F%2 _F is essentially the same for all the different approximations at v $ 1. As the binary gets close to coalescence the various
approximations begin to differ from each other. The right panel shows the adiabaticity parameter for the TaylorT3 model as a function
of time t at 3.5PN order. Note that "T3ðtÞ begins to decrease and even becomes less than zero before v reaches its nominal value of
1=

ffiffiffi
6

p
. This leads to waveforms that are significantly shorter in the case of TaylorT3.

7It is conventional to define the scalar product in the contin-
uum limit. Here, however, we have given the definition for
discretely sampled data, and this is the expression that is used
in computing the overlaps.
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The above equation still gives _F as a function of ! . One can
then use Eq. (3.11) to get "ðvÞ. Consequently, there is no
guarantee that vwill be monotonic in the region of interest.
However, we do find that the function "EtðvÞ is positive in
the region of interest, and therefore v increases monotoni-
cally for TaylorEt. To find "ðvÞ for TaylorT3, _F is given by
differentiating Eq. (3.10b) with respect to t [recall # ¼
#ðtÞ], and then one uses the same equation to find v ¼
ð$MFÞ1=3 at a given t. It turns out that for TaylorT3 the
function "T3 can become negative in the region of interest
(exactly when this happens depends on the PN order and
mass ratio) and so v does not generally increase
monotonically.

Figure 1, left panel, plots "ðvÞ for two values of the mass
ratio: % ¼ 0:10 and % ¼ 0:25. When v is small (v $
1=

ffiffiffi
6

p
) "ðvÞ for the different approximants is the same.

Therefore, in systems for which v remains small when
the signal is in band (as, for example, in a binary neutron
star), the different approximants, as we shall see in the next

section, agree well with each other. As v approaches 1=
ffiffiffi
6

p
,

different approximations tend to differ greatly, which
means we cannot expect good agreement between the
different PN families. Of the approximants considered
here, TaylorEt seems to have the smallest value of "ðvÞ
at any given v. Therefore, the evolution will be slower, and
the duration of the waveform from a given frequency
larger, than the other approximants [51]. TaylorT3 also
differs from all others because "ðvÞ becomes negative
before the last stable orbit, and so v does not generally
increase monotonically for this approximant. This behav-
ior can be seen at 2PN and 3.5PN orders in the left panel of
Fig. 1. The reason for this can be seen in Fig. 1, right panel,
where we have shown the time development of "T3ðtÞ for
two values of % ¼ 0:10, 0.25. Since _F becomes negative

before reaching the last stable orbit, the waveform has to be
terminated before v reaches 1=

ffiffiffi
6

p
.

V. EFFECTUALNESS

The goal of this study is to compare the different PN
approximations by measuring their mutual effectualness
(i.e., overlaps maximized over intrinsic and extrinsic pa-
rameters) for a number of different mass pairs. To this end
it will be very useful to define the scalar product of wave-
forms. Given waveforms hk and qk, k ¼ 0; . . . ; N % 1,
where hk is the kth sample of the signal hðtÞ at time tk ¼
k!, ! ¼ 1=fs being the sampling interval corresponding
to the sampling rate fs, their scalar product is defined by7

hh; qið&kÞ ¼ 2
XN%1

m¼0

½HmQ
'
m þH'

mQm)e%2$imk=N
!f

ShðfmÞ
;

(5.1)

where !f ¼ fs=N, fm ¼ m!f, &k ¼ k! is the lag of the
template—a measure of the relative time shift between the
template and signal, Hm ¼ !

PN%1
k¼0 hke

2$imk=N , is the dis-
crete Fourier transform of hðtÞ (similarly, Qm), and ShðfmÞ
is the one-sided noise power spectral density of a detector.
In comparing two waveforms the overall amplitude is of no
interest and we should, therefore, consider waveforms with

unit norm, namely, ĥ ¼ h=
ffiffiffiffiffiffiffiffiffiffiffiffi
hh; hi

p
. Consequently, the rele-

vant quantity is the scalar product between normalized
waveforms defined by
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FIG. 1 (color online). On the left panel the plots show the evolution of frequency in different PN families. The adiabaticity parameter
"ðtÞ * F%2 _F is essentially the same for all the different approximations at v $ 1. As the binary gets close to coalescence the various
approximations begin to differ from each other. The right panel shows the adiabaticity parameter for the TaylorT3 model as a function
of time t at 3.5PN order. Note that "T3ðtÞ begins to decrease and even becomes less than zero before v reaches its nominal value of
1=

ffiffiffi
6

p
. This leads to waveforms that are significantly shorter in the case of TaylorT3.

