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Motivation

Kinetic analysis of ions in plasma-wall boundary layer useful to: 

• Determine distribution function of ion velocities at divertor targets 
• In the long-term: obtain boundary conditions (BCs) for drift-kinetic 

and fluid codes used to simulate the scrape-off-layer (SOL) plasma 

• Theoretical interest: generalizing gyrokinetics to strongly distorted 
orbits in presheath geometry
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Boundary layers
Width Estimate*

Collisional presheath αλmfp 100 mm

Magnetic presheath ρi 0.7 mm

Debye sheath λD 0.02 mm

*Using data from F. Militello 
and W. Fundamenski, Plasma 
Phys. Control. Fusion 53, 
095002 (2011)
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References: R Chodura, Phys. Fluids 25 (1982); K.-U. Riemann, Phys. Plasmas 1, 552 
(1994); K.-U. Riemann, J. Phys. D: Appl. Phys. 24, 493-518 (1991).

λD << ρi << αλmfp
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magnetic presheath entrance

Debye sheath entrance

• Collisionless and quasineutral 
• Boltzmann electrons

The magnetic presheath
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Ion trajectories
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• Calculate ion trajectories by expanding in α << 1 
• Have approximately closed orbits (gyrokinetics) 
• The final piece which cannot be approximated by a periodic orbit 

is an open orbit
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Orbit position x̄ = x + (1/Ω)vy

Perpendicular 
energy

U⟂ = ½vx
2 + ½vy

2 
+ Zeφ/mi

Total energy U = U⟂ +  ½vz
2 

α=0: closed orbits
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• Closed orbit (period~1/Ω with Ω = ZeB/mi) if particle is 
trapped around a minimum of the effective potential χ(x)

Orbit parameters:
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• Orbit parameters x̄ and U⟂ slowly varying (timescale ~1/αΩ), hence we 
have an adiabatic invariant:

α<<1: approximately closed orbits

References: R.H. Cohen and D.D. Ryutov, Phys. Plasmas 5, 808 (1998);  
A. Geraldini, F. I. Parra and F. Militello, Plasma Phys. Control. Fusion 59, 025015 (2017)
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• Problem at x=0: ni,closed(0)=0=ne(0) leads to
e�(0)
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= ln
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• No problem far away from x=0, quasineutrality is Zni,closed(x)=ne(x)

solved by including 
open orbits

• Distribution function F constant when written in terms of μ and U
• Density of ions in approximately closed orbits is
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Solvability condition
• Expand Zni,closed(x)=ne(x) near x—>∞ using eφ/Te<<1 to obtain kinetic 

Chodura condition at magnetic presheath entrance (Geraldini, in 
preparation) 

• Analogous to kinetic Bohm condition (Harrison & Thompson, 1959) at 
Debye sheath entrance
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References: A. Geraldini, F. I. Parra, F. Militello, “Solution to a collisionless magnetic presheath with 
kinetic ions” (in preparation); E. R. Harrison and W. B. Thompson, Proc. Phys. Soc. 74, 145 (1959);

cs = √(ZTe/mi) = Bohm speed

Magnetic presheath entrance

Debye sheath entrance
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K.-U. Riemann, J. Phys. D: Appl. Phys. 24, 493-518 (1991).



α<<1: open orbits
• After last bounce from xb ion is considered in open orbit 
• Bounce point xb present if magnetic force > electric force when vx=0
• Magnetic force ~ vyB, electric force ~ φ’(x)
• Time derivative ẋb < 0 as orbit approaches wall 
• φ’(x) diverges at x=0, so eventually electric force > magnetic force  

always and xb disappears
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α<<1: open orbits
• Disappearance of xb  due to electric force beating magnetic force seen 

with change of effective potential curve and perpendicular energy
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α<<1: open orbits
• Disappearance of xb  due to electric force beating magnetic force seen 

with change of effective potential curve and perpendicular energy
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α<<1: open orbits
• ∆M = range of possible values of U⟂ for open orbit at some x̄ and V∥ 

• Allows to obtain possible vx at some x̄, V∥ and x
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α<<1: open orbits

• ∆vx = small range of possible vx at some x̄, V∥ and x
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• Note: α≲ni,open(0)/n∞≲α1/2 leads to
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Reference: A. Geraldini, F. I. Parra, F. Militello, “Solution to a collisionless magnetic 
presheath with kinetic ions” (in preparation)
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Numerical 
Results
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Boundary condition: ion 
distribution function

• Boundary (x→∞) distribution 
function marginally satisfies 
Chodura condition

F (µ,U) / (U � ⌦µ) exp

✓
�miU

Ti

◆

f1 (v) / v2
z

exp

✓
�m

i

2T
i

�
v2
x

+ v2
y

+ v2
z

�◆

uk1 = 2

r
2

⇡
cs ' 1.60cs

with Ti = Te

20

• Solved Zni(x) = ne(x) numerically

-3 -2 -1 0 1 2 3
vx/cs

0.0

0.1

0.2

0.3

0.4

f •
x(

v x
)/

(n
•

/c
s)



Electrostatic potential
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Distribution function at x=0 
(velocity normal to wall)

Potentially less sputtering at smaller angles, due to smaller number of 
ions with large velocity component normal to wall

α = 0.05-0.2: 
• Wider & asymmetric 
• Average flow > sonic

All:  
Marginally satisfy 
Bohm condition

α = 0.01-0.02:
• Very thin & symmetric 
• Centred at Bohm speed
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Distribution function at x=0 
(velocity parallel to wall)
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Current work: temperature 
dependence
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Expect not electron 
repelling wall in 
shaded region
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• Consider ion and 
electron near wall

• Wall electron repelling if 
electrons reach it faster



• Exploited small α expansion of ion trajectories to solve for ion distribution function  

• For a given potential profile, found expressions for lowest order ion density across 
magnetic presheath including crucial contribution of open orbits near x=0

• Derived kinetic generalization of Chodura condition

• Developed code that computes ion density and iterates over potential until 
quasineutrality is solved (with Boltzmann electrons) 

• Numerical results consistent with kinetic Bohm condition at Debye sheath entrance 

• For α≲0.05 found substantially fewer ions travelling with large normal component of 
velocity towards wall —> less damage to divertor targets

Current work:  

• Solve magnetic presheath numerically for different Ti/Te ratios 

Future work:  

• Numerically study propagation of turbulence in the magnetic presheath

Conclusion
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