
User Guide for falcON
version of 03/12/2002

Summary
falcON is the “Force Algorithm with ComplexityO(N))”
which is described in Dehnen (2002).
With this packages, you can usefalcON in subroutine form as
Poisson solver for particle based simulations.
The package also has a fullN -body code, based onfal-
cON, calledgyrfalcON (“GalacY simulatoR usingfalcON ”),
which employs theN -body tool boxNEMO. This code features in-
dividual adaptive time steps employing a block-step scheme, but
can also be used in single-time-step mode (in which case momen-
tum is exactly conserved).

1 Guarantee
This package comes with absolutely no guarantee whatsoever! The unpacking, installation, and usage of the
code is entirely at the risk of the user alone.

2 Credit
Any scientific publication or presentation which has benefited from using any part of this package should quote
the paper

Dehnen, W., 2002, JCP, 179, 27.
(please find a pdf file of this paper in the subdirectoryFALCON/doc.)

3 Unpacking
After downloading the filefalcON.tar.gz , copy it into some directory, sayFALCON. Then unpack it typing
(aftercd FALCON)

tar zxf falcON.tar.gz ,
which should create the sub-directoriessrc , inc , anddoc , as well as several other files.

4 Installation
You need to make the librarylibfalcON.a and possibly the executables you want to use, see§§ below. The
code is written entirely in C++ and it is strongly recommended to use a compiler that understands standard
C++, e.g. GNU’s gcc version 3.2 (or higher). If you want to use any other compiler than gcc, edit the file
make.defs and change the entry forC++COMP. However, I cannot recommend using the Intel compiler
version 6.0 (it produces slower code). TheMakefile is intended for use with GNU make.
In order to allow the code to understandNEMOdata format and parameter I/O, you must invokeNEMObefore
compilation.
The making takes a little while but should not produce any warning or error messages. Otherwise something
might be wrong. To generate the library as well as a test programTestGrav , type

make TestGrav
The executableTestGrav (as well as all other executables generated from this package) lives in a subdirectory

FALCON/$(MACHTYPE)$(OSTYPE) ,
whereMACHTYPEand OSTYPEare environment variables unique to the machine type and operating sys-
tem. In this way, you may have versions of the executables and the library (which is in subdirectoryFAL-
CON/$(MACHTYPE)$(OSTYPE)/lib ) for several hosts on the same file system.
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5 TestingfalcON
Please runTestGrav in order to get some rough check on the validity of your library. Issuing the command

TestGrav 2 1 1000000 901 0.01 1
shall generate a Hernquist sphere withN = 106 particles, build the tree (twice: once from scratch and once
again) and compute the forces using a softening length ofε = 0.01 scale radii with theP1 kernel (see§6). The
output of this command may look like

time needed for set up of X_i: 1
time needed for falcON::grow(): 2.58
time needed for falcON::grow(): 1.63
time needed for falcON::approximate(): 9.02

state: tree built
root center: 0 0 0
root radius: 1024
bodies loaded: 1000000
total mass: 1
N_crit: 6
cells used: 353419
maximum depth: 21
current theta: 0.6
current MAC: theta(M)
softening length: 0.01
softening kernel: P1
Taylor coeffs used: 84569
interaction statitics:

type approx direct total
# body-body : - 0 0 = 0%
# cell-body : 2115758 477698 2593456 = 18.342%
# cell-cell : 11237586 254997 11492583 = 81.279%
# cell-self : - 53678 53678 = 0.38%
# total : 13353344 786373 14139717 = 100.000%

ASE(F)/<Fˆ2> = 0.001598375617
max (dF)ˆ2 = 0.8182717562
Sum m_i acc_i = -2.655207831e-09 1.600820587e-09 2.495622042e-10

Note that the second tree-build is somewhat faster then the original one. Note also the the total-momentum
change (last line) vanishes within floating point accuracy – that’s a generic feature offalcON .