7It is conventional to define the scalar product in the contin-
uum limit. Here, however, we have given the definition for
discretely sampled data, and this is the expression that is used
in computing the overlaps.
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FIG. 3: Marginalized 1D posterior probability density functions for ⇤̃ of three BNS systems (labelled by the masses in the title) each
with ⇢net = 32.4. The injected ⇤̃ values are consistent with the MPA1 EOS model [37] and are marked with straight, dashed lines. These
plots are PDFs smoothed with a Gaussian kernel density estimator. To generate a single plot, we inject BNS signals modeled by each
of the five PN waveform families derived in Appendix A. Though the waveform family for each signal is di↵erent, the injected waveform
parameters are identical. The five PDFs, which are labelled by the injected waveform family, are all recovered using TaylorF2 waveform
templates. The deviation of each peak away from the injected value is due to the systematic error in the PN waveform approximants. For
these results, we injected into zero-noise (see Sec. III C).

FIG. 4: Marginalized 1D posterior probability density functions for ⇤̃ of three BNS systems (labelled by the masses in the title) each with
⇢net = 32.4 (bottom). The injected ⇤̃ values are consistent with the MPA1 EOS model [37] and are marked with straight, dashed lines.
These plots are PDFs smoothed with a Gaussian kernel density estimator. To generate a single plot, we inject the same BNS signal into
ten di↵erent noise realizations. The deviation of each peak away from the injected value is due to the statistical error from the presence
of random detector noise. Each PDF has an associated box-and-whisker representation (top), where the edges of each box mark the first
and third quartile, the band inside each box is the median, and the end of the whiskers span the 90% confidence interval.

surement uncertainty of ⇤̃ (or the radius-like ⇤̃1/5) will
likely be ⇠40% (⇠8%) for a source with ⇢net = 20 and
⇠20% (⇠4%) for a source with ⇢net = 30.

We showed in Sec. IV how simultaneous measurements
of ⇤̃ and chirp mass can be used to constrain the NS
EOS. Other studies in constraining the NS EOS with fu-
ture GW observations include work by Del Pozzo et al.

[23], in which Bayesian simulations are used to incorpo-
rate information from tens of detections to discriminate
between sti↵, moderate, and soft EOSs. While Del Pozzo
et al. showed that tens of BNS sources can constrain �

for a 1.4 M� NS, which can then be used to constrain

the NS EOS, it might even be possible to constrain the
full form of the NS EOS over all masses.

In the work presented here, we have examined the abil-
ity of GW detectors to measure the tidal parameters ⇤̃
and �⇤̃. The main quantity of interest, however, is the
universal EOS that is common to all NSs. One method
to measure the EOS is to construct a parameterized EOS
(e.g. [37, 43, 44]), then replace the tidal parameters in
the waveform with EOS parameters. This method al-
lows one to use physical and astrophysical information
to place tighter constraints on the priors for the EOS
parameters in contrast to the less physically motivated
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P N  M O D E L S  O K  F O R  D E T E C T I O N ,  B U T  T H E Y  
S H O U L D  N E V E R  B E  U S E D  F O R  PA R A M E T E R  

E S T I M AT I O N  



W H Y  A R E N ’ T  M I S S I N G  P O S T-
N E W T O N I A N  T E R M S  I M P O R TA N T

starting point of analytical waveform models, such as EOB, is 
PN equations 

additionally, convergence techniques are used in EOB 
analytical models introduce additional functions with adjustable 
parameters to tune the waveforms to numerical relativity 

typically parameters are tuned or calibrated at a small 
number of points in the parameter space 
models are then tested at other points in the parameter 
space 

so missing post-Newtonian terms are of no consequence 
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Summed PN conservative dynamics in the EOB formalism

“Real” description
“Effective” description

HPN
real = HNewt + 1

c2
H1PN + 1

c4
H2PN + · · ·

Hν
eff = µ

√

Aν(r)
[

1 + p2

µ2
+

(

1
Bν(r)

− 1
)

p2r
µ2

]

HEOB
real = M

√

1 + 2ν
(

Hν
eff
µ − 1

)

ds2eff = −Aν(r) dt
2 + Bν(r) dr

2 + r2 dΩ2

• Dynamic condensed in Aν(r) and Bν(r)

• Aν(r), which encodes the energetics for circular orbits, is rather simple

Aν(r) = 1− 2M
r + 2M3ν

r3
+
(

94
3 − 41

32π
2
)

M4 ν
r4

+ a5(ν)
r5

+ a6(ν)
r6

+ · · ·

YKIS2013, Kyoto, Japan 14

Buonanno and Damour 1999+, many papers since
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EOB dynamics and waveforms

• EOB dynamics

ṙ = ∂HEOB

∂p , ṗ = −∂HEOB

∂r + F , F ∝ dE
dt ,

dE
dt = 1

16π

∑

ℓ,m |ḣℓm|2

Ṡ1 =
∂HEOB

∂S1
× S1 , Ṡ2 =

∂HEOB

∂S2
× S2

[AB & Damour 00; Damour et al. 98; AB et al. 05; Damour et al. 07-09; AB et al. 09; Pan et al. 09]

• EOB (factorized) waveforms

h22(t) = −8π
5

ν M
R v2 e−2iΦ

{

1−
(

107
42 − 55

42 ν
)

v2 +
[

2π + 12i log
(

v
v0

)]

v3 + . . .
}

hinsp−plunge
ℓm (t) = ĥN

ℓm e−imΦ Seff Tℓm eiδℓm (ρℓm)ℓ hNQC
ℓm (ai, bi)

[Damour, Iyer & Nagar 09; Fujita & Iyer 10; Pan, AB, Fujita, Racine & Tagoshi 10]
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Alessandra Buonanno June 6, 2013

EOB inspiral-plunge waveform
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• The plunge is a smooth continuation of the adiabatic inspiral [AB & Damour 00]
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Alessandra Buonanno June 6, 2013

EOB inspiral-merger-ringdown waveforms
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• Very short transition merger–ringdown

• Energy quickly released during merger

• Erad ∼ 2%–12%M c2

1M⊙ c2 ∼ 1054 erg ∼ 1056 GeV!
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EOB inspiral-merger-ringdown waveforms
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• Very short transition merger–ringdown

• Energy quickly released during merger

• Erad ∼ 2%–12%M c2

1M⊙ c2 ∼ 1054 erg ∼ 1056 GeV!
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aligned large spins (not expected in BNS), equal masses
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precessing BH spin but non-spinning NS, unequal 
masses 1:5
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❖ q=7, non-spinning

New 170 orbit SpEC simulation
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F R E Q U E N C Y  R A N G E
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Harald Pfeiffer     Cwrt Bleddyn     May 11, 2015

covers 3x larger frequency-range

❖ For M=40Msun
• entire AdLIGO  

spectrum
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Harald Pfeiffer     Cwrt Bleddyn     May 11, 2015

Waveform models vs. 170-orbit NR

❖ Standard (Taylor)  
Post-Newtonian 
bad ~10%

❖ Phenom models 
even worse ~30%
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FIG. 3: Phasing and amplitude comparison (versus NR retarded time) between TEOBResum, NR and the phasing of TT4 for
three representative models. Waves are aligned on a time window (vertical dot-dashed lines) corresponding to I! ⇡ (0.04, 0.06).
The markers in the bottom panels indicate: the crossing of the TEOBResum LSO radius; NR (also with a dashed vertical line)
and EOB merger moments.

sponding dimensionless quantities defined respectively as
Eb ⌘

⇥
(M0

ADM � �Erad)/M � 1
⇤
/⌫ and j ⌘ (J 0

ADM �
�Jrad)/(M2⌫), where �Erad (�Jrad) is the radiated GW
energy (angular momentum). Since the relation Eb(j)
essentially captures the conservative dynamics [46], this
analysis directly probes the performance of the EOB
Hamiltonian, and notably the definition of AT (u; ⌫).