6 Choice of the Softening Kernel and Length
The code allows for various forms of the softening kernel, i.e. the function by which Newton’s1/r is replaced
in order to avoid diverging near-neighbour forces. The following kernel functions are available (x := r/ε)

name density (is proportional to) a0 a2 f
P0 (1 + x2)−5/2 ∞ ∞ 1

P1 (1 + x2)−7/2 π ∞ 1.43892

P2 7(1 + x2)−9/2 − 2(1 + x2)−7/2 0 ∞ 2.07244

P3 9(1 + x2)−11/2 − 4(1 + x2)−9/2 0 −π/40 2.56197

Note, thatP0 is the standard Plummer softening, however,recommendedis the use ofP1 andP2. There are
several important issues one needs to know about these various kernels.
First, the softening lengthε is just a parameter and using the same numerical value for it but different kernels
corresponds in effect to different amounts of softening. Actually, this softening is weakest for the Plummer
sphere: at fixedε, the maximal force is smallest. In order to obtain comparable amounts of softening, largerε
are needed with all the other kernels. An idea of the factor by whichε has to be enlarged can be obtained by
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Figure 1: Potential, force, and density for the softening kernels of the table, including the standard Plummer softening (P0). The
softening lengthsε are scaled such that the maximum force equals unity. The kernels P>0 approach Newtonian forces more quickly at
largerr than does P0. The kernels P2 and P3 have slightly super-Newtonian forces (and negative densities) in their outer parts, which
compensate for the sub-Newtonian forces at smallr.

settingε such that the maximum possible force between any two bodies are equal for various kernels. The last
column in the previous table gives these factors. Note, that using a largerε with other than theP0 kernel does
not mean that your resolution goes down, it in fact increases, see Dehnen (2001), but the Poisson noise is more
suppressed with largerε. It is recommended not to use Plummer softening, unless (i) in 2D simulations, as here
ε is the average scale-height of the disk, and, perhaps, (ii) in simulations made to compare with others that use
Plummer softening (for historical reasons).
Second, as shown in Dehnen (2001), Plummer softening results in a strong force bias, due to its slow conver-
gence to the Newtonian force atr � ε. This is quantified by the measurea0, which forP0 is infinite. In Dehnen
(2001), I considered therefore other kernels (not mentioned above), which have finite support, ie. the density is
exactly zero forr ≥ ε. This discontinuity makes them less useful for the tree code (which is based on a Taylor
expansion of the kernel). In order to overcome this difficulty, the kernelsP1 to P3, which are continuous in
all derivatives, have been designed as extensions to the Plummer softening, but with finitea0 (P1), zeroa0 but
infinite a2 (P2), or even zeroa0 and finitea2 (P3).

7 Choice of the Tolerance Parameter
The code falcON approximates an interaction between two nodes, if their critical spheres don’t overlap. The
critical spheres are centered on the nodes’ centers of mass and have radii

rcrit = rmax/θ (1)
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wherermax is the radius of a sphere that is guaranteed to contain all bodies of the node (bodies havermax = 0),
while θ is the tolerance parameter. The default is to use a mass-dependentθ = θ(M) with θ0 ≡ θ(Mtot)
being the parameter, see Dehnen (2002). For near-spherical systems or groups of such systems,θ0 of 0.6 gives
relative forces error of the order of 0.001, which is generally believed to be acceptable. However, the force error
might often be dominated by discreteness noise, in which case a larger value does no harm. For disk systems,
however, a small theta might be a better choice.
The recommendation is to either stick toθ0 no larger than about 0.6, or perform some experiments with varying
θ0 (values larger than 0.8, however, make no sense, as there is hardly any speed-up).

8 Use offalcON as Poisson Solver
8.1 with C++
In order to make use of the code, you need to insert the C macro

#include <falcON.h>
somewhere at the beginning of your C++ source code. Make sure that the compiler finds the filefalcON.h
by including “-I FALCON/inc ” among your compiler options. The usage of the code in your application is
explained in gory detail in the filefalcON.h (don’t forget thatclass falcON lives in namespacenbdy ).
In order to make an executable, add the linker options “-LFALCON/$(MACHTYPE) $(OSTYPE)/lib -
lfalcON -lm ” (expand the macros in your makefile) so that the library is loaded.
For examples of code usingfalcON.h , see the filesTestGrav.cc andTestPair.cc in subdirectory
src/mains/ , which may be compiled by typing “make TestGrav ” and “make TestPair ” and pro-
duce a short summary of their usage when run without arguments.