The top panels of Fig. 2 compare for all EOS four ener-
getics Eb(j): NR, TEOBResum, TEOBNNLO, and the PN-
expanded tidal energetics TPN, i.e. the (2PN accurate)
expansion of the function Eb(j) in powers of 1/c2. The
markers on the first three curves identify the correspond-
ing merger points. Following [44], we define the moments
of merger, intrinsically for each model, as the peak of the
modulus of the corresponding ` = m = 2 waveform. The
two di↵erences �EEOBNR

b (j) = EEOB
b (j) � ENR

b (j) for
TEOBResum and TEOBNNLO are shown in the bottom
panels. The shaded area indicates the NR uncertainty.
The main findings of this comparison are: (i) TPN is
always above the NR curve with a di↵erence which be-
comes unacceptably large towards merger (cf. the BBH
case in [46]); (ii) the location of the TEOBNNLO merger
point in the (Eb, j) plane is, in all cases, very signifi-
cantly away from the corresponding NR merger point;
(iii) by contrast, the TEOBResum merger point is, in all
but one case (2B), rather close to NR, especially when
T
2 is large; (iv) in all cases, the TEOBResum–NR di↵er-

ences (bottom panels) closely oscillate around zero during
most of the simulated ⇠ ten orbits; (v) moreover, such
di↵erences keep staying within the NR uncertainty es-
sentially up to (or slightly before for H4 and MS1b) the
TEOBResum merger.

EOB-NR comparison: phasing.— The EOB re-
summed tidal waveform is obtained following [2, 47].
We compare the EOB and NR quadrupole waveforms
Rh22, with R(h+ � ih⇥) =

P
`m Rh`m �2Y`m, by us-

ing a standard (time and phase) alignment procedure
in the time domain. Relative time and phase shifts
are determined by minimizing the L2 distance between
the EOB and NR phases integrated on a time inter-
val corresponding to the dimensionless frequency inter-
val I! = M(!L, !R) = (0.04, 0.06) for all EOS, except
�2164, for which I! = (0.0428, 0.06) as the simulation
starts at higher GW frequency. Such choice for I! allows
one to average out the phase oscillations linked to the
residual eccentricity (⇠ 0.01) of the NR simulations.

A sample of time-domain comparisons for three repre-
sentative T

2 ’s is shown in Fig. 3. Top panels compare the
TEOBResum and NR waveforms real part and modulus.
Bottom panels: (i) phase and relative amplitude di↵er-
ences between TEOBResum and NR; (ii) phase di↵erence
between the tidal Taylor T4 with NLO tides and 3PN
waveform (TT4) and NR; and (iii) NR phase uncertainty
(shaded region). The two vertical (dot-dashed) lines in-
dicate the alignment interval; as in Fig. 2, the markers
indicate the EOB (red) and NR (blue) mergers. The
crossing of the radius of the TEOBResum last stable orbit
(LSO) is indicated by a green marker. The time-domain
comparisons shows that for all T

2 the TEOBResum model
is compatible with NR data up to merger within NR un-
certainties (at the 2� level or better, both in phase and
amplitude). Note that the TT4 phasing performs sys-
tematically worse than TEOBResum.

Figure 3 is quantitatively completed by Table I, which
compares the phase di↵erences ��X ⌘ �X � �NR

with X = TT4,TEOBNNLO,TEOBResum evaluated (af-
ter time-alignment) at the moment of NR merger. The
NR uncertainty at merger ��NR

NRmrg is also listed in the
table. These numbers indicate how the disagreement
with NR systematically decreases when successively con-
sidering the analytical models TT4, TEOBNNLO and
TEOBResum. Such hierarchy of qualities among ana-

EOB uses a single parametrisation but this may not be 
adequate for all EoS

Bernuzzi+ PRL 2015
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2

FIG. 1: Gravitational waves signal from neutron star mergers. Top: real part and amplitude of the ` = m = 2 mode Rh22

versus the mass-normalized retarded time t/M for a fiducial configuration (H4-135135). The signal is shifted to the moment of
merger, i.e. to tmrg : maxt |Rh22(t)|, at which the chirping signal ends. Bottom: Snapshots of the dynamics at for three times:
during the late inspiral (left), at simulation time corresponding to tmrg (middle), during the postmerger (right).

II. NUMERICAL RELATIVITY GW SPECTRA

In this work we use the numerical relativity data we
previously computed in [14, 23]. In our simulations we
solve Einstein equations using the Z4c formulations [24]
and general relativistic hydrodynamics [25]. Our numer-
ical methods are detailed [23, 26–29]. The binary config-
urations considered in this work are listed in Tab. I. In
the following we summarize the main features of the GW
radiation obtained by our BNS simulations.

We consider equal and unequal masses configurations,
di↵erent total masses, and a large variation of zero-
temperature EOSs parametrized by piecewise polytropic
fits [30]. Thermal e↵ects are simulated with an additive
thermal contribution in the pressure in a �-law form,
Pth = (�th � 1)⇢✏, where �th = 1.75, ⇢ is the rest-mass
density and ✏ the specific internal energy of the fluid,
see [28, 31, 32]. The initial configurations are prepared
in quasicircular orbits assuming the fluid is irrotational.

Initial data are evolved for several orbits, during
merger and in the postmerger phase for several millisec-
onds. A detail discussion of the merger properties de-
termined by di↵erent EOSs, mass, and mass-ratio is pre-

sented in [14, 23]. The binary configurations in our sam-
ple do not collapse promptly after merger but form either
a hypermassive neutron star (HMNS) or a massive neu-

tron star (MNS) [33]. The former are merger remants
with rest-mass larger than the maximum rest-mass sup-
ported by stable uniformly rotating equilibrium star (de-
scribed by the same EOS). These remnants are dynami-
cally unstable and will collapse to black hole within the
GW timescale ⌧GW ⇠ hRi4/hMi3 ⇡ 200 ms. The latter
are merger remnants with rest-mass that does not ex-
ceeds the maximum rest-mass supported by stable spher-
ical equilibrium stars with the given EOS. These rem-
nants are dynamically stable and usually associated to
sti↵ EOS and low total masses. Both HMNS and MNS
remnants at formation are hot, di↵erentially rotating,
nonaxisymmetric, highly dynamical two-cores structures,
e.g. [31, 34].

The typical GW signal computed in our simulations is
shown in Fig. 1 for a fiducial configuration and plotted
versus the retarded time, t. We plot the (real part and
amplitude of the) dominant ` = m = 2 multipole of the
spin s = �2 weighted spherical harmonics decomposi-
tion R(h+� ih⇥) =

P
`m Rh`m

�2Y`m. The figure’s main
panel also shows the ` = m = 2 instantaneous and dimen-

Bernuzzi+  arXiv:1504.0176v1

many, many papers on understanding merger state



C U R R E N T  S TAT U S  A N D  F U T U R E  
C H A L L E N G E S

Vacuum solution, binary black holes, known pretty well 
good agreement between NR simulations and EOB over several 
hundred cycles 
still it is necessary to confirm no de-phasing between NR and EOB 
over ~1000 cycles  
spin effects (and possibly mass ratios) need to be controlled as well 

NR simulations with matter still at infancy 
BNS merger simulations don’t converge well 
comparison between different groups is necessary 
longer BNS simulations with ~100 cycles would be needed
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Between 2006-2010 larger detectors took 2 years worth of data 
at unprecedented sensitivity levels 
No detections so far but beginning to impact astrophysics
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LIGO Hanford

    LIGO Livingston



LIGO Hanford

    LIGO Livingston
LIGO India

A D VA N C E D  D E T E C T O R  N E T W O R K

I

During 2015-2022 five large detectors will become operational 
Advanced LIGO detectors both installed and locked, commissioning 
over the next 3 years should see first detections

KKAGRAVVirgo
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G W  D E T E C T O R  N E T W O R K  -  H I K LV

A network of 
gravitational wave 
detectors is always 
on and sensitive to 
most of the sky 

We can integrate 
and build SNR by 
coherently tracking 
signals in phase

Hanford-Livingston-Virgo

Hanford-Livingston-Virgo-KAGRA-India
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A D VA N C E D  D E T E C T O R S :  S C H E D U L E  
A N D  S E N S I T I V I T Y  S H O W N  L A S T  Y E A R
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Figure 1: aLIGO (left) and AdV (right) target strain sensitivity as a function of frequency. The
average distance to which binary neutron star (BNS) signals could be seen is given in Mpc. Current
notions of the progression of sensitivity are given for early, middle, and late commissioning phases,
as well as the final sensitivity target. While both dates and sensitivity curves are subject to change,
the overall progression represents our best current estimates.

the detector sensitivity for a specific class of astrophysical signals, such as BNSs. The BNS range
may then become 215Mpc. The sensitivity for each of these stages is shown in Fig. 1.

If the LIGO-India concept is pursued, the installation of the H2 detector in India will be delayed
until construction of the LIGO-India Observatory is complete. The site development would start in
2014, with installation of the detector beginning in 2018. Assuming no unexpected problems, first
runs are anticipated circa 2020 and design sensitivity at the same level as the H1 and L1 detectors
is anticipated for no earlier than 2022.