8.2 with C
In order to make use of the code, you need to insert the C macro

#include <falcON C.h>
somewhere at the beginning of your C source code. Make sure that the compiler finds the filefalcON C.h
by including “-I FALCON/inc ” among your compiler options. The usage of the code in your application
is explained in gory detail in the filefalcON C.h . In order to make an executable, add the linker options “-
LFALCON/$(MACHTYPE)$(OSTYPE)/lib -lfalcON -lstdc++ -lm ” (expand the macros in your
makefile) so that the library is loaded.
For examples of code usingfalcON C.h , see the filesTestGravC.cc andTestPairC.cc in subdirec-
tory src/mains/ , which may be compiled by typing “make TestGravC ” and “make TestPairC ” and
produce a short summary of their usage when run without arguments.

8.3 with FORTRAN
In order to make use of the code, you need to insert

INCLUDE ’falcON C.h.f
somewhere at the beginning of your FORTRAN program. Make sure that the compiler finds the filefalcON.f
by including “-I FALCON/inc ” among your compiler options. The usage of the code in your application
is explained in gory detail in the filefalcON.f . In order to make an executable, add the linker options “-
LFALCON/$(MACHTYPE)$(OSTYPE)/lib -lfalcON -lstdc++ -lm ” (expand the macros in your
makefile) so that the library is loaded.
For examples of code usingfalcON.f , see the filesTestGravF.F andTestPairF.F in subdirectory
src/mains/ , which may be compiled by typing “make TestGravF ” and “make TestPairF ”. Just
run these code, they are self-explanatory and provide some statistics output. You may also use the input files
given and run them as “TestGravF < treeF.in ” and “TestPairF < pairF.in ”.

9 TheN -body codegyrfalcON
The package also contains a fullN -body code, called “gyrfalcON ” (GalaxY simulatoR usingfalcON )1. If
you want to use this code, you need first to install and invoke theN -body tool boxNEMO, version 3.0.13 or

1Called “YancNemo” in former versions of this package.
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higher2, see http://www.astro.umd.edu/nemo.
Then type

make gyrfalcON
which should produce the executablegyrfalcON in the subdirectory

FALCON/$(MACHTYPE)$(OSTYPE)
(add it to your$PATH).
gyrfalcON comes with the usualNEMOhelp utility: calling

gyrfalcON help=h
produces the following overview over the options.

in : input file [???]
out : file for primary output; required, unless resume=t []
tstop : final integration time [10]
step : time between primary outputs; 0 -> every step [1]
logfile : file for log output [-]
out2 : file for secondary output stream []
step2 : time between secondary outputs; 0 -> every step [0]
theta : tolerance parameter at M=M_tot [0.6]
hgrow : grow fresh tree every 2ˆhgrow smallest steps [0]
Ncrit : max # bodies in un-split cells [6]
eps : softening length OR maximum softening length [0.05]
kernel : softening kernel of family P_n (P_0=Plummer) [1]
hmin : tau_min = (1/2)ˆhmin [6]
Nlev : # time-step levels [1]
fac : tau = fac/acc \ If more than one of []
fph : tau = fph/pot | these is non-zero, we []
fpa : tau = fpa*sqrt(pot)/acc / use the minimum tau. []
resume : resume old simulation? that implies:

- read last snapshot from input file
- append primary output to input (unless out given) [f]

give : list of output specifications. Recognizing:
m: mass (default)
x: position (default)
v: velocity (default)
a: acceleration
p: N-body potential
l: time-step level (if they exist)
f: body flag

give2 : list of specifications for secondary output [mxv]
Grav : Newton’s constant of gravity [1]
potname : name of external potential []
potpars : parameters of external potential []
potfile : file required by external potential []
startout : primary output for t=tstart? [t]
VERSION : 03/December/2002 WD

compiled Dec 3 2002, 10:52:40 [1.5]

The last column indicates the default value, with ‘[???] ’ indicating that the value for the keyword must be
given. A filename ‘- ’ means that output is written to stdout and can be piped into another command. A filename
‘ . ’ means that no output is made at all.