The commissioning timeline for AdV [4] is still being defined, but it is anticipated that in 2015
AdV may join the LIGO detectors in their first science run depending on the sensitivity attained.
Following an early step with sensitivity corresponding to a BNS range of � 40Mpc, commissioning
is expected to bring AdV to a � 70Mpc in 2017-18. A configuration upgrade at this point will allow
the range to increase approximately 100Mpc in 2018-20. The final design sensitivity, corresponding
to a BNS range of 130Mpc, is anticipated circa 2021. The sensitivity curves for the various AdV
configurations are shown in Fig. 1.

Japan has recently begun the construction of an advanced detector, KAGRA [5]. KAGRA is
designed to have a BNS range greater than 100Mpc at final sensitivity. While we do not consider
KAGRA in this document, we note that the addition of KAGRA to the worldwide GW detector
network will improve both sky coverage and localisation capabilities beyond those envisioned here.

2.2 Observing schedule

Keeping in mind the above caveats about commissioning, the following is a plausible scenario for
the operation of the LIGO-Virgo network over the next decade:

• 2015: A 3 month run with the two-detector H1L1 network at early aLIGO sensitivity (60 ±
20Mpc BNS range). Virgo in commissioning at � 20Mpc with a chance to join the run.
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Figure 5: The expected distribution of 90% confidence localization areas for a population of BNS
systems with advanced detector networks.

Run BNS range (Mpc) Number of Median % localized within
Epoch Duration LIGO Virgo Detections Area (deg2) 5 deg2 20 deg2

2015 3 months 60± 20 — 0.0004 - 3 2000 - -
2016–17 6 months 100± 20 40± 20 0.006 - 20 70 2 15
2017–18 6 months 140± 30 70± 15 0.02 - 70 84 1 12
2019+ (per year) 200 100± 15 0.2 - 200 31 5 37

2022+ (India) (per year) 200 130 0.4 - 400 11 19 73

Table 1: Summary of observing schedule, expected sensitivities, and source localization with the
advanced LIGO and Virgo detectors. Detection rates are computed assuming a false alarm rate of
10�2 y�1.

10

Aasi et al 2013 (arXiv:1304.0670)
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Jun 1 2014,  0.7 W, ESD drive, 0.5 Mpc   .
Jun 12 2014, 0.7 W, ESD drive, 3.6 Mpc
Jun 28 2014, 2 W,   ESD drive, 5.8 Mpc
Jul 24 2014, 2 W,   ESD drive, 15 Mpc
Jul 31 2014, 6 W,   L2 drive,  20 Mpc
Nov 27 2014, 25 W,  L2 drive,  46 Mpc
Mar 03 2015, 25 W,  L2 drive,  67 Mpc

LIGO-G1401390

A D VA N C E D  L I G O  D E T E C T O R S  H AV E  
M A D E  R A P I D  P R O G R E S S
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S H O R T  G R B S  A N D  A L I G O  E V E N T  R AT E S
Observed short GRB rate ~ 10 yr-1 Gpc-3  

known for a while and has not changed much since SWIFT or Fermi 

We won’t observe all GRBs because 
most GRB satellites are not sensitive to the whole sky 

SWIFT is typically covers between 10-25 % 
gamma emission is not expected to be isotropic 

half opening angle could be anywhere from a few degrees to 
isotropic  

Comoving volume rate depends on the beaming angle 
Smaller the beaming angle, less likely we will observe them and so 
greater the rate 

A half beam open angle of 5o gives a rate of ~2,000 yr-1 Gpc-3 
This implies a detection rate of ~ 50 yr-1 at design sensitivity
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E X P E C T E D  L I N E A R  R AT E  D E N S I T Y
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C U M U L AT I V E  R AT E  A S  A  F U N C .  O F  D I S T.
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• Cosmic Explorer (CE) is a new concept studied by colleagues 
in LIGO; sensitivity here for a 40 km arm length detector
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C O N C L U S I O N S
LIGO and Virgo on track, on budget, on time 

Engineering run next week, first observing run starting 
second week of September 
KAGRA construction in good shape and provides a 3rd 
generation facility 
awaiting the final word on LIGO India 

We are thinking and planning next generation of detectors 
enhancements within current facilities will take us a factor 
2-3 better in strain sensitivity (10-30 in volume) 
new facilities will be necessary to detect binary black holes 
from the edge of the Universe
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