9.1 log output
By default, log output is written to stdout, which prevents the usage of the pipe to transferN -body data. By
setting ‘logfile ’ one may overcome this.

2Older versions of this package contained a non-NEMOcode, called “YANC”. This code was never properly tested and has hence
been deprecated.
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9.2 Data I/O
The initial conditions, including the simulation time, are read in from the file given with the parameter ‘in ’
andmust be in NEMOsnapshot format. If ‘in=- ’, the code expects input from a pipe. Unless the keyword
‘ resume=t ’ (see below) the first snapshot in this file is used.
The code allows for two distinct data outputs, one into ‘out ’ and another optional one into ‘out2 ’. Output
is made every ‘step ’ and ‘step2 ’ time units, respectively. The type ofN -body data written is controlled by
the options ‘give ’ and ‘give2 ’, which are character strings containing the letters ‘m’, ‘ x ’, ‘ v ’, ‘ a’, ‘ p’, ‘ l ’,
‘ f ’, indicating that the masses, positions, velocities, accelerations, potentials, time-step levels, and body flags
shall be given. The default is ‘mxv’, i.e. masses, positions, and velocities.
Traditionally on linux systems, there is a limit of 2Gb on the size of files. This will cause trouble withNEMO
snapshot files, since the snapshots of all output times are written to one file. To overcome this, you must (i)
configureNEMOappropriately (use ‘configure --enable-lfs ’ when installing and (ii) ensure that your
file systems supports large files – consult your system administrator.

9.3 falcON parameters
The parameters ‘eps ’ and ‘kernel ’ control the softening, see $6. The parameter ‘Ncrit ’ sets the maximum
number of bodies in a leaf cell of the tree. The default value ofNcrit is set to yield highest performance.

9.4 Time step and simulation time
The (shortest) time step is controlled by the parameter ‘hmin ’ and is equal to

τmin = 2hmin.

The simulations stops if the simulation time has been advanced to the value of the parameter ‘tstop ’. If
tstop equals the initial simulation time, the initial forces are computed and, if so desired, output is made for
this time only.

9.5 Resuming an old simulation
An old simulation may be resumed by setting the keyword ‘resume ’. In this case, the last snapshot from the
input file is taken as initial conditions and output is appended to the input file.

9.6 Adding an external potential
On top of theN -body forces, an external potential may be added using the usualNEMOkeywords ‘potname ’,
‘potpars ’, and ‘potfile ’. When ‘potname ’ is given, a corresponding shared object file is loaded dy-
namically and the potential is initialized with the parameters given with ‘potpars ’ or the data file given with
‘potfile ’, whatever applies.

9.7 Adaptive time stepping
You can usegyrfalcON without adaptive time steps, by setting ‘Nlev=1 ’ (default). In this case, also much of
the (small) overhead that is necessary for adaptive time steps is avoided and a standard leap-frog time integrator
is used.
When ‘Nlev ’> 1, a block-step scheme withNlev time step levels is used, i.e. the longest step contains2Nlev−1

shortest steps. The bodies’ individual time-step levels are adapted in an (almost) time symmetric fashion to be
on average

τ = min

(
fac

a
,
fph

|Φ|
, fph

√
|Φ|
a

)
, (2)

whereΦ anda are the gravitational potential and the modulus of the acceleration. The parametersfac , fph ,
andfpa determine the stepping. If either of them is zero, it is ignored.
In order to make a sensible choice for the parameters ‘hmin ’, ‘ Nlev ’, and ‘fac ’, ‘ fac ’, use the following
method. (1) Decide on the smallest time step: think what time step you would use in a single-time-step leap-
frog scheme and then setτmin to about half of that. (2) Decide on the largest time step, whereby ensuring that
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orbits in regions of very low density are accurately integrated when using the above criterion (2). (3) Do some
tests with varying ‘fac ’, ‘ fph ’, and ‘fpa ’ (set ‘tstop ’ to 0), in order to check that the distribution of bodies
over the time steps is reasonable, in particular there should be a few percent in the smallest time step.
When using adaptive time stepping, it may be worth your while to use a larger value for ‘Ncrit ’ than default.
This reduces the time of tree-building and increases that for the force computation. However with adaptive time
stepping the relative contribution of tree-building to the total CPU time budget is much larger than without.
Note that using this scheme is sensible only if you really have a very inhomogeneous stellar system, because
otherwise, the simple single-time-step leap-frog is only slightly less efficient but somewhat more accurate. In
particular, with the block-step scheme, the total momentum is not conserved, but with the single-time-step
leap-frog it is.

9.8 Examples
In order to integrate a Plummer sphere withN = 105 particles, you may issue the command

mkplummer - 100000 seed=1 scale=1 | gyrfalcON - eps=0.1 plum.snp
which first creates initial conditions from a Plummer model, which are then piped intogyrfalcON . gyr-
falcON creates an output file ‘plum.snp ’ containing output every full time unit until timet = 10. The log
output looks like

# ------------------------------------------------------------------------------------
# "gyrfalcON - eps=0.1 plum.snp VERSION=1.5"
#
# run at Tue Dec 3 12:11:36 2002
# by "dehnen"
# on "milkyway"
#
# time energy -T/U |L| |v_cm| build force step accum
# ------------------------------------------------------------------------------------

0 -0.1473791 0.50316 0.0010761 6e-09 0.2 0.98 1.18 1.18
0.015625 -0.147379 0.50317 0.0010762 1.9e-09 0.15 0.99 1.15 2.36
0.03125 -0.1473791 0.50316 0.0010762 5.6e-09 0.15 0.98 1.14 3.53
0.046875 -0.147379 0.50317 0.0010762 5.1e-09 0.14 1 1.15 4.71
.
.
.
9.9531 -0.1473785 0.49925 0.0010798 4.1e-09 0.15 0.99 1.14 758.39
9.9688 -0.1473783 0.49926 0.0010799 5.8e-09 0.14 1 1.15 759.57
9.9844 -0.1473778 0.49927 0.0010799 2.3e-09 0.14 1.01 1.16 760.76
10 -0.1473785 0.49927 0.0010799 5.8e-09 0.15 1 1.17 761.96

The column ‘|v cm| ’ gives the center-of-mass motion, which stays constant (within floating point precision)
due to the momentum-conserving nature offalcON . The last four columns contain the CPU time in seconds
spent on the tree building, force computation, and full time step, as well as the accumulated time.

10 addgravity and getgravity
The public version of thefalcON package contains two furtherNEMOexecutables.addgravity simply adds
acceleration and potential to every body in the snapshots of aNEMOsnapshot file.getgravity computes
the gravity generated by the particles (sources) in the snapshots of aNEMOsnapshot file at the positions of the
particles (sinks) in another snapshot. This is useful for, for instance, computing the rotation curves ofN -body
galaxies.

11 Bugs and Features
11.1 Test-particles
falcON does not support the notion of a test particle, i.e. a body with zero mass. Such bodies will never get
any acceleration (that is because the code first computes the force, which is symmetric and hence better suited
for mutual computations, and then divides by the mass to obtain the acceleration). To overcome this, you may
use tiny masses, but note that the forces created by such light bodies will be computed, even if they are tiny.
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Actually, this is exactly what we do ingetgravity .

11.2 Bodies at identical positions
The code cannot copy with more thanNcrit bodies at an identical position (within floating point accuracy).
Such a situation would result in an infinitely deep tree; the code aborts with an error message.

11.3 A mysterious bug
There seems to exist an odd bug that I’m currently trying to understand: Occasionally, a run ofgyrfal-
cONcrashes with ‘Segmentation fault’. However, apparently nothing is wrong with the simulation data, and
the simulation can be continued (via the ‘resume ’ option) from the last snapshot output. This error is not
reproducible and hence hard to track down and weed out.

12 References
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